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Introduction: Time series are Everywhere

Energy Production

A,

Edf.fr: tinyurl.com/yc7x5xje Virgo: https://www.virgo-gw.eu/ tinyurl.com/39dx2us4 tinyurl.com/ybcttmfz

ICDE 2024 | 17/05/2024 | 2



Introduction: Iime series are Everywhere
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Sensor measurements on le Piton
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Introduction: with Important Challenges

Energy Production

Astrophysics

Secondary circuit sensor
measurements

Fiber-acoustic sensors in the

VIRGO north building
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water pumps
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Introduction: with Important Challenges

Large-scale time series database

Energy Production

= Example of Nuclear production

- 58 nuclear power plants across France

- 2000+ sensors per power plant
- 30 years of data collections
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Introduction: with Important Challenges

Large-scale time series database

Energy Production

Example of Nuclear production

- 58 nuclear power plants across France

- 2000+ sensors per power plant
- 30 years of data collections

A total of 500 TeraBytes

Other source of production

- New sensors with higher acquisition rate
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Introduction: Anomaly Detection in Time Series

* Time series T (example : number of taxi passengers in New York City)

, , , WW‘H fiil “i“l““m # mv

Subsequence T; p

with i = 4400, ¢ = 250
4400 4450 4500 4550 4600 4650
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Introduction: Anomaly Detection in Time Series

* Time series T (example : number of taxi passengers in New York City)

0 2000 4000 000 8000 // \

* Anomaly: rare point or sequence (of a given length) Daylight Flooding Snowstorm
potentially non-desired Saving Time

(DST)
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Introduction: Anomaly Detection in Time Series

* Time series T (example : number of taxi passengers in New York City)

0 2000 4000 000 8000 "
A

* Anomaly: rare point or sequence (of a given length) Daylight Flooding Snowstorm

Saving Time
(DST)

potentially non-desired

Threshold

0 2000 4000 6060 8060
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Introduction: Outline

1. Foundations

1.1. Type of Time Series
1.2. Type of Anomalies

2. Anomaly Detection
Methods

2.1. A Taxonomy of Methods
2.2. Existing Benchmarks

3. Evaluating Anomaly
Detection

3.1. Threshold-based
3.2. Time series labeling issues
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Foundations: Type of time series
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Foundations: Type of anomalies  eampleor _,
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Foundations: Type of anomalies

.-1 Univariate and Multivariate point anomalies |---_

p
1
A/\/
T
1
|
T@ \ |
Univariate T ' Multivariate
value outlier . < vpalue outlier
|
|
T |
I
\ : |
' 900 1200
, 200+
| :
1 5
! 1507 ¢ 4
l
|
. 100t
: [ ]
I
| 501
1
} f y = 0 f f f f
0 50 100 150 200 0 50 100 150 200
(a.1) Univariate case (a.2) Multivariate case
(a) Point outlier outside the healthy range of values
N (dotted black line) ___________________. %

N e e e e e e e e e e e e e e e e e e e e e e e e e e = = = = = —

.-1  Univariate and Multivariate sequence anomalies --.

’ f r=—-- _: \\
1

oW\

(—— !

=== 1

1

W :

Univariate T T (2}---- Multivariate !
subsequence outlier . “  su i
e :

| 1
VVV‘/\/\/\/ |

T . :

L :

l

, 200 + |

1 1 :

I I P I

! ! § 1

! ! 1501 i |

1 1 :

1 1 1

1 1 |

: : 100t ]

1 1 :

1 1 1

1 1 |

] 1 501 "

1 | :

f 4 f ! = 0 f } } } I
0 50 100 150 200 0 50 100 150 200 !
(b.1) Univariate case (b.2) Multivariate case !

1

1

(b) Subsequence outlier inside the healthy range of values

_____________________________________________________________

ICDE 2024 | 17/05/2024 | 14



Anomaly Detection Methods
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Anomaly Detection methods: A taxonomy

I Anomalies -

Time Series
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Anomaly Detection methods: A taxonomy
By domains [5] ...

RobustPCA[101]  Eros-SVMs[74] k-Means[151] XGBoosting [34] KNN[110]
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Anomaly Detection methods: A taxonomy
By inputs...

Time series anomaly detection methods

v J J
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28 sensors i

anomaly (flow, pressure, temperature)

GSS: moisture separator-reheater system KKO: energy metering system
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Anomaly Detection methods: A taxonomy
By methods...

[ Time series anomaly detection methods ]
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Anomaly Detection Methods
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Anomaly Detection methods: A taxonomy
By time...
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Percentage

Anomaly Detection methods: A taxonomy
By time...
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.

Time series T

; T 1250 / l \ | / L 37'50/ 5000
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.

Time series T

; T 1250 / l \ | / L 37'50/ 5000

Sri =d(Tis Tip) Nearest neighbor
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.

Time series T

; T 1250 / l \ | / L 37'50/ 5000

Sri = d(Tip Trme) K-Nearest neighbor
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect
anomalies.

Time series T

| | | | |

; T 1250 / l \I | / / 3750 5000

L I3 0. 3

Tip Tip Tk Trp T Toe

Sri= ) d(Tie

Tk,f) Nearest Cluster

kec
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Anomaly Detection methods: Distance-based

Methods that use distance computation between subsequences (or group of subsequences) to detect

anomalies.

Time series T

L (00 A - 0B

v N ’ V
Tip Tip Tk Ty, T The

% 1
Sri= ) d(Tie

Tk,f) Nearest Cluster

kec

5000

1 I I
0 1250 2500

I
3750

5000
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Anomaly Detection methods: Distance-based

Example of distance computation

B : B j  It2

(a) Euclidian Distance (b) DTW distance
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Anomaly Detection methods: an Example

v

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.

Matrix Profile [6] (MP) A

Compute the distance to the
nearest neighbor (using the
MASS algorithm z-norm
Euclidean distance
computation) and use it as
anomaly score

Unsupervised

Univariate

sequence
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Anomaly Detection methods: an Example

v

The matrix Profile is computed as follows:
Sy = |NN(To), NN(Typ), ... NN(Ti7i=s,¢)]

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.

