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Abstract
Anomaly detection (AD) is a fundamental task for time-series analytics with important implications for the downstream
performance of many applications. In contrast to other domains where AD mainly focuses on point-based anomalies (i.e.,
outliers in standalone observations), AD for time series is also concerned with range-based anomalies (i.e., outliers spanning
multiple observations). Nevertheless, it is common to use traditional point-based information retrieval measures, such as
Precision, Recall, and F-score, to assess the quality of methods by thresholding the anomaly score to mark each point as an
anomaly or not. However, mapping discrete labels into continuous data introduces unavoidable shortcomings, complicating
the evaluation of range-based anomalies. Notably, the choice of evaluation measure may significantly bias the experimental
outcome. Despite over six decades of attention, there has never been a large-scale systematic quantitative and qualitative
analysis of time-series AD evaluation measures. This paper extensively evaluates quality measures for time-series AD to
assess their robustness under noise, misalignments, and different anomaly cardinality ratios. Our results indicate that measures
producing quality values independently of a threshold (i.e., AUC-ROC and AUC-PR) are more suitable for time-series AD.
Motivated by this observation, we first extend the AUC-based measures to account for range-based anomalies. Then, we
introduce a new family of parameter-free and threshold-independent measures, volume under the surface (VUS), to evaluate
methods while varying parameters. We also introduce two optimized implementations for VUS that reduce significantly the
execution time of the initial implementation. Our findings demonstrate that our four measures are significantly more robust
in assessing the quality of time-series AD methods.

Keywords Time series · Anomaly detection · Evaluation measure

1 Introduction

Massive collections of time-varying measurements, com-
monly referred to as time series, have become a reality
in virtually every scientific and industrial domain [5, 6,
19, 39, 40, 42–44, 47]. Notably, there is an increasingly
pressing need for developing techniques for efficient and
effective analysis of zettabytes of time series produced by
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millions of Internet-of-Things (IoT) devices [22, 24, 26,
27, 32, 46]. IoT deployments empower diverse data sci-
ence applications in environmental sciences, astrophysics,
neuroscience, and engineering, among others [38, 58], and
have revolutionized many industries, including automobile,
healthcare, manufacturing, and utilities [37]. However, rare
events, or imperfections and inherent complexities in the
data generation and measurement pipelines, often intro-
duce abnormalities that appear as anomalies in time-series
databases, impacting the effectiveness of downstream tasks
and analytics.

Consequently, anomaly detection (AD) becomes a fun-
damental problem with broad applications sharing the same
goal [7, 51, 56]: analyzing time series to identify observa-
tions that do not conform to somenotion of expected behavior
based on previously observed data. During the past decades,
a multitude of AD methods have been proposed and com-
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Fig. 1 Critical difference diagram computed with the Friedman test
followed by a post-hoc Wilcoxon test (with α = 0.1) for the a F-score
and b range-based F-score over 250 time series in KDD21 [28]. Bold
lines indicate insignificant differences of connected methods

pared [9, 11–17, 21, 31, 33, 45, 56, 57]. Different from
other domains that principally focus on point-based anoma-
lies (i.e., outliers in standalone observations), AD for time
series is also concerned with range-based anomalies (i.e.,
outliers spanning multiple observations). Unfortunately, it
has become common practice to use traditional point-based
information retrieval (IR) accuracy measures, such as Pre-
cision, Recall, and F-score, to quantify the effectiveness of
different anomaly detectors.

In addition, the previously mentioned IR evaluation mea-
sures suffer from a significant limitation: a threshold is
necessary over the anomaly score produced by AD meth-
ods to mark each time-series point as an anomaly or not.
The most common approach to set a threshold value is to
use the average score plus three times the standard deviation
of the anomaly score. However, this popular choice might
not suit every AD method, use case, and domain, leading
to significant variations in the quality values of the evalu-
ation measures. Therefore, these IR measures are difficult
to trust and complicate evaluating different AD methods on
heterogeneous benchmarks. To eliminate the need to set a
threshold, another standard measure for binary classification
is used: the receiver operator characteristic (ROC) curve and
the Area Under the Curve (AUC), which is the area below
the ROC curve (AUC-ROC). The ROC curve is generated by
plotting the true positive rate (TPR) against the false positive
rate (FPR) at various threshold settings (instead of only one
threshold used in Precision, Recall, and F-score measures).
Another variant, the Precision-Recall (PR) curve, represents
the relation between Precision andRecall, and theArea under
the PR curve (AUC-PR) is the area below PR [18].

Unfortunately, all previous measures, Precision, Recall,
F-Score, AUC-ROC, and AUC-PR, are ideal for point-based
anomalies but cannot adequately evaluate ubiquitous range-
based contextual and collective anomalies [10]. Remarkably,
themappingof discrete labels into continuous data introduces
unavoidable shortcomings (e.g., difficulty in marking pre-
cisely the range of the anomalies and handlingmisalignments

between the human labels and the anomaly range produced
by thresholding the anomaly score). To address these short-
comings, a range-based definition of Precision and Recall
has been proposed by extending the traditional definitions
[52]. Range-based Precision, Recall, and F-Score consider
several factors: (i) whether a subsequence is detected or not;
(ii) how many points in the subsequence are detected; (iii)
which part of the subsequence is detected; and (iv) howmany
fragmented regions correspond to one real subsequence out-
lier. This definition is detailed and comprehensive; however,
several parameters require tuning and, importantly, a thresh-
old over the anomaly score is still required.

A recent study [50] listed AD evaluation measures for
time series, describing their advantages and shortcomings
measured on synthetic time series. However, there has never
been (to the best of our knowledge) a large-scale systematic
quantitative and qualitative analysis of time-series AD eval-
uation measures on real time series. Notably, the choice of
evaluation measure may significantly bias the experimen-
tal outcome. To understand the implications of choosing
an appropriate measure, Fig. 1 depicts the critical diagrams
of the F-score and range-based F-score computed with the
Friedman test followed by a Wilcoxon test [54] over sev-
eral AD methods (see Sect. 5 for details) across the 250 time
series of the KDD21 dataset [28]. Figure1 demonstrates that
not only the ranking is changing, but also somemethods shift
from insignificantly to significantly different from one mea-
sure to the other.

In this paper, we extensively evaluate quality measures
for time-series AD to assess their robustness under noise,
misalignments, and different anomaly cardinality ratios.
Specifically, our study includes 9 previously proposed qual-
ity measures, computed over the anomaly scores of 10 AD
methods across 10 diverse datasets that contain 900 time
series with marked anomalies. Our analysis assesses the
robustness of quality measures both qualitatively and quanti-
tatively by studying the influence of threshold, lag, noise, and
normal-abnormal anomaly ratio to identify robust measures
that better separate accurate from inaccurate methods.

Our results indicate that measures producing quality
values independently of a threshold (i.e., AUC-ROC and
AUC-PR) are more suitable for time-series AD. This is
surprising considering that we include the range-based Pre-
cision, Recall, and F-score measures, which highlights the
strong influence the thresholding of anomaly scores has in
assessing the quality of methods.

Motivated by this observation and to address the limita-
tions of existing measures, we propose four new accuracy
evaluation measures. We first present Range-AUC-ROC and
Range-AUC-PR, threshold-independent (for the anomaly
score) evaluation measures that use a continuous buffer
region in the labels to increase the robustness to potential
misalignments with the human labels. Then, we propose the
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Volume Under the Surface (VUS) family of measures that
extend the traditional AUC measures to consider all buffer
sizes (in addition to all thresholds). Therefore, VUS-ROC
and VUS-PR are parameter-free, threshold-independent, and
robust to lags, noise, and anomaly cardinality ratios. Our
analysis demonstrates that VUS-ROC and VUS-PR are the
most reliable accuracy quality measures for both point-based
and range-based anomaly evaluation. Table 1 summarizes the
accuracy evaluation measures analyzed in this paper based
on their independence to four critical characteristics.

In addition to the accuracy evaluation, we perform an
extensive execution time evaluation. VUS requires comput-
ing accuracy measures (i.e., ROC, Precision, and Recall) for
different values of buffer sizes. As this buffer size changes the
labels of the time series, the naive implementation of VUS
computes accuracy measures over the entire labels as many
times as the number of buffer sizeswe consider. However, the
buffer size affects only small sections of the labels, leaving
the vast majority unchanged. Therefore, we introduce two
optimized versions of the VUS computation algorithm that
compute accuracy measures over the sections affected by the
buffer length. We demonstrate theoretically and empirically
the execution time improvement of the optimized imple-
mentations over the naive implementation of VUS while
remaining exact (i.e., providing the same values as the naive
implementation). Overall, our optimized implementations is
up to 10 times faster than the naive implementation for large
time series, and render the VUS measures easier to use in
practice.

Interestingly, even though outside of the scope of this
paper, the flexibility of VUSmeasures in evaluating methods
while varying parameters of choice may have implications
beyond time-series AD. Specifically, VUS measures are
applicable across binary classification tasks for evaluating
methods with a single quality value while considering differ-
ent parameter choices (e.g., learning rates, batch sizes, and
other critical varying parameters).
We start with a detailed discussion of the relevant back-
ground and related work. Then, we present our contributions
(Sect. 2)1:
We discuss the limitations of existing evaluation measures,
resulting in a formal definition of the necessary principles of
time-series AD quality measures (Sect. 3) .
We present R-AUC (ROC and PR) that rely on a new label
transformation for a more robust and reliable score for con-
textual and collective anomalies (Sect. 4.1).
We introduce VUS (ROC and PR), parameter-free measures
that formally extend AUC-based measures to consider more
varying parameters (Sect. 4.2).
We introduce VUSopt and VUSmem

opt , two optimized ver-
sions for the computation of both VUS-ROC and VUS-PR,

1 A preliminary version has appeared elsewhere [41].

with significantly better time complexity properties. These
two optimized versions prune the sections of the time series
in which the anomaly score does not change regardless of
the threshold and the buffer length. The VUSmem

opt algorithm
further improves time-complexity by using more memory
(Sect. 4.3).
We extensively evaluate, both qualitatively and quantita-
tively, 13 quality measures (9 previously proposed and our
4 new measures) across 10 AD methods over 10 diverse
datasets containing 900 time series with marked anomalies
(Sects. 5.2 and 5.4).
We analyze the separability of the measures by comparing
pairs of accurate and inaccurate methods (Sect. 5.5).
We assess the consistency of the measures by evaluating
changes in methods’ ranks across measures (Sect. 5.6).
We evaluate the scalability of the VUS-based measures on
different time series characteristics, and we measure the
speed-up of VUSopt and VUSmem

opt compared to the naive
implementation of VUS (Sect. 5.7) .
Finally, we conclude with the implications of our work and
discuss future research directions (Sect. 6) .

