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ABSTRACT
Subsequence anomaly detection in long data series is a significant

problem. While the demand for real-time analytics and decision

making increases, anomaly detection methods have to operate over

streams and handle drifts in data distribution. Nevertheless, exist-

ing approaches either require prior domain knowledge or become

cumbersome and expensive to use in situations with recurrent

anomalies of the same type. Moreover, subsequence anomaly detec-

tion methods usually require access to the entire dataset and are not

able to learn and detect anomalies in streaming settings. To address

these limitations, we propose SAND, a novel online system suitable

for domain-agnostic anomaly detection. SAND relies on a novel

steaming methodology to incrementally update a model that adapts

to distribution drifts and omits obsolete data. We demonstrate our

system over different streaming scenarios and compare SAND with

other subsequence anomaly detection methods.
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1 INTRODUCTION
Large collections of data series

1
are becoming a reality in a large

variety of scientific domains and there is an increasing need for

systems to efficiently and accurately analyze them [3, 17, 19, 22].

Moreover, many domains require methods to handle streams and

adapt to drifts and changes in data distribution. Anomaly or outlier

detection is a well-studied problem [4, 25, 30] with applications to

several scientific domains [18]. For the case of data series, we are

interested in identifying anomalous subsequences, where outliers are
not single values, but rather a sequence of values. This difference

matters, because even when all values in a sequence taken indepen-

dently from one another are within the healthy range of values, the

sequence of these same values may be anomalous (e.g., the shape of

the subsequence may not be normal). Therefore, subsequence anom-

aly detection permits the user to detect early potentially abnormal

events that would have otherwise been unnoticed.

Considering that several real-world cases are based on continu-

ous streams of data, anomaly detection methods need to take place

1
If the dimensions are ordered by time then we refer to data series as time series. We

will use the terms sequence, data series, and time series interchangeably.
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Figure 1: (a) Accelerometer variation positioned on chest (y-
axis) while (b) Nordic walking and (c) rope jumping.

in real-time. Thus, such methods have to deal with drifts in data

distribution. As an example, Figure 1(a) depicts acceleration on

the x-axis of a device positioned on the chest of a human perform-

ing different actions [26]. We observe that the data characteristics

corresponding to subsequences are different for Nordic walking

(Figure 1(b)) and rope jumping (Figure 1(c)). As changes of actions

happen in real-time, the detection of abnormal subsequences (e.g.,

the red subsequence in Figure 1(c)) needs to adapt to such changes.

In the non-streaming case, several methods have been proposed.

For example, the discord-based methods identify as anomalies the

subsequences with the largest distances to their nearest neigh-

bor [12, 24, 30]. Alternative approaches estimate anomalies by

embedding subsequences into trees [13], sets [5, 6], or directed

graphs [7] to capture the different behaviors of the data series, such

that anomalies (i.e., rare events) are easy to discriminate. The set-

based and the directed graph-based approaches have been shown

to outperform the previous state-of-the-art methods [6, 7]. Never-

theless, in the case of streaming data series, among all previous

methods for subsequence anomaly detection, only discords meth-

ods [30]) and tree-based methods [14] can be used. The remaining

methods cannot adapt to distribution changes and learn new data

characteristics, both of which are required in data streams.

We address the aforementioned problems and propose a novel

system suitable for subsequence anomaly detection in data streams.

This system is based on SAND [8], which builds a data set of sub-

sequences representing the different behaviors of the data series.

These subsequences are weighted using statistical characteristics

such as their cardinality (i.e., how many times the subsequence

occurred) and their temporality (i.e., the time difference this sub-

sequence has been detected for the last time). SAND enables this

data structure to be updated from one batch to another while be-

ing able to compute an anomaly score at every timestamp. Thus,

SAND proposes a solution to the subsequences anomaly detection

task on streaming sequence data. In this paper, we demonstrate

the benefit of a system using SAND to solve subsequence anomaly

detection over the data stream. We explore three different scenarios

to illustrate how our method achieves the latter problem.
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Figure 2: SAND computation framework.

2 SAND APPROACH
We formulate a method for subsequence anomaly detection that

operates over data streams.