Matrix Profile [6] (MP) A

Compute the distance to the
nearest neighbor (using the
MASS algorithm z-norm
Euclidean distance
computation) and use it as
anomaly score

Unsupervised

Univariate

sequence
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Anomaly Detection methods: an Example

) ) Discord
Time series T

h i
1]

Anomaly score St

f f f
0 300 400

f f f f f
0 100 200 . 300 400

[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah
Mueen, and Eamonn J. Keogh. 2016. Matrix Prole I: All Pairs Similarity Joins for Time Series. In ICDM.

. . N
Matrix Profile [6] (MP)
Compute the distance to the

nearest neighbor (using the
MASS algorithm z-norm
Euclidean distance
computation) and use it as
anomaly score

Unsupervised

Univariate
sequence
/
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Anomaly Detection methods: an Example

. . N
Matrix Profile [6] (MP)
. . Discord Compute the distance to the
Time series T nearest neighbor (using the
[ ] 1 7] MASS algorithm z-norm
( . . b Euclidean distance
Many different extensions... . .
computation) and use it as
- For streaming time series: STAMPI [6], DAMP [8] anomaly score
- For similar recurrent anomalies: left-STAMP [6] ) .
- Anytime or ordered: STAMP [6], STOMP [7] Unsu pervised
. - For multivariate time series: MSTAMP [9] ) - /
fJ L Univariate
0 180 280 i 380 480 ( )
sequence
o %
[6] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah ICDE 2024 | 17/05/2024 | 36
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Anomaly Detection methods: an Example

Time series T

Tip
ﬂ

2000 4000 6000

v v
fOT' Tj'g inT:

’ld = Zm W s mingego ey, — {dist(Ty0 Niy, )
M
[

8000

150 20

[
[ /‘u‘“

N/

see
4

01 I I I I
0 2000 4000 6000 8000

Anomaly score St

[10] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2021. Unsupervised
and scalable subsequence anomaly detection in large data series. The VLDB Journal 30, 6 (Nov 2021), 909-931.

4 )
NormA [10]
Distance-based approach that
summarize the time series into
a weighted set of subsequences
and use the distance to them as
anomaly score
Unsupervised
Univariate
sequence
o /

ICDE 2024 | 17/05/2024 | 37



Anomaly Detection methods: an Example

4 I
Time series T M \\_/ NormA [10]
Tip gy,
\ i | (N%y,w®) h Distance-based approach that
A cummarize the time series into
SAND [25] a weighted set of subsequences
and use the distance to them as
Distance-based approach that summarize the time series into a anomaly score
weighted set of subsequences, and can be updated incrementally l)} )
for new arriving batches of data points i Unsu pervised
T ’ ; :
Univariate
%0 Z(I)OO 4oloo 6500 8500 . 3
Anomaly score St sequence
o J
[25] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. 2021. SAND: streaming subsequence anomaly detection. ICDE 2024 | 17/05/2024 | 38

Proc. VLDB Endow. 14, 10 (June 2021), 1717-1729.



Anomaly Detection methods: Density-based

Methods that estimate the density of the space (points or subsequences) and identify as anomalies
points (or sequences)that are in low-density subspace.

Time series T

___________________________________________________________

Tree based approaches [11] { Distribution-based

N o . L Approaches [12]

o O Y 1

Ooo oo |

%004 $O !

© oo .

[@) OOOO :

o0 © :

U J ‘ !

oC o0 :
> ICDE 2024 | 17/05/2024 | 39
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Anomaly Detection methods: an Example

0 splits

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "

Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422

v

0 splits

v

Isolation Forest [11]

Density-based approach that
split the space randomly and
using the depth of the trees to
identify anomalies

~

7

Unsupervised

.

N

J

Univariate/Multivariate

~

Ve

Point/sequence

\.

-
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Anomaly Detection methods: an Example

1 splits

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "

Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422

v

v

Isolation Forest [11]

Density-based approach that
split the space randomly and
using the depth of the trees to
identify anomalies

~

7

Unsupervised

.

N

J

Univariate/Multivariate

~

Ve

Point/sequence

\.

-
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Anomaly Detection methods: an Example

Isolation Forest [11] A

Density-based approach that
split the space randomly and
using the depth of the trees to
identify anomalies

N

Unsupervised

J

2 splits 2 splits
A A
o O o O
Ooooo Coo
©L00° °L0 0°
Q O O O
° o[ o O
e® ©O . o0 © .
@) O @) @) (
o ®
® °® ® °®

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "

~

Univariate/Multivariate

Ve

\.

Point/sequence

-
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Anomaly Detection methods: an Example

Isolation Forest [11] A

Density-based approach that
split the space randomly and
using the depth of the trees to
identify anomalies

N

Unsupervised

J

3 splits 3 splits
A A
o O o O
Ooooo Coo
©L00° °L0 0°
Q O O @)
..ooo ooooo
e® © . o0 ©O .
O @) @) O (
O o)
O °® O o0

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "

~

Univariate/Multivariate

Ve

\.

Point/sequence

-

Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422 ICDE 2024 | 17/05/2024 | 43



Anomaly Detection methods: an Example

Isolation Forest [11] A

Density-based approach that
split the space randomly and
using the depth of the trees to
identify anomalies

N

Unsupervised

J

4 splits 3 splits
A A
o O o O
Ooooo Coo
©L00° °L0 0°
Q O O O
ooooo ooooo
ol © O 00 © O
O O @) @) (
O o)
O °® O o0

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "

~

Univariate/Multivariate

Ve

\.

Point/sequence

-

Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422 ICDE 2024 | 17/05/2024 | 44



Anomaly Detection methods: an Example

Isolation Forest [11] A

Density-based approach that
split the space randomly and
using the depth of the trees to
identify anomalies

N

Unsupervised

J

5 splits 3 splits
A A
o O o O
Ooooo Coo
©L00° °L0 0°
Q O O @)
ooooo ooooo
oo} © O 00 © O
O @) @) O (
O o)
O °® O o0

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "

~

Univariate/Multivariate

Ve

\.