2 Background and related work

We first introduce formal notations useful for the rest of
the paper (Sect. 2.1). Then, we review in detail previously
proposed evaluation measures for time-series AD methods
(Sect. 2.2).

2.1 Time-series and anomaly score notations

We review notations for the time series and anomaly score
sequence.
Time series Atime series T ∈ R

n is a sequence of real-valued
numbers Ti ∈ R [T1, T2, ..., Tn], where n = |T | is the length
of T , and Ti is the i th point of T . We are typically interested
in local regions of the time series, known as subsequences.
A subsequence Ti,� ∈ R

� of a time series T is a continuous
subset of the values of T of length � starting at position i .
Formally, Ti,� = [Ti , Ti+1, ..., Ti+�−1].
Anomaly score sequence For a time series T ∈ R

n , an AD
method A returns an anomaly score sequence ST . For point-
based approaches (i.e., methods that return a score for each
point of T ), we have ST ∈ R

n . For range-based approaches
(i.e., methods that return a score for each subsequence of
a given length �), we have ST ∈ R

n−�. Overall, for range-
based (or subsequence-based) approaches, we define ST =
[ST 1, ST 2, ..., ST n−�] with ST i ∈ [0, 1].

123



32 Page 4 of 26 P. Boniol et al.

Table 1 Analysis of quality
measures based on: (i)
independence to the number of
anomalies; (ii) independence to
the threshold; (iii) adaptation to
continuous sequences; and (iv)
independence to setting
parameters

Acc. Measure # of anom Score Thres Sequence-adapted Param-free

Precision@k ✗ ✗ ✗

Precision ✗ ✗ ✗

Recall ✗ ✗ ✗

F-Score ✗ ✗ ✗

Rprecision ✗ ✗

Rrecall ✗ ✗

RF-Score ✗ ✗

AUC-PR ✗

AUC-ROC ✗

Proposed measures

R-AUC-PR ✗

R-AUC-ROC ✗

VUS-PR

VUS-ROC

2.2 Accuracy evaluationmeasures for AD

We present previously proposed quality measures for eval-
uating the accuracy of an AD method, given its anomaly
score. We first discuss threshold-based and then threshold-
independent measures.

2.2.1 Threshold-based AD evaluation measures

The anomaly score ST produced by an AD method A high-
lights the parts of the time series T considered as abnormal.
The highest values in the anomaly score correspond to the
most abnormal points. Threshold-based measures require
setting a threshold to mark each point as an anomaly or not.
Usually, this threshold is set to μ(ST ) + α ∗ σ(ST ), with α

set to 3 [7], where μ(ST ) is the mean and σ(ST ) is the stan-
dard deviation ST . Given a threshold Thres, we compute the
pred ∈ {0, 1}n as follows:

∀i ∈ [1, |ST |], predi =
{
0, if: ST i < Thres

1, if: ST i ≥ Thres
(1)

Threshold-based measures compare pred to label ∈
{0, 1}n , which indicates the true (human provided) labeled
anomalies. Given the identity vector I = [1, 1, ..., 1], the
points detected as anomalies or not fall into the following
four categories:

– True positive (TP) Number of points that have been cor-
rectly identified as anomalies. Formally: T P = label� ·
pred.

– True negative (TN) Number of points that have been
correctly identified as normal. Formally: T N = (I −
label)� · (I − pred).

– False positive (FP) Number of points that have been
wrongly identified as anomalies. Formally: FP = (I −
label)� · pred.

– False negative (FN) Number of points that have been
wrongly identified as normal. Formally: FN = label� ·
(I − pred).

Given these categories, several quality measures have been
proposed to assess the accuracy of AD methods.
Precision We define Precision (or positive predictive value)
as the number of correctly identified anomalies over the total
number of points detected as anomalies by the method:

Precision = T P

T P + FP
(2)

Recall WedefineRecall (or TruePositiveRate (TPR), tpr ) as
the number of correctly identified anomalies over all anoma-
lies:

Recall = T P

T P + FN
(3)

False positive rate (FPR) A supplemental measure to the
Recall is the FPR, f pr , defined as the number of points
wrongly identified as anomalies over the total number of
normal points:

f pr = FP

FP + T N
(4)
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F-Score: Precision and Recall evaluate two different aspects
of theADquality. Ameasure that combines these two aspects
is the harmonic mean Fβ , with non-negative real values for
β:

Fβ = (1 + β2) ∗ Precision ∗ Recall

β2 ∗ Precision + Recall
(5)

Usually, β is set to 1, balancing the importance between Pre-
cision and Recall. In this paper, F1 is referred to as F or
F-score.
Precision@k All previous measures require an anomaly
score threshold to be computed. An alternative approach is
to measure the Precision using a subset of anomalies cor-
responding to the k highest value in the anomaly score ST .
This is equivalent to setting the threshold such that only the
k highest values are retrieved.

To address the shortcomings of the point-based mea-
sures, a range-based definition was proposed, extending
the traditional Precision and Recall [52]. This definition
considers several factors: (i) whether a subsequence is
detected or not (ExistenceReward or ER); (ii) how many
points in the subsequence are detected (OverlapReward
or OR); (iii) which part of the subsequence is detected
(position-dependent weight function); and (iv) how many
fragmented regions correspond to one real subsequence out-
lier (CardinalityFactor or CF). Formally, we define R =
{R1, ...RNr } as the set of anomaly ranges, with Rk =
{posi , posi+1, ..., posi+ j } and ∀pos ∈ Rk, labelpos = 1,
and P = {P1, ...PNp } as the set of predicted anomaly
ranges, with Pk = {posi , posi+1, ..., posi+ j } and ∀pos ∈
Rk, predpos = 1. Then, we define ER, OR, and CF as fol-
lows:

ER(Ri , P) =
{
1, if

∑Np
j=1 |Ri ∩ Pj | ≥ 1

0, otherwise

CF(Ri , P) =
{
1, if ∃Pi ∈ P, |Ri ∩ Pi | ≥ 1

γ (Ri , P), otherwise

OR(Ri , P) = CF(Ri , P) ∗
Np∑
j=1

ω(Ri , Ri ∩ Pj , δ)

(6)

The γ (), ω(), and δ() are tunable functions that capture the
cardinality, size, and position of the overlap respectively. The
default parameters are set to γ () = 1, δ() = 1 and ω() to the
overlap ratio covered by the predicted anomaly range [52].

Rprecision and Rrecall [52]: Based on the above, we define:

Rprecision(R, P) =
∑Np

i=1 Rprecisions(R, Pi )

Np

Rprecisions(R, Pi ) = CF(Pi , R) ∗
Nr∑
j=1

ω(Pi , Pi ∩ R j , δ)

Rrecall(R, P) =
∑Nr

i=1 Rrecalls(Ri , P)

Nr

Rrecalls(Ri , P) = α ∗ ER(Ri , P) + (1 − α) ∗ OR(Ri , P)

(7)

The parameter α is user defined. The default value is α = 0.
Range F-score (RF) [52]: As described previously, the F-
score combines Precision and Recall. Similarly, we define
RFβ , for β > 0 as follows:

RFβ = (1 + β2) ∗ Rprecision ∗ Rrecall

β2 ∗ Rprecision + Rrecall
(8)

As before, β is set to 1. In this paper, RF1 is referred to as
RF-score.

2.2.2 Threshold-independent AD evaluation measures

Until now, we introduced accuracy measures requiring to
threshold the produced anomaly score of AD methods.
However, the accuracy values vary significantly when the
threshold changes. To evaluate amethod holistically using its
corresponding anomaly score, two measures from the AUC
family of measures are used.
AUC-ROC [20]: The Area Under the Receiver Operating
Characteristics curve (AUC-ROC) is defined as the area
under the curve corresponding to TPR on the y-axis and FPR
on the x-axis when we vary the anomaly score threshold.
The area under the curve is computed using the trapezoidal
rule. For that purpose, we define Th as an ordered set
of thresholds between 0 and 1. Formally, we have Th =
[Th0, Th1, ...T hN ] with 0 = Th0 < Th1 < ... < ThN =
1. Therefore, AUC-ROC is defined as follows:

AUC-ROC = 1

2

N∑
k=1

Δk
T PR ∗ Δk

FPR

with:

{
Δk

FPR = FPR(Thk) − FPR(Thk−1)

Δk
T PR = T PR(Thk−1) + T PR(Thk)

(9)

AUC-PR [18]: The Area Under the Precision-Recall curve
(AUC-PR) is defined as the area under the curve correspond-
ing to the Recall on the x-axis and Precision on the y-axis
when we vary the anomaly score threshold. As before, the
area under the curve can be calculated using the trapezoidal
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rule, defined as follows:

AUC-PR = 1

2

N∑
k=1

Δk
Precision ∗ Δk

Recall

with:

{
Δk

Recall = Recall(Thk) − Recall(Thk−1)

Δk
Precision = Precision(Thk−1) + Precision(Thk)

(10)

As discussed in [18], linear interpolation in PR space may
result in an overly optimistic estimate of performance. There-
fore, we adopt an alternative interpolation method, Stepwise
Interpolation, to approximate the area under the curve by
calculating the average precision of the PR curve:

AUC-PR =
N∑

k=1

Precision(T hk) ∗ Δk
Recall (11)

For consistency, we use the above equation in this paper to
compute AUC-PR.