[Data series and data stream] We focus on the analysis of or-

dered sequences of measurements. We distinguish between se-

quences with fixed size (data series) and unbounded evolving se-

quences (data streams). We formally defined them as follow: a

data series 𝑇 ∈ R𝑛 is a sequence of real-valued numbers 𝑡𝑖 ∈ R
[𝑇0,𝑇1, ...,𝑇𝑛 − 1]; |𝑇 | is defined as the length of 𝑇 . We are inter-

ested in local section of the data series, called subsequences. A

subsequence 𝑇𝑖,ℓ ∈ Rℓ of a data series 𝑇 is a subset of contiguous

values from 𝑇 of length ℓ (usually ℓ ≪ |𝑇 |) starting at position 𝑖:

𝑇𝑖,ℓ = [𝑇𝑖 ,𝑇𝑖+1, ...,𝑇𝑖+ℓ−1]. We define the set of all subsequences of

length ℓ in a given data series 𝑇 : Tℓ = {𝑇𝑖,ℓ |∀𝑖 .0 ≤ 𝑖 ≤ |𝑇 | − ℓ + 1}.
In the specific case of data streams, the total size of the data se-

ries is not known and potentially infinite. Moreover, one can wait

for a given number of points before analyzing them. In this case,

we define this quantity as a batch. For a given timestamp of ar-

rival 𝑡 , we note a batch T𝑡
ℓ
= {𝑇𝑡,ℓ , ...,𝑇𝑡+𝑏𝑠𝑖𝑧𝑒−ℓ,ℓ } a ordered set of

subsequences of length ℓ of size |T𝑡
ℓ
| = 𝑏𝑠𝑖𝑧𝑒 . T

0

ℓ
is the initial batch.

[Data series clustering] Since the approach used in our system

is based on clustering, we first introduce the related basic elements.

Formally, given a set of observations (or subsequences which are

the topic of this paper), clustering algorithms aim to partition this

set into 𝑘 distinct clusters, such that the within-cluster sum of

squared distances is minimized. For a given set of subsequences Tℓ ,
we note C = {C0, ..., C𝑘 } the optimal partition of 𝑘 cluster C𝑖 with
∀C𝑖 , C𝑗 ∈ C, C𝑖 ∩ C𝑗 = ∅. We note

¯C𝑖 the centroid of cluster C𝑖 .
The 𝑘-means algorithm solves this partitioning problem using

the 𝑧-normalized Euclidean Distance, 𝐸𝐷 . Formally, given two se-

quences,𝐴 and 𝐵, of the same length, ℓ , we can calculate their 𝐸𝐷 , as

follows [9, 16, 27–29]: 𝐸𝐷 (𝐴, 𝐵) =
√∑𝑙

𝑖 (
𝐴𝑖,1−𝜇𝐴

𝜎𝐴
− 𝐵𝑖,1−𝜇𝐵

𝜎𝐵
)2, where

𝜇 and 𝜎 represent the mean and standard deviation of the sequences.

However, ED-based algorithms cannot capture the necessary

property of alignment in data series (i.e., ED is not a competitive

distance measure in terms of accuracy [23]). Recently, 𝑘-Shape (clus-

tering algorithm based on 𝑆ℎ𝑎𝑝𝑒-𝐵𝑎𝑠𝑒𝑑-𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑆𝐵𝐷)) has shown

state-of-the-art performance in data-series clustering [20, 21]. This

distance uses cross-correlation to find the appropriate alignment

between two sequences. The 𝑘-shape centroid computation cor-

responds to an optimization problem in which we are computing

the minimizer (i.e., sequence) of the sum of squared distances to

all other sequences using the 𝑆𝐵𝐷 . Formally, for a given cluster C𝑖 ,
the centroid computation is defined as follows:

¯C𝑖 ← 𝑎𝑟𝑔𝑚𝑎𝑥
¯C𝑖

( ¯C𝑗 )𝑇 .𝑀. ¯C𝑖
( ¯C𝑖 )𝑇 . ¯C𝑖

with:𝑀 = 𝑄𝑇 .𝑆𝑖 .𝑄 , 𝑄 = 𝐼 − 1

| ¯C𝑖 |
𝑂, and 𝑆𝑖 =

∑
𝐴∈C𝑖

𝐴.𝐴𝑇
(1)

In practice, the centroid corresponds to the eigenvector of the

largest eigenvalue of the real symmetric matrix𝑀 .

Following previous studies [5, 6], clustering can summarize the

underlying patterns in data and, therefore, can be used to extract

the recurring behavior in datasets for anomaly detection purposes.

Clusters with a large number of subsequences characterized a highly

recurrent pattern/behavior. Thus, a subsequence with a high dis-

tance with a large cluster might correspond to an unusual pattern

and potentially abnormal. We formulate the following problem:

Problem 1 (Streaming Subseq. Anom. Detection). Given a
data stream 𝑇 , arriving in batches T𝑡

ℓ
(with 𝑏𝑠𝑖𝑧𝑒 the size of the

batches) and a targeted anomaly subsequence length ℓ , return S𝐴 , a
set containing the 𝜂 most abnormal subsequences of length ℓ in T𝑡

ℓ𝑁𝑀

.

In this work, we focus on the 𝑇𝑜𝑝-𝑘 anomalies; using instead a

threshold 𝜖 to detect anomalies is a straightforward extension.

