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ABSTRACT
The detection of anomalies in time series has gained ample aca-
demic and industrial attention, yet, no comprehensive benchmark
exists to evaluate time-series anomaly detection methods. There-
fore, there is no final verdict on which method performs the best
(and under what conditions). Consequently, we often observe meth-
ods performing exceptionally well on one dataset but surprisingly
poorly on another, creating an illusion of progress. To address
these issues, we thoroughly studied over one hundred papers, and
summarized our effort in TSB-UAD, a new benchmark to evaluate
univariate time series anomaly detection methods. In this paper,
we describe Theseus, a modular and extensible web application
that helps users navigate through the benchmark, and reason about
the merits and drawbacks of both anomaly detection methods and
accuracy measures, under different conditions. Overall, our system
enables users to compare 12 anomaly detection methods on 1980
time series, using 13 accuracy measures, and decide on the most
suitable method and measure for some application.
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1 INTRODUCTION
Awide range of technological advances in sensing solutions enables
collecting enormous amounts of time-varying measurements com-
monly referred to as time series. In particular, analysts estimate that,
shortly, billions of Internet-of-Things (IoT) devices will be responsi-
ble for generating zettabytes of time series [16]. This rapid growth
of cost-effective IoT deployments already empowers diverse data
science applications and has revolutionized the healthcare, manufac-
turing, transportation, agriculture, utilities, and automobile indus-
tries [22]. These time series collections then need to be analyzed in
order to identify patterns and extract knowledge [2, 3, 24, 25, 28, 32].
Among analytical tasks for IoT data [17, 18, 20, 27, 29, 30, 33],
anomaly detection (AD) focuses on identifying patterns that are
different from the rest. Specifically, anomalies may either represent
anomalous behavior exhibited by the process being monitored or
correspond to imperfections in the monitoring and measurement
systems used. In both cases, they need to be detected.

Despite over six decades of academic and industrial attention
in time series AD [4–8, 15, 23, 37], only a few efforts have focused
on establishing standard means of evaluating existing solutions
(notable examples [19, 36, 38, 39]). Unfortunately, there is currently

no consensus on using a single benchmark for assessing the perfor-
mance of time series AD methods, and no comprehensive bench-
mark exists to evaluate time series AD methods. As a result, we
observe two standard practices in the literature for benchmarking
AD models by using (i) proprietary and synthetic data; or (ii) a
limited collection of publicly available datasets. However, both of
these practices are often flawed. In the former case, proprietary, or
synthetic data may have been collected, or generated in a biased
way so as to support particular claims, anomaly types, or meth-
ods. In the latter case, only a small fraction of datasets are publicly
available, some of which suffer from several drawbacks (e.g., triv-
ial anomalies, unrealistic anomaly density, or mislabeled ground
truth [38]). Therefore, there is no final verdict on which method
performs the best (and under what conditions).

In addition, the ambiguity and the startlingly different interpre-
tation of anomalies across applications further hinders progress. It
is not uncommon for methods to achieve high accuracy for some
datasets, but surprisingly low accuracy for others. The lack of an
established benchmark creates the illusion of progress, while the
identification of robust approaches becomes unlikely. Notably, the
recent advances in deep learning technologies have sparked a surge
of interest in applying neural network architectures for time series
tasks [11–14, 34], including for AD [9, 10, 21, 35]. This sudden en-
thusiasm and a slew of proposed methods in the preceding years
underscore the vital need for a time series AD benchmark.

To address the issues mentioned above and provide an objective
means of quantifying the performance of univariate time series
AD methods, we propose Theseus, a system that aims to (i) easily
navigate and compare several anomaly detection methods on a very
large collection of time series; and (ii) showcase the differences
between a large selection of accuracy measures. Theseus is based
on TSB-UAD1 (Time Series Benchmark for Univariate Anomaly
Detection) [31], an open end-to-end benchmark suite, and on a
recent, extensive study of accuracy evaluation measures for AD
methods in time series, which resulted in the development of two
new families of measures, namely, Range-AUC and Volume-Under-
the-Surface (VUS) measures2 [26]. Overall, the objective of Theseus
is to facilitate the visualization and understanding of a large-scale
evaluation of AD methods and accuracy measures, and guide users
in the selection of the appropriate method and measure.

2 PRELIMINARIES
We now provide the background necessary for the rest of the paper.

1www.timeseries.org/tsb-uad
2www.timeseries.org/vus
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Figure 1: Representative examples from the public, highly diverse (in anomaly type, length, size, density) datasets included in
TSB-UAD. The ground truth anomalies are annotated in red.

[Datasets] We use 18 different datasets introduced in the TSB-
UAD benchmark [31], and summarized in Table 1. In total, this
corresponds to 1980 time series, in which each point is labeled as
normal or abnormal. These datasets contain either long or short
time series (e.g., SVDB contains 230400 points on average, while YA-
HOO contains 1561 points), and with single or multiple anomalies
(e.g., KDD21 is composed of time series with only one anomaly,
while MITDB contains 210 anomalies on average). Examples of
TSB-UAD time series and anomalies are shown in Figure 1.