Point/sequence

-

Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422 ICDE 2024 | 17/05/2024 | 45



Anomaly Detection methods: an Example

. )
Isolation Forest [11]
I Tree 1 ITree, [Tree,
e N N Density-based approach that
/ e lit th domly and
7 o’% nnnnnn split the space randomly an
using the depth of the trees to
N identify anomalies
AN Instance N
@ ITree, Instance N
Instance A ( ] )
4 Unsupervised
Univariate/Multivariate
N Point/sequence
- J

[11] F. T. Liu, K. M. Ting and Z. -H. Zhou, "Isolation Forest," 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp. 413-422 ICDE 2024 | 17/05/2024 | 46



Anomaly Detection methods: an Example

_N(1) subsequences.

N

N (©)
/ k\ (5) Each node is an ensemble of similar
'o |

Each edge is associated to a weight
w that corresponds to the number
of times a subsequence move from
one node to another.

—
v
N—

For a given subsequence T; , and its corresponding path
Py, =< NO NG NE+H) > we define the normality score as follows:
i+-1yw (NG NUGED) deg(ND) — 1
Norm(Py,) = Z ( z & )
Jj=i

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.
VLDB Endow. 13, 12 (August 2020), 1821-1834

Series2Graph [13]

Density-based approach that
convert the time series into a
graph and detect unusual
trajectories

~

Unsupervised

Univariate

subsequence
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Anomaly Detection methods: an Example

N(6)
/ k\N(S) Each node is an ensemble of similar
° subsequences.
4 N(l) 2 (o ' G \

DADS [26] N

1

Distributed version of Series2Graph m

] €3)

\ > . )

For a given subsequence T; , and its corresponding path
Py, =< NO NG NE+H) > we define the normality score as follows:
i+-1yw (NG NUGED) deg(ND) — 1
Norm(Py,) = Z ( z & )
Jj=i

[26] Schneider, J., Wenig, P. & Papenbrock, T. Distributed detection of sequential anomalies in univariate time series. The VLDB
Journal 30, 579-602 (2021).

Series2Graph [13]

Density-based approach that
convert the time series into a
graph and detect unusual
trajectories

~

Unsupervised

Univariate

subsequence
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Anomaly Detection methods: an Example

Snippet of SED time series [14]

R — —— -

0 1300

Pattern following
an unusual path in
the graph

[13] Paul Boniol and Themis Palpanas. 2020. Series2Graph: graph-based subsequence anomaly detection for time series. Proc.

VLDB Endow. 13, 12 (August 2020), 1821-1834

5200 6500

Pattern following
a recurrent path

\—‘ in the graph

Series2Graph [13]

Density-based approach that
convert the time series into a
graph and detect unusual
trajectories

~

Unsupervised

Univariate

subsequence
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Anomaly Detection methods: an Example

= et a
[ J = GraphAn [28]

Projection (sum variance: 0.989)

Graph mean score: 130.509

Series2Graph g ) s . . . .
el \THTEN == An interactive tool to dive into
' | A 2 the computation steps of

Subsequence anomaly detection in long

sequences is an important problem with . 7 AN\
applications in a wide range of domains. % y e N\
However, the approaches that have been 9 —~— A > .

proposed either require prior domain 4 [y ; Se rl e S 2 G ra p h :
knowledge, or become cumbersome and X

expensive to use in situations with

recurrent anomalies. In this work, we
address these problems, and propose a
graph based method, suitable for domain

agnostic anomaly detection.

CHUELEEE Choose your Method STOMP ~ Upload Time Series

Original time series

L0 0L ] L

[28] Paul Boniol, Themis Palpanas, Mohammed Meftah, and Emmanuel Remy. 2020. GraphAn: graph-based subsequence ICDE 2024 | 17/05/2024 | 50

anomaly detection. Proc. VLDB Endow. 13, 12 (August 2020), 2941-2944.



Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

- T T T T
0 1250 2500 3750 5000
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

— T; f(Ti—se)

1 I |
2500 3750 5000
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

— T f(Ti—pp)
Tigye T; l T
\,\L\——AI/IL\L\,JJ‘A ..a/ Nt
(I) ) 121_50 25I00 37I50 5800
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

— T f(Tig)

Ti—pe T, : L=44
\ALLI/,L\L\J‘/\ J AciAaAnf Ao

(I) ) 12%50 25I00 37I50 5800
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

_______ 7_15? v T, — T f(Ti—pe)
\ALLJ/LJ(\J‘A J A ~(A~ {A ~af\ s /\,-al‘ - lL\A.."/\,,.J‘/\ Jj/\.._’ /\.,., /\J A A‘\F Al\/\ J
(I) L 121_50: 25IOO 37ISO 5000
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Anomaly Detection methods: Forecasting-based

Methods that aims to predict the next points based on the previous ones. The prediction error is used
to detect if there is an anomaly or not.

______ 7_*5? T — T f(Ti—e0)
“LL*LL‘L‘J /\4‘/ /\._‘i,,{/\..;. {A ~alff\ e /\,-,\JL\;\ ]\/L‘JJ"*,;"‘-L’\~'-,{"~~, A cn N\ J/\,,
5 L 12'L50I 2200 3750 | : 5000
ST = |Ti - f(Ti—&{’) | JL
o S ime— e w— i — T — T — — ~ A
0 1250 2500 3750 5000
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Anomaly Detection methods: an Example

Number of cells n,

fﬁi hi
[
Ci—1 =/)-(\ JD
fT Ji
oy | |0y o,
w1 T
hi—y

*Citq

> hiyq

[15] Pankaj Malhotra, Lovekesh Vig, Gautam Shro, and Puneet Agarwal. 2015. Long Short Term Memory Networks for Anomaly

Detection in Time Series. (2015).

-

LSTM-AD [15]

Model that stack multiple LSTM
cell and use the output to
predict the next value

Semi-supervised

Vs
\\

~

Univariate/Multivariate

Ve

.