3 Problemmotivation and limitations

Having introduced existing measures to assess the quality
of range-based anomalies, we now elaborate on their critical
limitations.

3.1 Limitations of threshold-basedmeasures

The need to threshold the anomaly score severely impacts
the accuracy measures. First, Fig. 2a depicts an electrocar-
diogram time series with an arrhythmia in red (Fig. 2a.1)
and the corresponding anomaly score computed with Iso-
lation Forest [34] (Fig. 2a.2) for one threshold equal to
μ(score) + σ(score) and for another threshold μ(score) +
0.6∗σ(score) (Fig. 2a.3, a.4).Wecompute the different accu-
racy measures for the first threshold (blue bars in Fig. 2a.5)
and the second threshold (orange bars in Fig. 2a.5) and their
differences (Fig. 2a.6). We observe that the threshold choice
has a substantial impact on Precision, Rprecision, F and RF
scores. On the contrary, the threshold-independent measures
(i.e., measures computing all possible thresholds), namely,
AUC-ROC and AUC-PR, show a clear advantage.

Overall, the threshold choice depends on the application
and the type of input time series. Setting the threshold auto-
matically is hard and almost impossible when we compare
different categories of AD methods across heterogeneous
benchmarks. To illustrate this point, we consider two trans-
formations of the anomaly score that correspond to practical
cases we observed (e.g., different methods introduce differ-
ent lag and noise levels to the anomaly score).
Influence of noise Some AD methods applied to some spe-
cific time series might result in a noisy anomaly score. In

Fig. 2 Evaluationmeasureswhenwevary the a threshold,b lag, c noise,
and d normal/abnormal ratio. Example with Isolation Forest methods
over a snippet of an ECG time series [23]

addition, due to manufacturing issues or external causes, a
sensor can inject noise into the time series, which then prop-
agates on the anomaly score. Figure2c depicts two cases:
the first corresponds to an anomaly score without any noise
(Fig. 2c.2). The second corresponds to an anomaly scorewith
noise (Fig. 2c.2).Weapplied onboth cases the same threshold
μ(score) + σ(score). We observe in Fig. 2c.6 that most of
the threshold-basedmeasures are strongly impacted by noise.
This is caused by the fact that the score fluctuates around the
threshold, making threshold-based measures less robust to
noise. On the contrary, AUC-ROC and AUC-PR are much
less influenced by noise, returning approximately the same
value.
Influence of normal/abnormal ratio Depending on the
domain and the task, the number of anomalies and, con-
sequently, the normal/abnormal ratio changes drastically. A
variation in this ratio might cause a variation in the threshold,
which leads to variations in threshold-based accuracy mea-
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sure values. This is explained by the fact that if an anomaly
score detects the anomalies correctly, the standard deviation
of that scorewill be higher for a time serieswithmore anoma-
lies. Figure2d depicts two cases: one time series snippet with
a 0.2 ratio (Fig. 2d.2) and one time series snippet with a
0.05 ratio (Fig. 2d.4). We observe that this change implies a
larger variation for several threshold-based measures. Thus,
the latter confirms the limitations and the non-robustness of
threshold-based measures to the anomaly cardinality ratio.

3.2 Limitations of point-basedmeasures

In the previous section, we illustrated the limitations of
threshold-based measures. By design and because of their
independence from the threshold choice, AUC-ROC and
AUC-PR measures are robust to those limitations. However,
those measures are designed for point-based outliers. Each
point is considered independently and the detection of each
point has an equivalent contribution to AUC. In contrast, we
need to consider two factors, the range detection and the
existence detection, for the subsequence AD problem.

The range detection has the same methodology as point
detection. We prefer that the algorithm detects every point in
the subsequence anomaly. The existence detection is a loose
but crucial estimation for the anomaly subsequence detector:
detecting a tiny segment of one subsequence outlier is still
of great value.
Mismatch between the anomaly score and labels Compared
to point-based AD, range-based AD encourages accurate
capturing of each subsequence anomaly, but the existence
detection is good enough to be partially rewarded. Two other
reasons support the application of this coarse estimation.

First, there is no consistent labeling tradition among
datasets. Some may label the whole period as an anomaly
if this period does not repeat the typical pattern, while others
may only mark a partial period. Figure3(3) depicts different
labeling strategies. Figures3ex1, ex2, and ex3 depict three
real examples corresponding to three different labeling strate-
gies that we observed in existing datasets (see Table 3). Even
if we specify that each period should share the same label, the
next question is how to define the starting and end points of a
period. Given accurate starting or end points, it is also chal-
lenging to label a small segment in one period. Unlike a point
outlier, which is an evident deviation from the trend line of
the time series, range-based anomalies may not have outra-
geous values. This difficulty of labeling is inevitablewhenwe
assign the discrete labels to a continuous time series. There
may be a transition region between the two statuses, but we
have to decide on a discontinuous jumping point artificially.

Second,many algorithms, for instance, LOF [17] and iFor-
est [34], would first apply a sliding window to convert a
1-D time series to a set of high-dimensional data points. We
denote the original time series as (T1, T2, . . . , Tn), and sup-

Fig. 3 Influence of the anomaly detectionmethod score (2) and labeling
strategy (3), illustrated with three examples

pose the length of window is �, then the converted data set
is {(Ti , . . . , Ti+�−1)|i ∈ {1, . . . T − � + 1}}. The label of
point Tk in the time series is defined as the label of high-
dimensional point (Tk−�/2, . . . , Tk+�/2−1) in the transformed
dataset. The conversion from a time series to a dataset has
one consequence: every dimension in the high-dimensional
point is equally important. So, an abnormal value at the mid-
dle or end of this point has the same ability to make it an
outlier in the high-dimensional space. Usually, if the slid-
ing window covers more anomaly points, a good algorithm
should give a higher anomaly score to the converted data
point. However, there are some exceptions, such as that one
abnormal value at the beginningor the endof slidingwindows
is enough to make the converted point an outlier. To sum-
marize, an anomaly subsequence (Ts, . . . , Te) may induce a
high anomaly score for the range [Ts−�/2, Te+�/2]. A perfect
result is that the peak of the anomaly score is slightly broader
than the whole abnormal region. The latter is illustrated in
Fig. 3(2). However, the anomaly score is not perfect. A high
score may be assigned at the range [Ts−�/2, Ts], which fails
to reveal the entire range of the outlier but succeeds in indi-
cating the starting region. AUC-based measures will give a
low value since there is no overlap between the peak and the
outlier.
Overall limitations due to lag A lag can be injected into
the anomaly score depending on the choice of AD methods.
Overall, such a lag may also exist due to the approximation
made during the labeling phase. As illustrated in Fig. 2b, such
a lag (even small) has a substantial impact onall existing eval-
uation measures. For example, in Fig. 2b AUC-PR fluctuates
between 0.75 and 0.50 for a lag of 0.25 of the labeled section
length. Among all measures, only the AUC-ROC measure
demonstrates to be less sensitive to such lag (as well as noise
and normal/abnormal ratio).

123



32 Page 8 of 26 P. Boniol et al.

Fig. 4 Illustration of previous quality measures compared to our proposed measures. By varying the buffer window, VUS constructs a surface of
TPR, FPR, and window. The volume under the surface is a measure of AUC for various windows

3.3 Problem definition

In summary, our goal is to develop a new anomaly score
threshold-independent evaluation measure based on the
robust principles of AUC. A promising direction is an exten-
sion of AUC for the range-based AD with the following
desired properties:
Robust to lag Two similar anomaly scores with a slight lag
difference should return approximately the same accuracy
measures. For example, a high anomaly score near the border
of the anomaly should be rewarded as close as a high anomaly
score in the middle of the range-based anomaly.
Robust to noiseTwo similar anomaly scoreswith andwithout
noise should return similar accuracy.
Robust to the anomaly cardinality ratio This ratio should not
impact the accuracy measures.
High separability between accurate and inaccuratemethods:
The accuracy measure should well separate accurate from
inaccurate methods.
Consistent Finally, an appropriate accuracy measure should
produce consistent scores for similar time series (i.e., rank
different anomaly detectionmethods in a consistentmanner).
Next, we present new accuracy measures to satisfy these
properties.

4 Ourmeasures: range-AUC and VUS

Wefirst present new range-based extensions for ROC and PR
curves by introducing a new continuous label to enable more
flexibility in measuring detected anomaly ranges. We then
present the Volume Under the Surface (VUS) for ROC and
PR curves. VUS extends the mathematical model of Range-

AUC measures by varying the buffer length. An alternative
solution is to learn the necessary parameters and thresholds.
However, such a solution works only under supervised set-
tings and may impact the generalizability to new datasets.
For the specific case of unsupervised learning, the threshold
selection canonly be achievedusing statistical heuristics. The
most common strategy to set the threshold unsupervisely is
to set it to μ(ST ) + α ∗ σ(ST ), with α = 3 [7]. We will
use this strategy when comparing our proposed measures to
threshold-based measures.

4.1 Range-AUC-ROC and range-AUC-PR

To compute the ROC curve and PR curve for a subsequence,
we need to extend to definitions of TPR, FPR, and Precision.
The first step is to add a buffer region at the boundary of
outliers. The idea is that there should be a transition region
between the normal and abnormal subsequences to accom-
modate the false tolerance of labeling in the ground truth (as
discussed, this is unavoidable due to the mapping of discrete
data to continuous time series). An extra benefit is that this
buffer will give credit to the high anomaly score in the vicin-
ity of the outlier boundary, which is what we expected with
the application of a sliding window originally.