[AD methods]We select 12 different AD methods, summarized
in Table 1. Out of these, 8 are fully unsupervised (i.e., they require
no prior information on the anomalies to be detected): IForest,
IForest1, LOF, MP, NormA, PCA, HBOS, and POLY. The remaining
4 methods are semi-supervised (i.e., they require some information
related to the normal behavior): OCSVM, AE, LSTM-AD, and CNN.

[Accuracy measures] Several measures have been proposed to
quantify the quality of ADmethods. We use 13 evaluation measures,
listed in Table 1. Overall, we use 9 measures already proposed in
the literature, and 4 recent measures developed specifically for the
time series anomaly detection task [26].

3 THESEUS: SYSTEM OVERVIEW
In this section, we describe Theseus, the system we have developed
to help analysts navigate through the datasets, methods, and re-
sults of the benchmark. The GUI is a stand-alone web application,
developed using Python 3.6 and the Dash framework [1].

In total, the GUI is composed of 6 frames: (1) Home, (2) Overview
(see Figure 3(A)), (3) Methods comparison (see Figure 3(B)), (4)
Measures comparison (see Figure 3(C)), (5) Background, and (6)
References. The Home frame contains a brief description of the
objectives of the system, while the Background and References
frames contain the notations, definitions and related works relevant
to our system. (The other three frames are described below.)

Figure 2 illustrates the inputs and features of Theseus. The sys-
tem can incorporate any number of datasets (18 in our demo), AD
methods (12 in our demo), and accuracy evaluation measures (13
in our demo). The GUI permits interactions with these inputs. First,
the user can visualize the time series, the positions of the anomalies,
and the anomaly score. Then, the user can measure the performance
of all methods or pairs of methods on one or more datasets. Finally,
the user can measure the robustness and behavior of different eval-
uation measures. We now dive into each of the aforementioned
actions and describe the three main frames of the GUI.

Datasets Description
Dodgers unusual traffic after a Dodgers game
ECG standard electrocardiogram dataset
IOPS performance indicators of a machine
KDD21 composite dataset released in a recent SIGKDD 2021
MGAB Mackey-Glass time series with non-trivial anomalies
NAB Web-related real-world and artificial time series

SensorScope environmental data
YAHOO real and synthetic time series based on Yahoo production systems

NASA-MSL Curiosity rover telemetry
NASA-SMAP Soil-Moisture-Active-Passive spacecraft telemetry
Daphnet acceleration sensors on Parkinson’s disease patients
GHL Gasoil Heating Loop telemetry

Genesis portable pick-and-place demonstrator
MITDB ambulatory ECG recordings

OPPORTUNITY motion sensors for human activity recognition
Occupancy temperature, humidity, light, and CO2 of a room

SMD Server Machine telemetry
SVDB ECG recordings

AD Methods Description
IForest tree-based method using subsequences as input
IForest1 tree-based method using points as input
LOF density-based method
MP matrix profile method

NormA cluster-based method
PCA principle components analysis
AE autoencoder model

LSTM-AD recurrent neural network
POLY polynomial approximation
CNN convolutional neural network

OCSVM one-class support vector machine
HBOS histogram-based method

Evaluation Measures Description

Precision@k fraction of real anomalies among
the 𝑘 most important detected sequences

Recall fraction of detected anomalies among all anomalies
Precision fraction of real anomalies among the detected sequences
F score measure computed as 𝐹 = 2·𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
Rrecall Range-based version of Recall

Rprecision Range-based version of Precision
RF score measure computed as 𝑅𝐹 =

2·𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑟𝑒𝑐𝑎𝑙𝑙
𝑅𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑟𝑒𝑐𝑎𝑙𝑙

AUC-PR Area under the Precision-Recall curve
AUC-ROC Area under the Receiver operating characteristic curves
R-AUC-PR Range-based version of AUC-PR
R-AUC-ROC Range-based version of AUC-ROC
VUS-PR Volume Under the Surface, extension of R-AUC-PR
VUS-ROC Volume Under the Surface, extension of R-AUC-ROC

Table 1: Summary of datasets, methods, and measures (for
details and references to original papers/sources for themeth-
ods and datasets see [31], and for the measures see [26]).