Point/sequence

-
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Anomaly Detection methods: an Example

MaxPooling Conv layer 2
A .
Conv layer 1 MaxPooling
/ Ti_py Dense layer
: O
E_l | : l+ | | |
0 1250 2500 3750 5000

[16] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed. 2019. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection

in Time Series. IEEE Access 7 (2019), 1991-2005.

DeepAnT [16] (CNN)

Convolutional-based approach
(2 convolutional layers) taking
as input a sequence and aims to
predict the next value.

~

Semi-supervised

Vs
\\

Univariate/Multivariate

~

Ve

\.

Point/sequence

-
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Anomaly Detection methods: Reconstruction-
based

Methods that aims to reconstruct the time series T and use the reconstruction error to detect if the
time series is an anomaly or not.

Time series T

1 ) 1 1 | ! 1 1
1 I |
1250 Tip 2500 3750 5000

f(Tl f);ﬁji,Aﬁ/i( f)%&
20 40 20 40
ST,l = ”Tl,f - l,f ” _ ]fLm

| |
I 1
0 1250 2500 3750 5000
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Anomaly Detection methods: an Example

,Anomaly score,
S = LTy, T'y) |

Reconstructed subsequence

Original subsequence

& ¢+ (D)t (D=1) s (0
Ti(j’)) Tl(f 1) T'fg) Ti,t’( )Ti.t’( )Ti,l’( )
Latent space
E(T,6p) » D(Z,6p)
I Original subsequence ' ¥ !
4 A Reconstructed
/ ' / \\ subsequence
6 2Io 4'0 60 1 b 2'0 4:0 60 '
Normal subsequence Anomalous subsequence

[17] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction. In Proceedings

of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis (Gold Coast, Australia QLD, Australia) (MLSDA’14).

" AutoEncoders [17] (AE) A

Neural Network composed of an
encoder (that reduce the
dimensionality) and decoder
that reconstruct the time series.
The objective is to minimize the
reconstruction error.

Semi-supervised

. J

Univariate/Multivariate

Point/sequence
N Y,
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Anomaly Detection methods: Existing

benchmark

-

HEX/UCR [18]

Set of 250 time series with
labels.

Details

TimeEval [5]

- The labels have been

manually checked and are
reliable

Each time series contains
only 1 labeled anomaly

Set of 976 time series with
labels.

Details

New synthetic benchmark
GutenTag used to tune
parameters

Only Time series with low
contamination rate (< 0.1)

Time series with at least one
methods above 0.8 AUC-ROC

TSB-UAD [19]

Set of 2000 time series with
labels.

Details

J

Collected as proposed in the
literature (no filtering based
on contamination, size or
label quality)

Artificial and synthetic data
generation methods for
reliable labels

J
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Anomaly Detection methods: Existing
benchmark

OPPORTUNITY

IOPS

Real datasets collection

SVDB

MGAB

MITDB

S

ANALRLIAA

ML

ECG

GHL

NASA-MSL

SMD

A4

o\ e

A

NASA-SMAP

NAB

SSSSSS

Dodgers

YAHOO

hul s

e

W

ICD
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Anomaly Detection methods: Existing
benchmark

Artificial dataset generation Synthetic dataset generation
filter_fft
/ / r ' _add_random_walk'_trend I ' _tw'o_seg_freq_fivlter
N ' _a}id_white_noi'se ' ‘ _acr:ld_point_outlvier
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Anomaly Detection methods:
Experimental evaluation

Observations on TimeEval [5]:

- Distance-based and Density-based methods
have a better accuracy (AUC-ROC) than
forecasting and reconstruction-based
approaches

- Semi-supervised methods are not
outperforming Unsupervised approaches

[5] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. 2022. Anomaly detection in time series: a
comprehensive evaluation. Proc. VLDB Endow. 15, 9 (May 2022), 1779-1797.

Unsupervised

Semi-supervised

Methods AUC-ROC
Sub-LOF [22] 2% 0% 0% - 1
GrammarViz [120] 3% 0% 0% 1 T}
DWT-MLEAD [134] 0% 0% 0% 1 T H
VALMOD [82] 1% 9% 11% i ENNNN |
SAND [17] 5% 1%22%| ! 1 : )
Left STAMPi [156] 2% 0% 1% f { : i
Series2Graph [16] 0% 0% 5% f [ T T H
IARIMA [65] 7% 0% 0% b T H
PCI [157] 0% 0% 0% ! I : J
STOMP [164] 2% 0% 0% | ! i ]
STAMP [156] 4% 0% 0% | ! : J
Triple ES [1] 15% 0% 9% = 7 1+
NumentaHTM [3] 0% 0% 0% e I
NormA-SJ [15] 10% 1% 3%| F ! : H
Sub-IF [83] 0% 0% 0%| ! T 1+
MedianMethod [10] 0% 0% 0%| | = 1+
SR [112] 0% 0% 0% | T 1+
PS-SVM [85] 12% 0% 0% b T }+—
PST [128] 0% 4% 0% ! T 1
SSA [155] 1% 0% 0% N |
HOT SAX [70] 24% 1% 1% e R
TSBitmap [144] 0% 0% 0% ] F -
DSPOT [122] 6% 0% 0% {3
FFT [111] 0% 0% 0% |
S-H-ESD [62] 0% 0% 49% E
Donut [150] 1% 1% 2% - T
RForest [21] 12% 0% 0% 1 T
[E-CAE [44] 0% 0% 1%| ! - T H
[XGBoosting [34] 0% 0% 0% {1
OceanWNN [143] 0% 0% 10% {1 T
Bagel [79] 19% 0% 2% f T 1 i
SR-CNN [112] 22% 0% 1% E
TARZAN [71] 0% 0% 18%| H—1 | p—
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Anomaly Detection methods:
Experimental evaluation

Observations on HEX/UCR [18]:

- Distance-based methods have a better
accuracy (AUC-ROC) than forecasting and
distribution-based approaches

[18] R. Wu and E. Keogh, "Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the lllusion
of Progress" in IEEE Transactions on Knowledge & Data Engineering, vol. 35, no. 03, pp. 2421-2429, 2023.