Figure 4b shows the original binary labels (in blue), and
Figure 4c the new label with buffer region (in orange). By
default, the width of the buffer region at each side is half
of the period w of the time series (the period is an intrinsic
characteristic of the time series). Differently, this parameter
can be set into the average length of anomaly sizes or can be
set to a desired value by the user.

The traditional binary label is extended to a continuous
value. Formally, for a given buffer length �, the positions
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Fig. 5 Illustration of proposed label extension strategy

s, e ∈ [0, |label|] the beginning and end indexes of a labeled
anomaly (i.e., sections of continuous 1 in label), we define
the continuous labelr as follows:

∀i ∈ [0, |label|], label�i

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − |s−i |

�

) 1
2

, if s − �
2 ≤ i < s and predi = 1,

1, if s ≤ i < e,(
1 − |e−i |

�

) 1
2

, if e ≤ i < e + �
2 and predi = 1,

0, else.

(12)

Specifically, if no predicted anomaly exists within the
extended buffer region, we set label�i to 0 to prevent unnec-
essary false negatives caused by excessive label extension,
as illustrated in Fig. 5.
When the buffer regions of two discontinuous outliers over-
lap, the label will be the superposition of these two orange
curves with one as the maximum value. Using this new con-
tinuous label, one can compute T P�, FP�, T N� and FN�

similarly as follows:

T P� = label�� · pred FP� = (I − label�)
� · pred

T N� = (I − label�)
� · (I − pred) FN� = label�� · (I − pred)

(13)

The total number of positive points P in this case naively
should be P�0 = T P� + FN� = label�� · I . Here, we define
it as:

P� = (label + label�)
� · I

2
, N� = |label�| − P� (14)

The reason is twofold. When the length of the outlier is sev-
eral periods, P�0 and P� are similar because the ratio of the
buffer region to the whole anomaly region is small.When the
length of the outlier is only half-period, the size of the buffer
region is nearly two times the original abnormal region. In

other words, to pursue false tolerance, the relative change
we make to the ground truth is too significant. We use the
average of label and label� to limit this change.

We finally generalize the point-based Recall, Precision,
and FPR to the range-based variants. Formally, following
the definition of R and P as the set of anomalies range and
detected predicted anomaly range (see Sect. 2.2), we define
T PR�, FPR�, and Precision�:

T PR� = Recall� = T P�

P�

∗
∑
Ri∈R

ExistenceR(Ri , P)

|R|

FPR� = FP�

N�

, Precision� = T P�

T P� + FP�

(15)

Note that T PRr = Recallr . Moreover, for the recall com-
putation, we incorporate the idea of Existence Reward [52],
which is the ratio of the number of detected subsequence
outliers to the total number of subsequence outliers. How-
ever, consistent with their work [52], we do not include the
Existence ratio in the definition of range-precision. We can
then compute R-AUC-ROC and R-AUC-PR using Eq.9 and
Eq.10.
Relation between range-ROC and range-PR PR curve is
a supplement to the ROC curve. In a highly unbalanced
dataset, because the number of positive points is too small,
at the same level of FPR, it is easy to have a high TPR (or
T PR�) at the cost of low precision. There are deep connec-
tions between ROC and PR [18]. First, ROC and PR have
one-to-one mapping for a given dataset because the confu-
sion matrix is uniquely determined given TPR and FPR. This
relation is broken for the range method because we include
an extra Existence factor for range-TPR. Therefore, the con-
fusion matrix cannot be decided in the range-ROC space.
Secondly, for a point-based version, if one ROC curve domi-
nates another ROC curve, its corresponding PR curve would
also dominate another one. Here, dominate means the curve
is always higher or equal to another one. Because of the Exis-
tence factor, this rule is also lifted for the range definition.
This is true only if both of the methods have the same exis-
tence ratio. However, this is not always guaranteed. Finally,
a maximized AUC does not necessarily correspond to a max-
imized AP. This holds for the range definition.

4.2 VUS: volume under the surface

Our range-AUC family of measures chooses the width of
the buffer region to be half of a subsequence length � of the
time series. Such buffer length can be either set based on the
knowledge of an expert (e.g., the usual size of arrhythmia
in an electrocardiogram) or set automatically using the time
series’s period. The latter can be computed using different
strategies: (I) using the Fourier transform to identify themost
relevant period of the time series, or (ii) computing the cross-
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correlation and retrieving the lag value (i.e., subsequence
length) that locally maximize the correlation. In practice,
we observe that computing the cross-correlation of a time
series and selecting the length corresponding to the first local
maximal is accurate. In addition, the latter allows users to
consider the shortest period length, significantly limiting the
execution time of most of the AD methods and the range-
AUC measures.

Since the period is an intrinsic property of the time series,
we can compare various algorithms on the same basis. How-
ever, a different approach may get a slightly different period.
In addition, there are multi-period time series. So other
groups may get different range-AUC because of the differ-
ence in the period. As a matter of fact, the parameter �, if
not well set, can strongly influence range-AUCmeasures. To
eliminate this influence, we introduce two generalizations of
range-AUC measures.

The solution is to compute ROC and PR curves for differ-
ent buffer lengths from 0 to � as shown in Fig. 4d. Therefore,
ROC and PR curves become a surface in a three-dimensional
space. Then, the overall accuracy measure corresponds to
the Volume Under the Surface (VUS) for either the ROC
surface (VUS-ROC) or PR surface (VUS-PR). As the R-
AUC-ROC and R-AUC-PR are measures independent of the
threshold on the anomaly score, the VUS-ROC and VUS-PR
are independent of both the threshold and buffer length. For-
mally, given Th = [Th0, Th1, ...T hN ] with 0 = Th0 <

Th1 < ... < ThN = 1, and L = [�0, �1, ..., �L ] with
0 = �0 < �1 < ... < �L = �, we have:

VUS-ROC = 1

4

L∑
w=1

N∑
k=1

Δ(k,w) ∗ Δw, with:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δ(k,w) = Δk
T PR�w

∗ Δk
FPR�w

+ Δk
T PR�w−1

∗ Δk
FPR�w−1

Δk
FPR�w

= FPR�w (Thk) − FPR�w (Thk−1)

Δk
T PR�w

= T PR�w (Thk−1) + T PR�w (Thk)

Δw = |�w − �w−1|
(16)

VUS-PR = 1

2

L∑
w=1

N∑
k=1

Δ(k,w) ∗ Δw, with:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δ(k,w) = Precision�w (Thk) ∗ Δk
Re�w

+Precision�w−1(Thk) ∗ Δk
Re�w−1

Δk
Re�w

= Recall�w (Thk) − Recall�w (Thk−1)

Δw = |�w − �w−1|

(17)

From the above equations, VUS measures are more
expensive to compute than range-AUC measures. Thus,
the application of VUS versus range-AUC depends on our
knowledge of which buffer length to set. If one user knows

which would be the most appropriate buffer length, range-
AUC-basedmeasures are preferable compared toVUS-based
measures. However, if there exists an uncertainty on �, then
setting a range and using VUS increases the flexibility of
the usage and the robustness of the evaluation. Finally, more
parameters than � can be included in VUS-based measures.
If, in addition to �, there is a need to define a range for
another parameter (such as the normal model length �NM

of NormA), the two-dimensional surface is transformed into
a three-dimensional hyper-surface. In general, for P param-
eters, the value is the volume under a |P| − 1 hyper-surface.

4.2.1 Complexity analysis

This section analyzes the complexity of the VUS-basedmea-
sures. We take into account both computation time, and
memory usage.

[Time complexity] The time complexity of VUS (both
VUS-ROC and VUS-PR) is determined by varying two
parameters, namely the buffer length � ∈ L and the number
of thresholds N . This is further illustrated in Algorithm 1,
which breaks down the computation steps. It comprises a
nested loop that demonstrates the variation of the parameters
buffer length (L lengths in total) and number of thresholds (N
thresholds in total). Therefore, VUS complexity is quadratic
to N and L . Then, for each threshold and length (inside the
loop) the computational complexity is O(α�a + T1 + T2),
where α is the number of anomalies, �a refers to the mean
length of anomalies, and T1, T2 refer to computations in
the order of length of the time series T involved in the
anomaly detection. There is a distinction between T1 and
T2 because their practical implementations are optimized to
different extents, producing very different execution times.
Here, O(T1) is the complexity of the calculations involving
the entire time series, such as pred (i.e., a boolean sequence
indicating if a point of the anomaly score ST is above a given
threshold), and label� (i.e., the modified label sequence with
buffer regions). O(T2) refers to the complexity of the compu-
tation of product , T P�, FP�, P�, and N�, which has a cost of
|T |, but is less optimized than the previously described com-
putation. Moreover, α�a corresponds to the computation of
Existence. Thus, the total complexity of the algorithm is
O(NL(α�a + T1 + T2)). In practice, α�a is negligible com-
pared to T1 or T2, and VUS complexity can be approximated
to O(NL(T1 + T2)).