2.1 SAND Framework
In this section, we briefly present SAND, our solution for unsu-

pervised subsequence anomaly detection in data streams that our

SubStream system is based on. Overall, we compute and update a

weighted set of subsequences over time. Figure 2 depicts the general

framework of the model, which we summarize below:

[Model Creation]We start by computing our model on the initial

batch. We first select subsequences candidates (of length ℓΘ > ℓ)

and then perform the 𝑘-Shape clustering algorithm. These clus-

ters are then scored and stored in memory. Formally, the model

is defined as Θ = {( ¯C0,𝑤0), ( ¯C1,𝑤1) ..., ( ¯C𝑘 ,𝑤𝑘 )} with ¯C𝑖 the dif-
ferent clusters. The corresponding weight 𝑤𝑖 are computed as

𝑤𝑖 =
|C𝑖 |2∑

¯C𝑗 ∈Θ 𝑠𝑏𝑑 ( ¯C𝑖 , ¯C𝑗 )
. we denote C𝑖 the subsequences set, and
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(a) Critical Diagram for SAND versus static methods

(b) Critical Diagram for SAND versus streaming methods
Figure 3: Critical difference diagrams using aWilkoxon pair-
wised signed rank test (with 𝛼 = 0.05) on both single and
multiple normality datasets.

¯C𝑖 its centroid. Nevertheless, storing C𝑖 implies an infinite storage

need for unlimited streams. Thus, in practice, we do not store C𝑖 .
[Model update] After each new batch, we compute a new cluster-

ing on the newest batch. We then need to merge the two clustering

(initial and new) partitions. The following steps are then performed:

• Matching Strategy:We thenmatch the new cluster with themost

similar one in the current model stored in memory. The match-

ing procedure is based on a distance threshold that corresponds

to the intra-cluster average distance. Formally, for a given clus-

ter C𝑖 , the threshold is defined as 𝜏𝑐,𝑖 =
∑
𝑇𝑗,ℓ ∈C𝑖 𝑆𝐵𝐷 (𝑇𝑗,ℓ , ¯C𝑖 ).

If the distance between an existing cluster and a new cluster is

smaller than the latter threshold, we merge the two clusters. In

the other case, we create a new cluster.

• Centroid Update: We then compute the new centroid of two

merged clusters without keeping in memory the raw subse-

quences of these two clusters. This mechanism is a novel tech-

nical extension of 𝑘-Shape for streaming scenarios. In practice,

for a given cluster C𝑖 , we store only the matrix 𝑆𝑖 in Equation 1

(of fixed size whatever the number of subsequences). In practice,

for a cluster C′
𝑖
to be merged with a cluster C𝑖 , we update 𝑆𝑖 as

𝑆𝑖 ← 𝑆𝑖 +
∑

𝑇𝑗,ℓΘ ∈C
′
𝑖

𝑇𝑗,ℓΘ .𝑇
𝑇
𝑗,ℓΘ

. We finally update the weights for

each cluster (new, merged, or unchanged).

[Score Computation] At any time, one can compute the anom-

aly score on the current batch using the current model stored

in memory. For a given subsequence 𝑇𝑗,ℓ ∈ Tℓ in the cur-

rent batch (of length ℓ < ℓΘ), we compute 𝑑 𝑗 =
∑

¯C𝑖 𝑤
𝑖 ∗

𝑚𝑖𝑛𝑥 ∈[0,ℓΘ−ℓ ]
{
𝑑𝑖𝑠𝑡 (𝑇𝑗,ℓ , ( ¯C𝑖 )𝑥,ℓ )

}
. We incrementally learn themean

and the standard deviation to compute the anomaly score such that

the anomaly detection is adapted to the current batch.

Figure 3 depicts the critical difference diagram computed us-

ing a Wilcoxon pair-wised signed-rank test (comparing SAND

with STAMPI [11], IMondrian Forest [14], a batch adaptation of

NormA [6] and Series2Graph [7] which operate independently on

each new arriving batch) on a benchmark of datasets containing

data series from the MIT-BIH Supraventricular Arrhythmia Data-

base (MBA) [10, 15] and Simulated Engine Disks data (SED) from

the NASA Rotary Dynamics Laboratory [2] (and combinations of

them to simulate distribution drifts). The results show that SAND

significantly outperforms the online state-of-the-art methods [8].

3 SAND IN ACTION: SYSTEM OVERVIEW
We now describe the system using SAND. The GUI is a stand-

alone web application, developed using Python 3.6 and the Dash

framework [1]. Figure 4 displays the different frames of the GUI.

The mainframe is shown in Figure 4(a). Once the user opens the

web application, they can upload a dataset (as well as the anomaly

annotations, if available). At first, only the initial batch is displayed.

When new batches arrive, by default only the current and the three

newest batches are displayed (as in Figure 4(a.1)). Nevertheless,

the user can navigate through older sections of the data series.