MP A

NORMA -

AE -

LOF A

CNN -+

IFOREST A

LSTM A

OCSVM A

HBOS A

IFOREST1 ~

POLY -

PCA -

4

lLl

| ° —
| ° —

— & —
| o —
" o —
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Anomaly Detection methods: N o |

Experimental evaluation e H

AE } ) _l

IFOREST - } @ —|

Observations on TSB-UAD [19]: ForesT1{ | O —

] |

- Distance-based methods have a better e ! N |

accuracy (AUC-ROC) than forecasting-based ol ] o |

methods. | '

- Isolation Forest (distribution-based and not Hos { | ® |
proposed for time series) have also a strong

accuracy rcad | o —

- AutoEncoder (AE) is also very accurate. =T | ® |

POLY - Ii @ 4|

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an OCSVM - } ® —l

end-to-end benchmark suite for univariate time-series anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711. ’ ' : : . ’

0.0 0.2 0.4 0.6 0.8 1.0

AUC-ROC
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Anomaly Detection methods:

Experimental evaluation

CNNR

NORMA -

MP -

Observations on TSB-UAD [19]:

LSTM[4

LOF A

- Forecasting methods (LSTM and CNN) are

very accurate for point anomalies AE -

- But have poor performances on sequence-
based anomalies.

POLY -+

IFOREST -+

PCA A
HBOS -+
[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael
J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series oCSVM
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.

IFOREST1 A

AUC-ROC

Point-based anomaly sequence-based anomaly
oI wwl | o L
4| - <

)—E]'l o T e I ey

|_E rores | | o H

—e H eos | | o —

— H| =l e

| ® — | rForest1{ | ° -

— o [— ory | & —
E— — oNN I ® i

— i LsM | } ° i
— — PoY ] ® —
— & — ocswy f—o—4 ©® —H

AUC-ROC
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Anomaly Detection methods:

Experimental evaluation Ratio>0.1 Rati0<0.001

IFOREST — @ | [ | roresmi ———
wos{ | o | o I
Pcaq | o || rorestq |
Observations on TSB-UAD [19]: Poy{ | o : pead | ®
|
- The ratio of normal/abnormal points has a T 1 = °
strong impact on the methods ranking. NoRwMA 1 | o —] PoLY 1 F——— e
AE I (] 4| AE A |7 (]
ccsm| f—— © ——f| ] | o
CNN 1 I @ I LOF } ®
LOF } (] { MP A |7 @
LSTM - I @ I LSTM ~ I [ —|
[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael
anomaly detection proc, LD Endows. 15,  (Apr 2022, 16974711, b e @
0.0 02 04 06 08 10 00 02 04 06

AUC-ROC AUC-ROC
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Anomaly Detection methods: Experimental evaluation

Observation from the results applied on specific datasets (TSB-UAD [19])

(a.1) Example from ECG dataset Y (a.2) ECG. (c.1) Example from Daphnet dataset (c.2) Daphnet
.81 = 0.6 ’ C T
& L & 0.4 . 1
S 0.4 i : ; % E O . I
S é 202 ; : i é
ol =B =, o L T BE T T EEEES
(b.1) Example from MGAB dataset (b.2) MGAB (d.1) Example from YAHOO dataset (d 2) YAHOO
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H | . ¢ i ]
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O ] ©0.50 1 o i
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202 1 < ‘ : :
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There is no overall winner.

[19] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate time-series
anomaly detection. Proc. VLDB Endow. 15, 8 (April 2022), 1697-1711.
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Anomaly Detection methods: Experimental evaluation

Anomaly Detection Methods comparison Mok

Method X: Method Y:
Q / \

= Theseus [27]
= h AR oA An interactive tool to compare anomaly detection
08 B ® <
Average AUC_ROC on ALL time sel § ° g m et h od S
210 time series snippet (40k points maximum)
VLDB 2022 Github repo

- /

[27] Paul Boniol, John Paparrizos, Yuhao Kang, Themis Palpanas, Ruey S. Tsay, Aaron J. EImore, and Michael J. Franklin. 2022.
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Evaluation measures: Threshold-based

Labels
A
_ . I N

Threshold-based Evaluation Time Series
Measures:

0 2000 4000 6000 8000 -

/\ Thresholds T

2000 4000 6000 8000

Anomaly score
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Evaluation measures: Threshold-based

Threshold-based Evaluation
Measures:

Precision:

TP+FP
Recall (true positive rate):

TP+FN

False positive rate:
FP+TN

(1+B?)*Precision
B?*Precision+Recall

F-score:

Labels
A

Time Series

8000

Anoll Fp —

I
1

FN x

TN
TP

/_—
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Evaluation measures: AUC-based

Labels
A
X ) 4’ N
How do we set the threshold? Time Series l !
0% 20(;0 400=O 6=000 8600 -

Thresholds T

0 2000 4000 6000 8000
Anomaly score
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Evaluation measures: AUC-based

Labels
A
_ . r N
How do we set the threshold? Time Series l !
0 5000 4000 6000 8000 B
‘A/\/\/ 1 Thresholds T
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0 2000 4000 6000 8000
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Evaluation measures: AUC-based

How do we set the threshold?

Labels
A

p
Time Series l

u |

0 2000 4000 6000 8000

Thresholds T

0 2000 4000 6000 8000
Anomaly score
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Evaluation measures: AUC-based

AUC-based Evaluation Measures:

Labels
A

p
Time Series l

u |

0 2000 4000 6000 8000

Thresholds T

fpr
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Evaluation measures: AUC-based

Labels
A

e A
AUC-based Evaluation Measures: Time Series l !

|

0 2000 4000 6000 8000

""" ® Thresholds T .\—A~
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0 2000 4000 6000 8000
Anomaly score

===
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Evaluation measures: AUC-based

Labels

.
AUC-based Evaluation Measures: Time Series l

:
|
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---------- Qo 0 2000 4000

Thresholds T
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Anomaly score

fpr

6000

8000

ICDE 2024 | 17/05/2024 | 79



Evaluation measures: AUC-based

Labels
A
: ) 4’ N
AUC-based Evaluation Measures: Time Series !
---------- 0 5000 4000 6000 8000 B

AUC-ROC [20]
Thresholds T

0 2000 4000 6000 8000
Anomaly score

fpr

[20] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27, 8 (2006), 861-874. ICDE 2024 | 17/05/2024 | 80



Evaluation measures: AUC-based

Labels
A

AUC-based Evaluation Measures: Time Series

0 2000 4000 6000 8000

Precision

Thresholds T

i AUC-PR [21]

1
1
1
1
I ¥ 1 il il Il
| | | | | |
: 0 2000 4000 6000 8000
: Anomaly score
Recall
[21] Jesse Davis and Mark Goadrich. 2006. The Relationship between Precision-Recall and ROC Curves. In Proceedings of the 23rd ICDE 2024 | 17/05/2024 | 81

International Conference on Machine Learning (ICML '06).