[Space complexity]The space complexity canbeobtained
from the pseudo-code in Algorithm 1. The computation of
VUS-ROC and VUS-PR is performed by iterating over the
set of buffer lengths (L) and the set of thresholds (N ). Thus,
the space complexity of VUS is O(NL).
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Algorithm 1: VUS algorithm
input : Original Labels label, anomaly score ST , maximum

Buffer Length L , thresholds N
output: VUS_ROC, VUS_PR

1 Th ← Thresholds(N );
2 L ← Bu f f er_Lengths(L);
3 AUC ← [], AP ← [];
// Iterate through the buffer Lengths

4 foreach � ∈ L do
5 Create label� from label and �;
6 seq= Anomaly_I ndex(label�);
7 list_T PR� ← [], list_FPR� ← [], list_Prec� ← [];

// Iterate through the thresholds
8 foreach threshold ∈ Th do
9 pred ← ST > threshold;

10 Change label� to labelthres� based on pred;
11 product ← labelthres� ∗ pred;
12 SumPred ← ∑

p∈pred p;
13 SumLabel ← ∑

p∈labelthres�
p;

14 T P� ← 0;
15 foreach seg ∈ seqL do
16 T P� ← T P� +

∑
p∈product[seg[0]:(seg[1]+1)] p

17 Compute FP�, P�, N� from T P�, SumPred , SumLabel;
18 Existenceseq ← 0;

// Iterate through the anomalies
19 foreach seg ∈ seq do
20 if

∑
p∈product[seg[0]:(seg[1]+1)] p > 0 then

21 Existenceseq ← Existenceseq + 1

22 Existence ← Existenceseq
|seq|

23 Append T P�∗Existence
P�

in list_T PR�;

24 Append FP�

N�
in list_FPR�;

25 Append T P�

T P�+FP�
in list_Prec�;

26 Compute AUC_r, AP_r f rom list_T PR�,list_FPR� and
list_Prec�;

27 Append AUC_r, AP_r in AUC, AP;
// Avg. across thresholds and buffer

lengths

28 VUS_ROC ←
∑

a∈AUC a
|L| , VUS_PR ←

∑
a∈AP a
|L| ;

4.3 A faster implementation of VUS

As theoretically explained in the previous section, VUS’s
computation heavily depends on the time series length, as
well as on the number of buffer lengths considered. In this
section,we propose a novel implementation that significantly
reduces the theoretical computation of the VUS measures.

4.3.1 Dynamic versus static sections

The variations of thresholds and buffer length affect themod-
ified labels (i.e., label�) and pred, which cause changes in
the values of True and False PositiveRates (T PR and FPR).
However, not all sections of the time series are affected
by these variations. The data points, whose labels are not
affected by the change in the buffer length for a given thresh-

Fig. 6 Synthetic illustration of an anomaly score (a) and labels (b) of
a given time series. We differentiate static sections that are invariant to
the change of threshold and buffer length, and dynamic sections that
have an impact on the accuracy

Fig. 7 Synthetic illustration of the labels evolution with L . In contrast
to dynamic sections (in green), the buffer length has no impact on VUS
within the static sections (in grey)

old, have the same T PR and FPR (i.e., data points that lie
outside the maximum possible buffer length of an anomaly).

As a result, we can segment the time series into two cate-
gories: Dynamic and Static. The first category corresponds
to sections of the time series containing labels affected by the
variation of buffer length. The second category corresponds
to sections that are not affected by these changes. Figure6
illustrates this segmentation, enabling us to compute the same
measures with significantly reduced computational costs.

4.3.2 Algorithmic implementation

The optimization described above can be performed follow-
ing two different strategies:

– VUSopt : In this version, we split the time series anomaly
scores ST and label� into static and dynamic sections.
We compute the constant required to calculate VUS only
once for the static sections, and once for each buffer
length and threshold value for the dynamic sections.

– VUSmem
opt : This version is an extension of the previous,

with a code-wise modification that leads to a further
decrease in time complexity at the expense of increased
space complexity. Given the large main memory sizes
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Algorithm 2: VUSopt
input : Original Labels T , anomaly score ST , maximum Buffer

Length L , thresholds N
output: VUS-ROC, VUS-PR

1 Th ← Thresholds(N ), L ← Bu f f er_Lengths(L);
2 Create labelL from label and L;
// Extract anomalies positions for buffer

length L
3 seqL ← Anomaly_I ndex(labelL );
4 AUC ← [], AP ← [];
// Static Part
// Iterate through thresholds only

5 foreach threshold ∈ Th do
6 pred ← ST > threshold;
7 SumPred ← ∑

p∈pred p;
// Dynamic Part
// Iterate through the buffer Lengths

8 foreach � ∈ L do
9 Create label� from label and �;

10 seq= Anomaly_I ndex(label�);
11 l_T PR� ← [], l_FPR� ← [], l_Prec� ← [];

// Iterate through the thresholds
12 foreach threshold ∈ Th do
13 pred ← ST > threshold;
14 Change label� to labelthres� based on pred;
15 product ← labelthres� *pred;
16 SumLabel ← ∑

p∈labelthres�
p;

17 T P� ← 0;
18 foreach seg ∈ seqL do
19 T P� ← T P� +

∑
p∈product[seg[0]:(seg[1]+1)] p

20 Compute FP�, P�, N� from T P�, SumPred , SumLabel;
21 Existenceseq ← 0;

// Iterate through the anomalies
22 foreach seg ∈ seq do
23 if

∑
p∈product[seg[0]:(seg[1]+1)] p > 0 then

24 Existenceseq ← Existenceseq + 1

25 Existence ← Existenceseq
|seq|

26 Append T P�∗Existence
P�

in l_T PR�;

27 Append FP�

N�
in l_FPR�;

28 Append T P�

T P�+FP�
in l_Prec�;

29 Compute AUCr , APr f rom l_T PR�,l_FPR� and
l_Prec�;

30 Append AUCr , APr in AUC , AP;
// Avg. across thresholds and buffer

lengths

31 VUS-ROC ←
∑

a∈AUC a
|L| , VUS-PR ←

∑
a∈AP a
|L| ;

of modern servers (and even desktops and laptops),
VUSmem

opt represents a very attractive solution in practice.

Due to the consideration of splitting data into static
and dynamic regions, the implementation has the following
advantages:

– The static split avoids repetitive calculations that would
have involved the same values repeatedly in a nested loop
(i.e., computing only the accuracy values for each thresh-

Algorithm 3: VUSmem
opt

input : Original Labels T , anomaly score ST , maximum Buffer
Length L , thresholds N

output: VUS-ROC, VUS-PR

1 Th ← Thresholds(N ), L ← Bu f f er_Lengths(L);
2 Create labelL from label and L;
// Extract anomalies positions for buffer

length L
3 seqL ← Anomaly_I ndex(labelL );
4 AUC ← [], AP ← [];
5 PredTh ← [];
// Static Part
// Iterate only through thresholds

6 foreach threshold ∈ Th do
7 pred ← ST > threshold;
8 PredTh ← Append with pred;
9 SumPred ← ∑

p∈pred p;
// Dynamic Part
// Iterate through the buffer Lengths

10 foreach � ∈ L do
11 Create label� from label and �;
12 seq= Anomaly_I ndex(label�);
13 l_T PR� ← [], l_FPR� ← [], l_Prec� ← [];

// Iterate through the thresholds
14 count ← 0;
15 foreach threshold ∈ Th do
16 Change label� to labelthres� based on

PredTh[threshold];
17 product ← labelthres� ∗ PredTh[threshold];
18 SumLabel ← ∑

p∈labelthres�
p;

19 T P� ← 0;
20 foreach seg ∈ seqL do
21 T P� ← T P� +

∑
p∈product[seg[0]:(seg[1]+1)] p

22 Compute FP�, P�, N� from T P�, SumPred , SumLabel;
23 Existenceseq ← 0;

// Iterate through the anomalies
24 foreach seg ∈ seq do
25 if

∑
p∈product[seg[0]:(seg[1]+1)] p > 0 then

26 Existenceseq ← Existenceseq + 1

27 Existence ← Existenceseq
|seq|

28 Append T P�∗Existence
P�

in l_T PR�;

29 Append FP�

N�
in l_FPR�;

30 Append T P�

T P�+FP�
in l_Prec�;

31 Compute AUC_r, AP_r f rom l_T PR�,l_FPR� and
l_Prec�;

32 Append AUC_r, AP_r in AUC, AP;
// Avg. across thresholds and buffer

lengths

33 VUS_ROC ←
∑

a∈AUC a
|L| , VUS_PR ←

∑
a∈AP a
|L| ;

old for the static region, since buffer size does not affect
static regions).

– The calculations of T P and N in Eq.15 essentially add
up to zero in the above consideration of the static part,
and do not need to be computed.

– The overall computational time is similar to that of the
Range-AUC measures for a relatively small number of
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anomalies, but evenmore importantly, it does not increase
when the number of anomalies gets significantly larger.

The computational steps of VUSopt and VUSmem
opt are

shown in Algorithm 2 and Algorithm 3, respectively. These
two algorithms are divided into two different sections: (i)
the static part in which we compute VUS for sections of the
time series without anomalies, and (ii) the dynamic part in
which we compute VUS only for the time series sections that
contain anomalies. In the following sections, we analyze in
detail the theoretical complexity (space and time).
[VUSopt Time and space complexity] The VUSopt com-
putation is similar to the original VUS computation (cf.
Algorithm 1) for the calculations of the dynamic part. How-
ever, it differs in the static part, as its calculations that involve
predictions and labels are unaffected by buffer length. The
static part computation (Lines 5-7) involves the predictions
(according to all possible thresholds in Th) and their summa-
tion. Thus, the complexity for the static sections is O(N (T1+
T2)). For the dynamic part (Lines 8-30), the computations
(for each threshold and buffer length) are only performed for
the sections containing anomalies (i.e., dynamic sections in
Fig. 6). Thus, the complexity of the dynamic part computa-
tion is O(α�a). We also have to compute the predictions
(score values above a given threshold) for each dynamic
section, which have a complexity of O(T2). Thus the total
complexity adds up to O(N (T1 +T2))+O(NL(α�a +T2)).
In addition, the space complexity of the dynamic computa-
tion with the nested loop of thresholds and buffer length is
O(NL), and O(N ) for the static part. Therefore, the overall
space complexity of VUSopt is O(NL).
[VUSmem

opt Time and space complexity] As shown in Algo-
rithm 3, the complexity of the static sections remains
unchanged compared to VUSopt . However, the complexity
related to the dynamic sections is reduced by reusing the
saved predictions calculated in the static part (as illustrated
in Fig. 7, it is not affected by buffer lengths). This reduces
the dynamic complexity to O(α�a), adding up to a total com-
plexity of O(N (T1+T2)+NLα�a). For VUSmem

opt , similarly
toVUSopt , the space complexity of the dynamic computation
containing the nested loop of thresholds and buffer length is
O(NL). However, due to the storage and indexing of predic-
tions, the computations related to the static sections result in
a space complexity of O(NT ). Thus, the total space com-
plexity of VUSmem

opt is O(N (L + T )). The time and space
complexity of all three VUS implementations are listed in
Table 2.