Moreover, if annotations are provided, they will be colored in red.

The user can then change the values of ℓ and the batch size 𝑏𝑠𝑖𝑧𝑒
by clicking in the SAND dropdown in the navigation bar. Then,

by clicking on the initialization button, the anomaly score on the

initial batch will be displayed under the data series plot. Moreover,

the model Θ (the centroids of the model) is depicted in Figure 4(a.2).

By clicking on one of the centroids, the user can visualize the

corresponding weight and the time distribution of the subsequences

contained in the selected centroid (Figure 4(a.4)). Once the model is

initialized, it is ready to be updated with new batches arriving. The

user then may (i) decide to manually add the next batch (by clicking

on the "by batch" button) or (ii) have the system process batches

continuously (by clicking on the "continuous" button). When a new

batch arrives, both the data series and the anomaly score plots are

updated. The model is also updated, and the new clusters from

the current batch that need to be merged with an existing cluster

will be aligned with it (under the label "cluster to be merged" as in

Figure 4(a.3)). The new clusters appear under “clusters to create.”

The user can also run other anomaly detection methods:

STAMPI [11] and Isolation Mondrian Forest [14] (IMondrian). Their

anomaly scores will be shown together with the SAND anomaly

scores (Figure 4). If annotations are provided, performance analysis

can be done by clicking on the performance button: a new frame

will appear (Figure 4(b)) displaying accuracy and time execution

evaluations. For accuracy evaluation, we compute the precision

(the number of correctly detected anomaly points divided by the

total number of anomalous points, depicted in Figure 4(b.1)), re-

call (the number of correctly detected anomaly points divided by

the total number of anomalous points, depicted Figure 4(b.2)), and

𝐹1 = 2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (Figure 4(b.3)). These three accuracy mea-

sures are computed for thresholds moving between the minimal and

the maximal value of the anomaly score (subsequences that have a

score above a given threshold are marked as an anomaly). We then

use either the maximal value of the F1 score for the best thresh-

old (Figure 4(b.5)), or the Area Under the F1 Curve computed for

all possible thresholds (Figure 4(b.6)) as global accuracy measures.

Finally, the average execution time per batch for every method is

summarized in another bar plot (Figure 4(b.4))).

4 DEMONSTRATION SCENARIOS
This demonstration has four goals: (i) showcase the effectiveness of

SAND and compare it to competing approaches in term of anomaly

detection accuracy; (ii) enable the user to understand and interpret

the intermediate steps of the method SAND using the uploaded

data series, by visualizing the centroids and the evolution of the

weights while new batches arrive; and (iii) challenge the user to

identify anomalies by navigating the data and SAND’s parameters.

[Scenario 1: Effectiveness] This scenario begins with a long data

series (200,000 points with 108 anomalies of length approximately

equal to 100 points each) representing the concatenation of the 806

and 820 records from the MIT-BIH Supraventricular Arrhythmia

Database (MBA) [10, 15] (as illustrated in Figure 4(a)). We will

first run SAND by displaying the intermediate, inner steps, and

computing and displaying the anomaly scores. Then, we will run
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Current Batchold Batches

C0 centroid

C1 centroid

C2 centroid
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(a) Screenshot SAND system main frame (b) Screenshot when performance button is pressed

(a.1)

(a.4)

(a.2) (a.3)

(b.1) (b.2) (b.3)

(b.4) (b.5) (b.6)

Figure 4: SAND system GUI main frame.

the competing approaches and display their anomaly scores as well.

Overall, we will show that SAND is both faster and more accurate.

[Scenario 2: System Internals] The second scenario will allow

the user to examine the SAND framework inner steps. Directly

through the mainframe, the user will be able to visualize both the

Θ model centroids (by being able to zoom and move), the centroids

weights, and the time distribution of the subsequences inside the

corresponding clusters. Then, while new batches arrive, the user

will also be able to inspect the cluster matching operated automati-

cally by SAND. These inner steps facilitate the understanding of the

score computation that is computed and displayed at each batch.

[Scenario 3: Discovering Distribution Drifts] The third sce-

nario will focus on the analysis of the discovered anomalies and

distribution drift. This task will go beyond the anomaly detection

task. We will use the visualization tools provided by our system

to understand the impact of distribution drift on the model Θ, and
more generally, how SAND is handling distribution drift. The user

will notice a drastic change in the time distribution of the centroids

(as in Figure 4(a.4)) and the creation of centroids with new shapes.

This scenario will help the user to understand the challenging task

of anomaly detection over data streams with distribution drifts.

5 CONCLUSIONS
We demonstrate a system that uses the novel SAND framework

for streaming unsupervised subsequence anomaly detection. This

system permit the user to follow the computational steps involved

in SAND framework and compare easily the accuracy and run time

performances of SAND and other state-of-the-art methods.
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