Evaluation measures: Labeling issue

Labels
A

Labeling can be an issue for time Time Series

ok
in.LW"h. L0 L P ‘1‘”% MII|||”J1FI|’HHH||“ ‘ Iu

series [22]:

- Misalignment can lead to
significant changes of accuracy
values.

0 8000
Anor

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. EImore, and M. J. Franklin.

/_—

Volume under the surface: a new accuracy evaluation measure for time-series
anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.
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Evaluation measures: Labeling issue

Labeling can be an issue for time
series [22]:

- Misalignment can lead to
significant changes of accuracy
values.

- Thisis a real issue because of:

Different Labeling strategies
between domains and
applications

Methods that produce
misaligned anomaly scores.

P
(1) Time series S
anomaly £:£

b 3'00 '600
(2) Anomaly score

w= : Subsequence method (£)
== : Point method ;

(3) Labeling strategy:g

anomaly:

(ex1) Example
on IOPS

14600 14800 15000 15200 15400

(ex2) Example on
SensorScope

12000 12200 12400 12600 12800 13000 13200

401(ex2) Example

anomaly + borders:

on NAB

anomaly + right border::

300 600 900 1200

ot

1950 2000 2050 2100 2150 2200 2250
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Evaluation measures: Labeling
Issue

Existing solutions:

Range Precision and Recall [23]:

Ny .
- Recall;(R,P) = Li=1 Re‘;\C’l”T(RuP)

- Recall;(R_i, P) = a * ExistenceR(R;, P) + (1 — a) * OverlappingR(R_i, P)

N
p
Z'=1

o Precisiont(R,P;)
- Precisiony(R,P) = =

Np
- Precisiony (R, P;) = CardinalityFactor(P;, R) * Z?’;l w(P, P, NR;,6)

- Functions w( ), 6() are tunable functions to represent the overlap size
and position respectively.

Reward Existence or Overlapping?
Time Series Time Series

e

Anomaly Score Anomaly Score

Reward the beginning or the end?
Time Series Time Series

Anomaly Score Anomaly Score

[23] Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, and Justin Gottschlich. 2018. Precision and Recall for Time Series. In Advances in ICDE 2024 | 17/05/2024 | 84

Neural Information Processing Systems, Vol. 31.



Evaluation measures: Labeling issue

(c) R-AUC-based Accuracy measure

i . window ¢
Existing solutions: g Y& 1/«2-
- Volume Under the Surface [22] (VUS): S
i B g threshold T
- Modify the labels with buffer regions at % O e ffEE%fii?}fi'_-'_?ff%f%fi?fiifﬁ_'{{:
the beginning and at the end of an i § o™ e
anomaly ] —
- We vary the buffer size (as well as the e
threshold) and we obtain a surface  ——E T Pl
- We use the volume under the surface /i
(VUS) as accuracy i fi
1 pr

[22] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. ElImore, and M. J. Franklin. Volume under the surface: a new accuracy evaluation

measure for time-series anomaly detection. Proc. VLDB Endow. 15, 11 (2022), 2774-2787.

(ex: R-AUC-ROC, R-AUC-PR)
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(d) VUS-based Accuracy measure
(ex: VUS-ROC, VUS-PR)
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Conclusion and Open Problems

If you are interested in anomaly detection in time series.

hensive Evaluation

Anomaly Detection in Time Series: A C

Sebastian Schmidl' Phillip Wenig
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Potsdam, Germsasy Potsdam, Germany
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ABSTRACT — T e —
Desecting anomalous subsequences in tise series data is an im- .

petant task in arcas range=g from manufactursg processes over

finssce spplications 1o health care monitoring. An anomaly can U" ’L JP—L UP u |
indseate important evests, such as production faults, delivery bat L-LJ, J H-H- S
themecks, system defects, or heart fickes, and is therefoee of central .

interest. Because time series are often large and exbibit complex ]

patterns, data scientists have developed vasious d al

rithens for the automatic detection of sach ancmalous patterss. The
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TSB-UAD: An End-to-End Benchmark Suite for Univariate
Time-Series Anomaly Detection
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Michael J. Franklin

University of Chicago

S, Tsay Themis Palpanas
University of Chicago Université de Paris & IUF

rucy e es. afranblisepuchiogn e

ABSTRACT that, shartly, billioss of Intermnet-of-Things (loT) devices will be re

The detetion of smsmalics i tine seie hasguined wnple ce sponsibe for generating netabytes (ZB) of time sries [, 51). This
1 attention. However, bench hof ToT already empowers

e o ettt ey e o e diverie datn scknce sppbieaons and has revolunoniaed the s

is commee to use (1) proprictary or systhetic data, often biased 1 beakhcase, manufacturiog transpoctation, agriculure, wilties

(8], Among fox 10T data

1o sappart particular claims; o (i) a limited collection of publicly

number and variety of ancesaly detection algorsthms has grown
significantly in the past and. because many of these soluticns have

been developed independently and by different research communi-

ties, there is no comprebensive study that systematically evabuates
and compares the diffevent approaches. For this reason, choosing
the best detection technique for a given anomaly detection task is
a difficult challenge

This ehensive. scientific study carefaly evaluates most
state-cf-the-art ancesaly detection slgorithms. We coliected and
re-mplemented 71 anamaly detection algorithms from different
doemains and evaliated them on 976 time series datasets. The al-
gorithms bave bees selected from dferent algeeithm families and
etection mpraaches o tepeesent the entie spectrum of ancenaly
detection techniques. In the paper, we provde a concise overview
of the techniques and their commesalities. we evaluate their in-
dnvidual strengths and weaknesses and, xhnelw conskder factoes,
such as off . efficiency,
results should case the algoeith selection ,umﬂg and open up
Dew research directions.