[Overview Frame] This frame depicts the accuracy of all anomaly
detection methods for all datasets. Figure 3(A.a) depicts a table
containing the row accuracy values, which are summarized in the
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Figure 2: Summary of the webapp inputs and features (with
indicated related frames of the GUI).

boxplot shown in Figure 3(A.b). The user can change the accuracy
evaluation measure form the dropdown menu, and both the table
and the boxplot are automatically updated. The user can also filter
the table by selecting a specific dataset, a type of anomaly (i.e.,
point, or subsequence), and the cardinality of anomalies (i.e., single,
or multiple). Finally, the user can click on any row of the table:
this action will display the chosen time series as illustrated in
Figure 3(A.c). The GUI also displays the anomaly scores and the
annotated anomalies (highlighted in red). When one time series is
selected, the GUI shows a bar plot that depicts the accuracy of each
anomaly detection method on the selected time series.
[Methods Comparison Frame] In the previous frame, the user
has a global overview of the methods’ performance overthe datasets.
In this frame (Figure 3(B)), the user can select any pair of methods
and perfomr a detailed comparison. After choosing two methods,
the GUI displays a scatter plot (Figure 3(B.a)), in which each point
corresponds to a time series. The x- and y-axes correspond to the
accuracy of the two selected methods. The color of the scatter
points depends on the dataset to which the corresponding time
series belongs. Moreover, the GUI displays a box plot (Figure 3(B.b))
that corresponds to the overall performance of the two methods.
The user can then filter the scatter plot by selecting a specific
dataset, a specific type of anomaly, or the anomaly cardinally; the
scatter plot and the box plot are updated automatically. Finally, the
user can click on any scatter point, and the corresponding time
series will be displayed, along with the anomaly score of the two
selected methods (Figure 3(B.c)).
[Measures Comparison Frame] In this third frame (shown in
Figure 3(C)), the user is invited to focus on the accuracy measures
evaluation. The GUI presents a robustness analysis of the evaluation
measures. The user can learn more about this robustness analysis
by clicking on the "more info" button: the user can visualize the
effect of lag (i.e., injecting lag in the anomaly annotation), noise (i.e.,
injecting noise in the anomaly score), and normal/abnormal ratio
variation (i.e., varying the ratio between anomalous and normal
points) on the accuracy measures values. The system computes the

Figure 3: The three main frames of the Theseus webapp.

accuracy values for all AD methods on all time series, and reports
the average accuracy values along with the standard deviation.
Next, the user can select one of the three experiments (i.e., varying
lag, noise, or normal/abnormal ratio) and visualize the correspond-
ing box plot for each measure (Figure 3(C.a)). The user may also



execute these experiments for each time series independently (see
Figure 3(C.b)). First, the user selects a time series (which is auto-
matically displayed in Figure 3(C.c)), an AD method, and a type
of experiment (lag, noise, or ratio), and the system computes the
accuracy values. Finally, the user can see the results in three plots
(Figure 3(C.b)): (i) a box plot depicting the different values of each
accuracy measure, (ii) a bar plot corresponding to the standard
deviation for each measure, and (iii) a line plot for each accuracy
measure for the different lag, noise or ratio values.

4 DEMONSTRATION SCENARIOS
This demo has three goals: (i) showcase the importance of tools to
organize relevant benchmarks, and help users navigate the search
space and reason about the results; (ii) enable the user to visualize,
interact, and conduct statistical analysis using the benchmark; and
(iii) challenge the user to understand the benefits and limitations
of AD methods, as well as of accuracy measures.
[Scenario 1: Finding the best method for a use case]: This
scenario begins in frame 1. We will ask the user to select a specific
type of time series (based on their use case). To guide their choice,
they can navigate through the table, click on different time series,
and visualize the types of anomalies for specific datasets. First, the
user chooses a specific dataset, e.g., medicine, environmental, or
engineering (like the IOPS dataset selected in Figure 3(A.a)). The
GUI will then indicate which AD methods are the most accurate
for this use case. For instance, in Figure 3(A.b), the user discovers
that POLY is outperforming the other AD methods on IOPS.
[Scenario 2: Understanding the weak points of a method]: In
this scenario, we will let the user select two specific AD methods.
The objective is to discover the strong and weak points of each
method. For instance, as illustrated in Figure 3(B.a), the user may
choose NormA and MP. Then, using the scatter plot that compares
in detail the two selected methods, the user can identify clusters of
time series for which these methods are more, or less accurate. By
clicking on these time series and examining the relevant annota-
tions (raw data, method results and anomaly scores, ground truth,
etc.), the user can gain insight on which types of anomalies an AD
method is more accurate than another.
[Scenario 3: Selecting the correct evaluationmeasures] Finally,
the third scenario focuses on the evaluation and comparison of
AD accuracy measures. In this scenario, we will ask the user to
describe the behavior they expect that an accuracy measure should
have (which could vary depending on the domain and application).
For example, whether the accuracy measure should penalize an
anomaly annotation with a small lag (when compared to the ground
truth, with which it may still overlap). The user will select an
AD method and a time-series, and he will analyze the behavior of
different accuracy measures when we vary the parameter of interest
(e.g., the lag of the annotation). For instance, in Figure 3(C.c), if
lagged anomaly scoring cannot be tolerated, then, based on the line
plot in Figure 3(C.b), the user should select the AUC-PR measure;
otherwise, the user should choose R-AUC-ROC.

5 CONCLUSIONS
We demonstrate Theseus, a system that enables users to navigate
through an extensive search space of datasets, methods, and accu-
racy measures for AD. It helps users discover which methods are

better for specific use cases, identify weak and strong points of AD
methods, and gain insight in the sensitivity of accuracy measures.
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