5 Experimental analysis

We now describe in detail our experimental analysis. The
experimental section is organized as follows:

Table 2 Space and time complexity of VUS implementations

Version Time Space

VUS O(NL(α�a + T1 + T2)) O(NL)

VUSopt O(N (T1 + T2 + L(α�a + T2))) O(NL)

VUSmem
opt O(N (T1 + T2 + Lα�a)) O(N (L + T ))

In Sect. 5.1, we introduce the datasets and methods to eval-
uate the previously defined accuracy measures.
In Sect. 5.2, we illustrate the limitations of existing measures
with some selected qualitative examples.
In Sect. 5.4, we continue by measuring quantitatively the
benefits of our proposed measures in terms of robustness to
lag, noise, and normal/abnormal ratio.
In Sect. 5.5, we evaluate the separability degree of accurate
and inaccurate methods, using the existing and our proposed
approaches.
In Sect. 5.6, we conduct a consistency evaluation, in which
we analyze the variation of ranks that an AD method can
have with an accuracy measures used.
In Sect. 5.7, we conduct an execution time evaluation, in
which we analyze the impact of different parameters related
to the accuracy measures and the time series characteristics.
We focus especially on the comparison of the different VUS
implementations.

5.1 Experimental setup and settings

We implemented the experimental scripts in Python 3.8
with the following main dependencies: sklearn 0.23.0, ten-
sorflow 2.3.0, pandas 1.2.5, and networkx 2.6.3. In addition,
we used implementations from our TSB-UAD benchmark
suite.2 For reproducibility purposes, we make our datasets
and code available.3

Datasets For our evaluation purposes, we use the public
datasets identified in our TSB-UAD benchmark. The latter
corresponds to 10 datasets proposed in the past decades in
the literature containing 900 time series with labeled anoma-
lies. Specifically, each point in every time series is labeled
as normal or abnormal. Table 3 summarizes relevant char-
acteristics of the datasets, including their size, length, and
statistics about the anomalies. In more detail:

– SED [2], from the NASA Rotary Dynamics Laboratory,
records disk revolutions measured over several runs (3K
rpm speed).

– ECG [23] is a standard electrocardiogram dataset and the
anomalies represent ventricular premature contractions.
MBA(14046) is split to 47 series.

2 https://www.timeseries.org/TSB-UAD
3 https://www.timeseries.org/VUS
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Table 3 Summary
characteristics (averaged per
dataset) of the public datasets of
TSB-UAD (S.: Size, Ano.:
Anomalies, Ab.: Abnormal,
Den.: Density)

Dataset S Len # Ano # Ab. Points Ab. Den. (%)

Dodgers [25] 1 50400 133.0 5612.0 11.14

SED [2] 1 100000 75.0 3750.0 3.7

ECG [23] 52 230351 195.6 15634.0 6.8

IOPS [1] 58 102119 46.5 2312.3 2.1

KDD21 [28] 250 77415 1 196.5 0.56

MGAB [53] 10 100000 10.0 200.0 0.20

NAB [4] 58 6301 2.0 575.5 8.8

NASA-M. [8] 27 2730 1.33 286.3 11.97

NASA-S. [8] 54 8066 1.26 1032.4 12.39

SensorS. [55] 23 27038 11.2 6110.4 22.5

YAHOO [29] 367 1561 5.9 10.7 0.70

Fig. 8 Comparison of evaluation measures (proposed measures illus-
trated in subplots (b,c,d,e); all others summarized in subplots (f)) on
two examples (AAE and OCSM applied onMBA(805) and B LOF and

OCSVM applied on MBA(806)), illustrating the limitations of existing
measures for scores with noise or containing a lag
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– IOPS [1] is a dataset with performance indicators that
reflect the scale, quality of web services, and health status
of a machine.

– KDD21 [28] is a composite dataset released in a SIGKDD
2021 competition with 250 time series.

– MGAB [53] is composed of Mackey-Glass time series
with non-trivial anomalies. Mackey-Glass data series
exhibit chaotic behavior that is difficult for the human
eye to distinguish.

– NAB [4] is composed of labeled real-world and artifi-
cial time series including AWS server metrics, online
advertisement clicking rates, real time traffic data, and
a collection of Twitter mentions of large publicly-traded
companies.

– NASA-SMAP and NASA-MSL [8] are two real spacecraft
telemetry data with anomalies from Soil Moisture Active
Passive (SMAP) satellite and Curiosity Rover on Mars
(MSL).

– SensorScope [55] is a collection of environmental data,
such as temperature, humidity, and solar radiation, col-
lected from a sensor measurement system.

– Yahoo [29] is a dataset consisting of real and synthetic
time series based on the real production traffic to some
of the Yahoo production systems.

Anomaly detection methods For the experimental evalu-
ation, we consider the following baselines.

– Isolation forest (IForest) [34] constructs binary trees
based on random space splitting. The nodes (subse-
quences in our specific case) with shorter path lengths
to the root (averaged over every random tree) are more
likely to be anomalies.

– The local outlier factor (LOF) [17] computes the ratio of
the neighbor density to the local density.

– Matrix profile (MP) [57] detects as anomaly the subse-
quence with the most significant 1-NN distance.

– NormA [12] identifies the normal patterns based on clus-
tering and calculates each point’s distance to normal
patterns weighted using statistical criteria.

– Principal component analysis (PCA) [3] projects data to
a lower-dimensional hyperplane. Outliers are points with
a large distance from this plane.

– Autoencoder (AE) [48] projects data to a lower-dimensional
space and reconstructs it. Outliers are expected to have
larger reconstruction errors.

– LSTM-AD [35] use an LSTMnetwork that predicts future
values from the current subsequence. Theprediction error
is used to identify anomalies.

– Polynomial approximation (POLY) [30] fits a polynomial
model that tries to predict the values of the data series
from the previous subsequences. Outliers are detected
with the prediction error.

– CNN [36] built, using a convolutional deep neural net-
work, a correlation between current and previous sub-
sequences, and outliers are detected by the deviation
between the prediction and the actual value.

– One-class support vector machines (OCSVM) [49] is a
support vectormethod that fits a training dataset and finds
the normal data’s boundary.

5.2 Qualitative analysis

We first use two examples to demonstrate qualitatively the
limitations of existing accuracy evaluation measures in the
presence of lag and noise, and to motivate the need for a new
approach. These two examples are depicted in Fig. 8. The
first example, in Fig. 8A, corresponds to OCSVM and AE
on the MBA(805) dataset (named MBA_ECG805_data.out
in the ECG dataset).

We observe in Fig. 8(A)(a.1) and (a.2) that both scores
identify most of the anomalies (highlighted in red). How-
ever, the OCSVM score points to more false positives (at the
end of the time series) and only captures small sections of the
anomalies. On the contrary, theAE score points to fewer false
positives and captures all abnormal subsequences. Thus we
can conclude that, visually, AE should obtain a better accu-
racy score than OCSVM. Nevertheless, we also observe that
the AE score is lagged with the labels and contains more
noise. The latter has a significant impact on the accuracy
of evaluation measures. First, Fig. 8(A)(c) is showing that
AUC-PR is better for OCSM (0.73) than for AE (0.57).
This is contradictory with what is visually observed from
Fig. 8(A)(a.1) and (a.2). However, when using our proposed
measure R-AUC-PR, OCSVM obtains a lower score (0.83)
than AE (0.89). This confirms that, in this example, a buffer
region before the labels helps to capture the true value of
an anomaly score. Overall, Fig. 8(A)(f) is showing in green
and red the evolution of accuracy score for the 13 accuracy
measures for AE andOCSVM, respectively. The latter shows
that, in addition to Precision@k and Precision, our proposed
approach captures the quality order between the twomethods
well.

We now present a second example, on a different time
series, illustrated in Fig. 8B. In this case, we demonstrate
the anomaly score of OCSVM and LOF (depicted in
Fig. 8(B)(a.1) and (a.2)) applied on the MBA(806) dataset
(named MBA_ECG806_data.out in the ECG dataset). We
observe that both methods produce the same level of noise.
However, LOF points to fewer false positives and captures
more sections of the abnormal subsequences than OCSVM.
Nevertheless, the LOF score is slightly lagged with the
labels such that the maximum values in the LOF score are
slightly outside of the labeled sections. Thus, as illustrated
in Fig. 8(B)(f), even though we can visually consider that
LOF is performing better than OCSM, all usual measures
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Fig. 9 Comparison of evaluation measures for synthetic data exam-
ples across various scenarios. S8 represents the oracle case, where
predictions perfectly align with labeled anomalies. Problematic cases
are highlighted in the red region

(Precision, Recall, F, precision@k, and AUC-PR) are judg-
ing OCSM better than AE. On the contrary, measures that
consider lag (Rprecision, Rrecall, RF) rank the methods cor-
rectly. However, due to threshold issues, these measures are
very close for the twomethods. Overall, only AUC-ROC and
our proposed measures give a higher score for LOF than for
OCSVM.

5.3 Quantitative analysis

We present the evaluation results for different synthetic
data scenarios, as shown inFig. 9. These scenarios range from
S1, where predictions occur before the ground truth anomaly,
to S12, where predictions fall within the ground truth region.
The red-shaded regions highlight problematic cases caused
by a lack of adaptability to lags. For instance, in scenarios
S1 and S2, a slight shift in the prediction leads to measures
(e.g., AUC-PR, F score) that fail to account for lags, resulting
in a zero score for S1 and a significant discrepancy between
the results of S1 and S2. Thus, we observe that our proposed
VUS effectively addresses these issues and provides robust
evaluations results.