(3) Symthetic univariate time veries resembling an ECG signal with a
sublequence anomaly (pattern shift), a petat ansaialy fextremusm).
3m4 the serings of LSTM-AD sod Sub-LOF

() Synthetic multivariete time serses with & correlation anomaly
ik the scoring of k-Means.

Figure 1: Example time series with anomalies and scorings.

1 ANOMALY DETECTION WILDERNESS

available datasets. Consequently, we often observe methods per-
forming exceptionally well in one dataset but surprisingly poorly
in another, creatisg an hision of progress. To address the issues
above. we tharoughly studied over one hundred papers to iden-
tfy. collect, process, and systematicaly format datasets peoposed
in the past decades. We summarize our effort in TSB-UAD, a new
benchmark to case the evabuation of univariate time-seres anomaly
detection methods. Overall, TSB-UAD contains 13766 time series
th labeled ancesabes spasning &tferent dsmains with high vari
ability of ancesaly types, ratios, and sizes. TSB-UAD inchides 18
peeviously propased datasets containing 1980 time sevies and we
contribute two collections of datasets. Specifically, we generate
958 time serses wsing a principled methodology for transforming
126 time-series classification datasets nto time series with labeled
ancasalics. ks addizice, we present data transformations with which
we introduce mew anomalies, resulting in 10828 time series with
vasying complexity for anomaly detection. Finally, we evaluate 12
representative methods demonstrating that TSB-UAD is a robust
resource for assessing anomaly detection methods. TSB-UAD pro-
vides & valuable, repeeducible. and frequently updated resousce to
establish a leaderboard of time series anomaly detectson methods

m 56, 65, 90]. time-series anemaly defection is pasticulasly impor-
tas for Mentifying abnormal phenomens (either i the behavice o
the monitored peocess, or measurement erroes) [8, 4, 54, 32).
Despite over six decades of academic and industrial attention
in time-series anomaly detection (AD) [43, 81, 107), oaly a few ef
forts have focused an establishing standard meass of evaluating
existing solutions (notable examples [36, 60, 163, 109, 114, 118])
there is currently using a single
benchmark for assessing the pesformance of time-series AD meth-
a.h s resalt.we obaceve two standard peactices i the lierature

e () limited collection of publcly availsble datascts How
ever, both of these practices are often Sawed I the former case.
proprietary or synthetic data may have been collected or generated
biasedly to support particular claims, asomaly types, o methods
In the latter case, cly a small fraction of datasets are avasable,
seene of which waler from several drawbacks (c.g . trivial smomalies
unsealistic amoenaly density, ox mislabeled ground truth (114])

In addition, the ambiguity and the startlingly diffesent isterpee-
taticm of anomalies across applications further hinders progress. It
s mot wncommon for methods to achieve high accuracy for some

Current Time Series Anomaly Detection
Benchmarks are Flawed and are Creating the
lllusion of Progress

Renjie Wu and Eamonn J. Keogh

Abstract—Time saries anomaly detaction has been & perervially important topic in data scence, with papers dating back 10 the
1950s. Mowever, in rocent yoars Bhece has been an explosion of interest in this topic, much of & driven by the success of deop
I in other domaiees and for other time Sedes taks. Most of Swse PApers lest on 0ne of Mon of & handful of popular
benchemark datasets, created by Yahoo, Numenta, NASA, etc. In this work we make a surprising claim. The majorty of the
Indvicial exemplars in these datasets sufler from one of more of four Saws. Because of these four flaws, we believe that many

r-m-SamAromn,MMc W beleve that this resource wil perform @ similar role as the UCR Time Series Classfication
Archive, by providing the commwnity with & banchmark that alows meaningful cOmpariscns between approaches and &
meaningfl gauge of averall progross.

Index Terms—Ancemaly detection, banchmark datasets, deep learming. time secies ansysis

1 INTRODUCTION

IME series anomaly detection has been a perennially  neursl networks, and a variational auto-encoder (VAE) over-
important topic in data sclence, with papers dating  sampling model.” This description sounds like it has many
back to the dawn of computer science [1]. However, inthe  “moving parts”, and indeed, the dozen or so explicitly
last five years there has been an explosion of interest in  listed parameters include: convolution filter, activation,
this topic, with at least one or two papers on the topic  kernel size, strides, padding, LSTM input size, dense in-
appearing each year in virtually every database, data  put size, softmax loss function, window size, learning rate
mining and machine leaming conference, including  and batch size. All of this is to demonstrate “accuracy ex-
SIGKDD (2} [3) ICDM (4], ICDE, SIGMOD, VLDB, etc. ceeding 0.90 (om a subset he Yahoo's amomaly detection
Alarge fraction of this increase in interest seems to be  henchmark datasets).” However, as we will show, much of
largely driven by researchers anxious to transfer the con-  the results of this complex approach can be duplicated
siderable muccess of deep leamning in other domains and  with a single line of code and a few minutes of effort.
feoum other time sevicg tack This *anelineafucode® are )bt

https://github.com/HPI-
Information-Systems/TimeEval

https://github.com/TheDatumOrg/
TSB-UAD

“The data points of a time series record are one or multiple real-
valued variables. Each variable models cae chassel of the time
Iihe d fonl

A ke range of Savances I senRng sSbion e

T e TTUAD S
Pirst, to relieve

ying
commealy referred to as time series.In particular. analysts estimate

sute
from m‘ Iaborious tasks of Mentifying, collecting, processing, and

https://wu.renjie.im/research/ano
maly-benchmarks-are-flawed/

T T y 5 = T T
may be unreliable. More importantly, we belicve that  ing with mosquitos, and he is impressed
much of the apparent progress in recent years may be  Suppose however that someone downloaded the origi-