Fig. 10 For each method, we compute the accuracy measures 10 times
with random lag � ∈ [−0.25∗�, 0.25∗�] injected in the anomaly score.
We center the accuracy average to 0

5.4 Robustness analysis

We have illustrated with specific examples several of the
limitations of current measures. We now evaluate quan-
titatively the robustness of the proposed measures when
compared to the currently used measures. We first evalu-
ate the robustness to noise, lag, and normal versus abnormal
points ratio. We then measure their ability to separate accu-
rate and inaccurate methods. We first analyze the robustness
of different approaches quantitatively to different factors: (i)
lag, (ii) noise, and (iii) normal/abnormal ratio. As already
mentioned, these factors are realistic. For instance, lag can be
either introduced by the anomaly detection methods (such as
methods that produce a score per subsequences are only high
at the beginning of abnormal subsequences) or by human
labeling approximation. Furthermore, even though lag and
noises are injected, an optimal evaluation metric should not
vary significantly. Therefore, we aim tomeasure the variance
of the evaluation measures when we vary the lag, noise, and
normal/abnormal ratio. We proceed as follows:

1. For each anomaly detection method, we first compute the
anomaly score on a given time series.

2. We then inject either lag l, noise n or change the nor-
mal/abnormal ratio r . For 10 different values of l ∈
[−0.25 ∗ �, 0.25 ∗ �], n ∈ [−0.05 ∗ (max(ST ) −
min(ST )), 0.05 ∗ (max(ST ) − min(ST ))] and r ∈
[0.01, 0.2], we compute the 13 different measures.
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3. For each evaluation measure, we compute the standard
deviation of the ten different values. Figure10b depicts
the different lag values for six AD methods applied on a
data series in the ECG dataset.

4. We compute the average standard deviation for the 13 dif-
ferentADqualitymeasures. For example, Fig. 10a depicts
the average standard deviation for ten different lag val-
ues over the AD methods applied on the MBA(805) time
series.

5. We compute the average standard deviation for the every
time series in each dataset (as illustrated in Fig. 11b–j for
nine datasets of the benchmark.

6. We compute the average standard deviation for the every
dataset (as illustrated in Fig. 11a.1 for lag, Fig. 11a.2 for
noise and Fig. 11a.3 for normal/abnormal ratio).

7. We finally compute the Wilcoxon test [54] and display
the critical diagram over the average standard deviation
for every time series (as illustrated in Fig. 12a.1 for lag,
Fig. 12a.2 for noise and Fig. 12a.3 for normal/abnormal
ratio).

The methods with the smallest standard deviation can be
considered more robust to lag, noise, or normal/abnormal
ratio from the above framework. First, as stated in the
introduction, we observe that non-threshold-based measures
(such as AUC-ROC and AUC-PR) are indeed robust to noise
(see Fig. 11a.2), but not to lag. Figure12a.1 demonstrates
that our proposed measures VUS-ROC, VUS-PR, R-AUC-
ROC, and R-AUC-PR are significantly more robust to lag.
Similarly, Fig. 12a.2 confirms that our proposed measures
are significantly more robust to noise. However, we observe
that, among our proposed measures, only VUS-ROC and R-
AUC-ROC are robust to the normal/abnormal ratio and not
VUS-PR and R-AUC-PR. This is explained by the fact that
Precision-based measures vary significantly when this ratio
changes. This is confirmedbyFig. 11a.3, inwhichweobserve
that Precision and Rprecision have a high standard deviation.
Overall, we observe that VUS-ROC is significantly more
robust to lag, noise, and normal/abnormal ratio than other
measures.

5.5 Separability analysis

We now evaluate the separability capacities of the different
evaluationmetrics. Themain objective is tomeasure the abil-
ity of accuracy measures to separate accurate methods from
inaccurate ones. More precisely, an appropriate measure
should return accuracy scores that are significantly higher
for accurate anomaly scores than for inaccurate ones. We
thus manually select accurate and inaccurate anomaly detec-
tion methods and verify if the accuracy evaluation scores
are indeed higher for the accurate than for the inaccurate
methods. Figure13 depicts the latter separability analysis

Fig. 11 Robustness analysis for nine datasets: we report, over the
entire benchmark, the average standard deviation of the accuracy values
of the measures, under varying (a.1) lag, (a.2) noise, and (a.3) nor-
mal/abnormal ratio

applied to the MBA(805) and the SED series. The accu-
rate and inaccurate anomaly scores are plotted in green
and red, respectively. We then consider 12 different pairs
of accurate/inaccurate methods among the eight previously
mentioned anomaly scores.We slightlymodify each score 50
different times inwhichwe inject lag and noises and compute
the accuracymeasures. Figure13a.4, b.4 are divided into four
different subplots corresponding to 4 pairs (selected among
the twelve different pairs due to lack of space). Each sub-
plot corresponds to two box plots per accuracy measure. The
green and red box plots correspond to the 50 accuracy mea-
sures on the accurate and inaccurate methods. If the red and
green box plots are well separated, we can conclude that the
corresponding accuracymeasures are separating the accurate
and inaccurate methods well.We observe that some accuracy
measures (such as VUS-ROC) are more separable than oth-
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Fig. 12 Critical difference diagram computed using the signed-rank Wilkoxon test (with α = 0.1) for the robustness to (a.1) lag, (a.2) noise and
(a.3) normal/abnormal ratio

ers (such as RF). We thus measure the separability of the two
box-plots by computing the Z-test.

We now aggregate all the results and compute the average
Z-test for all pairs of accurate/inaccurate datasets (examples
are shown in Fig. 13a.2, b.2 for accurate anomaly scores,
and in Fig. 13a.3, b.3 for inaccurate anomaly scores, for the
MBA(805) and SED series, respectively). Next, we perform
the same operation over three different data series: MBA
(805), MBA(820), and SED. Then, we depict the average Z-
test for these three datasets in Fig. 14a. Finally, we show the
average Z-test for all datasets in Fig. 14b.

We observe that our proposed VUS-based and Range-
based measures are significantly more separable than other
current accuracy measures (up to two times for AUC-ROC,
the best measures of all current ones). Furthermore, when
analyzed in detail in Figs. 13 and 14, we confirm that VUS-
based and Range-based are more separable over all three
datasets.
Global Analysis Overall, we observe that VUS-ROC is the
most robust (cf. Fig. 12) and separable (cf. Fig. 14) measure.
On the contrary, Precision and Rprecision are non-robust
and non-separable. Among all previous accuracy measures,
only AUC-ROC is robust and separable. Popular measures,
such as, F, RF, AUC-ROC, and AUC-PR are robust but non-
separable.

In order to visualize the global statistical analysis, we
merge the robustness and the separability analysis into a
single plot. Figure15 depicts one scatter point per accu-
racy measure. The x-axis represents the averaged standard
deviation of lag and noise (averaged values from Fig. 11a.1,
a.2). The y-axis corresponds to the averaged Z-test (averaged
value fromFig. 14). Finally, the size of the points corresponds
to the sensitivity to the normal/abnormal ratio (values from
Fig. 11a.3). Figure15 demonstrates that our proposed mea-
sures (located at the top left section of the plot) are both
the most robust and the most separable. Among all previ-
ous accuracy measures, only AUC-ROC is on the top left
section of the plot. Popular measures, such as, F, RF, AUC-
ROC, AUC-PR are on the bottom left section of the plot.
The latter underlines the fact that these measures are robust
but non-separable. Overall, Fig. 15 confirms the effective-
ness and superiority of our proposed measures, especially of
VUS-ROC and VUS-PR.

5.6 Consistency analysis

In this section, we analyze the accuracy of the anomaly detec-
tion methods provided by the 13 accuracy measures. The
objective is to observe the changes in the global ranking of
anomaly detection methods. For that purpose, we formulate
the following assumptions. First, we assume that the data
series in each benchmark dataset are similar (i.e., from the
same domain and sharing some common characteristics). As
a matter of fact, we can assume that an anomaly detection
method should perform similarly on these data series of a
given dataset. This is confirmed when observing that the best
anomaly detection methods are not the same based on which
dataset was analyzed. Thus the ranking of the anomaly detec-
tion methods should be different for different datasets, but
similar for every data series in each dataset. Therefore, for a
given method A and a given dataset D containing data series
of the same type and domain, we assume that a good accuracy
measure results in a consistent rank for the method A across
the dataset D. The consistency of a method’s ranks over a
dataset can be measured by computing the entropy of these
ranks. For instance, a measure that returns a random score
(and thus, a random rank for a method A) will result in a
high entropy. On the contrary, a measure that always returns
(approximately) the same ranks for a given method A will
result in a low entropy. Thus, for a given method A and a
given dataset D containing data series of the same type and
domain, we assume that a good accuracy measure results in
a low entropy for the different ranks for method A on dataset
D.

We now compute the accuracy measures for the nine
differentmethods (we compute the anomaly scores ten differ-
ent times, and we use the average accuracy). Figures16b.1,
b.2 report the average ranking of the anomaly detection
methods obtained on the YAHOO and KDD21 datasets,
respectively. The x-axis corresponds to the different accu-
racy measures. We first observe that the rankings are more
separated using Range-AUC and VUS measures for these
two datasets. Figure16b depicts the average ranking over the
entire benchmark. The latter confirms the previous observa-
tion that VUS measures provide more separated rankings
than threshold-based and AUC-based measures. We also
observe an interesting ranking evolution for the YAHOO
dataset illustrated in Fig. 16b.1. We notice that both LOF
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Fig. 14 Overall separability analysis (averaged z-test between the accu-
racy values distributions of accurate and inaccurate methods) applied
on 36 pairs on 3 datasets

Fig. 15 Evaluation of all measures based on: (y-axis) their separability
(avg. z-test), (x-axis) avg. standard deviation of the accuracy values
when varying lag and noise, (circle size) avg. standard deviation of the
accuracy values when varying the normal/abnormal ratio

and MatrixProfile (brown and pink curve) have a low rank
(between 4 and 5) using threshold and AUC-based measures.
However, we observe that their ranks increase significantly
for range-based and VUS-based measures (between 2.5 and
3). As we noticed by looking at specific examples (see
Fig. 5.2), LOF and MatrixProfile can suffer from a lag issue
even though the anomalies are well-identified. Therefore, the
range-based and VUS-based measures better evaluate these
two methods’ detection capability.