A review on outlier/anomaly detection in time series data

ANE BLAZQUEZ-GARCIA and ANGEL CONDE, Ikerlan Technology Research Centre, Basque Research
and Technology Alliance (BRTA), Spain

USUE MORY, Intelligent 9 (15G),
of the Basque Country (UPV/EHU), Spain
JOSE A. LOZANO, Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence,
University of the Basque Country (UPV/EHU), Spain and Basque Center for Applied Mathematics (BCAM), Spain

f Computer Science and University

Recent advances i technology have beought majoe beeakthroughs i data collection, enabling a kange amount of data 10 be gathered
over time and ths generating time serses. Mining this data has become as impoetast task foe researchers and practit n the past
few years, inchading the detection of cutliers or asomalies that sy represent erroes of everits of interest. This review aims to peovide

2 stroctured and comprebensive state-of-the-ast on outlier detection techaiques in the context of time series. To this end, a taxonossy
s peesented hased oa the main aspects that characterize an outlier detection techaique.

Additional Key Words asd Pheases: Outlier detection, anomaly detection, time series, data mining, taxonomy, software

1 INTRODUCTION

Recent ad technalogy allow us to collect a large amount of data over time in diverse research areas. Observations
that have been recorded in an orderly fashion and which are correlated in time constitute a time series. Time series
data mining aims to extract all meaningful knowledge from this data, and several mining tasks (e.g., classification,

clustering, forecasting, and outlier detection) have been considered in the literature [Esling and A
Rata

Outlier detection has become a field of interest for many researchers and practitioners and is now one of the main
tasks of time series data mining, Outlier detection has been studied in a varicty of application domains such as credit
card fraud detection, intrusion detection in cybersecurity, or fault diagnosis in industry. In particalar, the analysis of

mahatana et al. 2010)

outliers in time series data examines anomalous behaviars across time [Gupta et al 2014a]. In the first study on this
topic, which was conducted by Fox [1972), two types of outliers in univariate time series were defined: type 1, which
affects a single observation; and type I, which affects both a particular and the subseqy

This work was first extended to four outlier types [Tsay 1955 and then to the case of multivariate time series [Tsay
et 4l 2000]. Since then, many definitions of the term outlier and numeroas detection methods have been proposed in the
literature. Howeve, to this day, there is still no consensas on the terms used [Carrefio et al. 20

): for example, outlier
observations are often referred to as anomalies, discardant observations, discords, exceptions, aberrations, surprises,
peculiarities or contaminants

Acthors abdrevses. Ane Blisgues Gurcia. ablargoerigiherlan.cr. Angel Conde. somdeepiverian ex. Serln Techrogy Reseurch Cerfre. Baser evearch
and Technslegy Aliance (SKTA) 1} Arssmendiarrieta, 2. AsrasateMondragbe, 2590, Spuc; Urae Mor, usoe roeiehsen, Stelligeat Systeema
po— Coment L Aifiial boelieesse Vneenus Cosuntre AIPVTIID Muneel de Lantinibd 1 vens

S. Schmidl et al. PVLDB (2022)
[5]

J. Paparrizos et al. PVLDB (2022)

[19]

R. Wu et al. TKDE (2021)
[18]

A. Blazquez-Garcia et al. ACM
Computing Survey (2021) [24]

e war vl dewp Searming applications”. We have ne
Joubt the clams of this paper, which we andy skimmed.
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Conclusion and Open Problems

Context-aware Unsupervised Anomaly Detection
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Conclusion and Open Problems

Model selection for anomaly detection

: Results over TSB-UAD
Methods ranking changes )
significantly between datasets [19]
(a.1) Example from ECG dataset (a.2) ECG 1.0 E
10.6 m i
:(2) , 5é éE g T A‘» A‘» i
(b.1) Example from MGAB dataset - (b.2) MGAB T T ’l‘ i
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S 2 22 385 * 155 s
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(d.1) Example from YAHOO dataset (d 2) YAHOO c l J J— !
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Conclusion and Open Problems

Model selection for anomaly detection
Can Ensembling methods solve the

Methods ranking changes N problem?

significantly between datasets [19]
1.0 :
(a.1) Example from ECG dataset (a.2) ECG !
0.8 1
10.6 m i
§°'4 ;Té n-|0 5 <‘> A‘» E
< (7p] 1
Z.(Z) s ﬁé éE g T A‘» A‘» i
(b.1) Example from MGAB dataset (b.2) MGAB T T H
== — i
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00— | e =_— 8 — I o
(c.1) Example from Daphnet dataset (c. 2) Daphnet = .
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| ﬁ 28 @ T 5 |
(d.1) Example from YAHOO dataset (d 2) YAHOO c J— !
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Conclusion and Open Problems

Model selection for anomaly detection

Methods ranking changes
significantly between datasets [19]

(a.1) Example from ECG dataset (a.2) ECG

Can automatic model selection solve
the problem?

—

VUS_PR

A ! .- iéfééa

]
—

(b.1) Example from MGAB dataset (b.2) MGAB

=

(c.1) Example from Daphnet dataset (c 2) Daphnet
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(d.1) Example from YAHOO dataset ' (d 2) YAHOO
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Conclusion and Open Problems

Model selection for anomaly detection
Can automatic model selection solve

Methods ranking changes ) the problem?

significantly between datasets [19]
1.0
(a.1) Example from ECG dataset (a.2) ECG A‘»
0.8
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X wn
2], 5@ ey = T T T |
(b.1) Example from MGAB dataset (b.2) MGAB T T
06| 1= IEI t 1t i
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Conclusion and Open Problems

Model selection for anomaly detection

Methods ranking changes
significantly between datasets [19]
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Can automatic model selection solve

the problem?
/ .
Choose Wisely [29]
An experimental evaluation of model selection for
time series anomaly detection
\ VLDB 2023 ICDE 2024 )

[29] Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, and Themis Palpanas. 2023.
Choose Wisely: An Extensive Evaluation of Model Selection for Anomaly Detection in Time Series. Proc.

VLDB Endow. 16, 11 (July 2023), 3418-3432.
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