Overall, the ranking curves show that the ranks appear
more chaotic for threshold-based than AUC-, Range-AUC-,
and VUS-based measures. In order to quantify this obser-
vation, we compute the Shannon Entropy of the ranks of
each anomaly detection method. In practice, we extract the

ranks of methods across one dataset and compute Shan-
non’s Entropy of the different ranks. Figure16c.1, c.2 depict
the entropy of each of the nine methods for the YAHOO
and KDD21 datasets, respectively. Figure16c illustrates the
averaged entropy for all datasets in the benchmark for each
measure and method, while Fig. 16a shows the averaged
entropy for each category of measures. We observe that both
for the general case (Fig. 16a and c) and some specific cases
(Fig. 16c.1, c.2), the entropy is reducing when using AUC-,
Range-AUC-, and VUS-based measures. We report the low-
est entropy for VUS-based measures. Moreover, we notice
a significant drop between threshold-based and AUC-based.
This confirms that the ranks provided by AUC- and VUS-
based measures are consistent for data series belonging to
one specific dataset.

Therefore, based on the assumption formulated at the
beginning of the section, we can thus conclude that AUC,
range-AUC, and VUS-based measures are providing more
consistent rankings. Finally, as illustrated in Fig. 16, we also
observe that VUS-based measures result in the most ordered
and similar rankings for data series from the same type and
domain.

5.7 Execution time analysis

In this section, we evaluate the execution time required to
compute different evaluationmeasures. In Sect. 5.7.1,wefirst
measure the influence of different time series characteristics
andVUS parameters on the execution time. In Sect. 5.7.2, we
measure the execution time of VUS (VUS-ROC and VUS-
PR simultaneously), R-AUC (R-AUC-ROC and R-AUC-PR
simultaneously), and AUC-based measures (AUC-ROC and
AUC-PR simultaneously) on the TSB-UAD benchmark. As
demonstrated in the previous section, threshold-based mea-
sures are not robust, have a low separability power, and are
inconsistent. Such measures are not suitable for evaluating
anomaly detection methods. Thus, in this section, we do not
consider threshold-based measures.

5.7.1 Evaluation on synthetic time series

We first analyze the impact that time series characteristics
and parameters have on the computation time of VUS-based
measures. to that effect, we generate synthetic time series and
labels, where we vary the following parameters: (i) the num-
ber of anomalies α in the time series, (ii) the average μ(�a)

and standard deviation σ(�a) of the anomalies lengths in the
time series (all the anomalies can have different lengths), (iii)
the length of the time series |T |, (iv) the maximum buffer
length L , and (v) the number of thresholds N .

We also measure the influence on the execution time of
the R-AUC- and AUC- related parameter, that is, the num-
ber of thresholds (N ). The default values and the range of
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Fig. 16 Accuracy evaluation of the anomaly detectionmethods. aOver-
all average entropy per category ofmeasures. Analysis of the b averaged
rank and c averaged rank entropy for each method and each accuracy

measure over the entire benchmark. Example of (b.1) average rank and
(c.1) entropy on the YAHOO dataset, KDD21 dataset (b.2, c.2)

Table 4 Value ranges for the parameters: number of anomalies (α),
average and standard deviation anomaly length (μ(�a),σ(�a)), time
series length (|T |), maximum buffer length (L), and number of thresh-
olds (N )

Param α μ(�a) σ (�a) |T | L N

Default 10 10 0 105 5 250

Min 0 0 0 103 0 2

Max 2 ∗ 103 103 10 105 103 103

variation of these parameters are listed in Table 4. For VUS-
based measures, we evaluate the execution time of the initial
VUS implementation, as well as the two optimized versions,
VUSopt and VUSmem

opt .
Figure 17 depicts the execution time (averaged over ten

runs) for each parameter listed inTable 4.Overall,weobserve
that the execution time of AUC-based and R-AUC-based
measures is significantly smaller than VUS-based measures.
In the following paragraph, we analyze the influence of each
parameter and compare the experimental execution time eval-
uation to the theoretical complexity reported in Table 2.
[Influence of α]: In Fig. 17a, we observe that the VUS,
VUSopt , and VUSmem

opt execution times are linearly increas-
ing with α. The increase in execution time for VUS, VUSopt ,
andVUSmem

opt ismore pronouncedwhenwevaryα, in contrast
to la (which nevertheless, has a similar effect on the overall
complexity). We also observe that the VUSmem

opt execution
time grows slower than VUSopt when α increases. This is
explained by the use of 2-dimensional arrays for the storage

of predictions, which use contiguous memory locations that
allow for faster access, decreasing the dependency on α.
[Influence of μ(�a)]: As shown in Fig. 17b, the execution
time variation of VUS, VUSopt , and VUSmem

opt caused by
�a is rather insignificant. We also observe that the VUSopt
and VUSmem

opt execution times are significantly lower when
compared to VUS. This is explained by the smaller depen-
dency of the complexity of these algorithms on the time series
length |T |. Overall, the execution time for both VUSopt and
VUSmem

opt is significantly lower than VUS, and follows a sim-
ilar trend.
[Influence ofσ(�a)]As depicted in Fig. 17d and inferred from
the theoretical complexities in Table 2, none of the measures
are affected by the standard deviation of the anomaly lengths.
[Influence of |T |] For short time series (small values of |T |),
we note that O(T1) becomes comparable to O(T2). Thus, the
theoretical complexities approximate to O(NL(T1 + T2)),
O(N ∗ (T1+T2))+O(NLT2) and O(N (T1+T2)) for VUS,
VUSopt , and VUSmem

opt , respectively. Indeed, we observe
in Fig. 17c that the execution times of VUS, VUSopt , and
VUSmem

opt are similar for small values of |T |. However, for
larger values of |T |, O(T1) is much higher compared to
O(T2), thus resulting in an effective complexity of O(NLT1)
for VUS, and O(NT1) for VUSopt , and VUSmem

opt . This
translates to a significant improvement in execution time
complexity for VUSopt and VUSmem

opt compared to VUS,
which is confirmed by the results in Fig. 17c.
[Influence of N ] Given the theoretical complexity depicted
in Table 2, it is evident that the number of thresholds affects
all measures in a linear fashion. Figure17e demonstrates this
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Table 5 Linear regression slope coefficients (C .) for VUS execution
times, for each parameter independently

Measure Param α la |T | L N

VUS C . 21.9 0.02 2.13 212 6.24

R2 0.99 0.15 0.99 0.99 0.99

VUSopt C . 24.2 0.06 0.19 27.8 1.23

R2 0.99 0.86 0.99 0.99 0.99

VUSmem
opt C . 21.5 0.05 0.21 15.7 1.16

R2 0.99 0.89 0.99 0.99 0.99

point: the results of varying N show a linear dependency for
VUS, VUSopt , and VUSmem

opt (i.e., a logarithmic trend with a
log scale on the y axis). Moreover, we observe that the AUC
and range-AUC execution time is almost constant regardless
of the number of thresholds used. The latter is explained by
the very efficient implementation of AUC measures. There-
fore, the linear dependency on the number of thresholds is
not visible in Fig. 17e.
[Influence of L] Fig. 17f depicts the influence of the maxi-
mum buffer length L on the execution time of all measures.
We observe that, as L grows, the execution time of VUSopt
and VUSmem

opt increases slower than VUS. We also observe
that VUSmem

opt is more scalable with L when compared
to VUSopt . This is consistent with the theoretical com-
plexity (cf. Table 2), which indicates that the dependence
on L decreases from O(NL(T1 + T2 + �aα)) for VUS
to O(NL(T2 + �aα) and O(NL(�aα)) for VUSopt , and
VUSmem

opt .
In order to obtain a more accurate picture of the influence

of each of the above parameters, we fit the execution time (as
affected by the parameter values) using linear regression; we
can then use the regression slope coefficient of each param-
eter to evaluate the influence of that parameter. In practice,
we fit each parameter individually, and report the regression
slope coefficient, as well as the coefficient of determination
R2. Table 5 reports the coefficients mentioned above for each
parameter associated with VUS, VUSopt , and VUSmem

opt .
Table 5 shows that the linear regression between α and

the execution time has a R2 = 0.99. Thus, the depen-
dence of execution time on α is linear. We also observe that
VUSopt execution time is more dependent on α than VUS
and VUSmem

opt execution time. Moreover, the dependence of
the execution time on the time series length (|T |) is higher
for VUS than for VUSopt and VUSmem

opt . More importantly,
VUSopt and VUSmem

opt are significantly less dependent than
VUS on the number of thresholds and the maximal buffer
length.

Table 6 Linear regression slope coefficients (C .) for VUS execution
time, for all time series parameters all-together

Measure α |T | la R2

VUS 7.87 13.5 −0.08 0.99

VUSopt 10.2 1.70 0.09 0.96

VUSmem
opt 9.27 1.60 0.11 0.96

5.7.2 Evaluation on TSB-UAD time series

In this section, we verify the conclusions outlined in the pre-
vious section with real-world time series from the TSB-UAD
benchmark. In this setting, the parameters α, �a , and |T | are
calculated from the series in the benchmark and cannot be
changed. Moreover, L and N are parameters for the com-
putation of VUS, regardless of the time series (synthetic or
real). Thus, we do not consider these two parameters in this
section.

Figure 18 depicts the execution time of AUC, R-AUC,
and VUS-based measures versus α, μ(�a), and |T |. We first
confirm with Fig. 18a the linear relationship between α and
the execution time for VUS, VUSopt and VUSmem

opt . On fur-
ther inspection, it is possible to see two separate lines for
almost all the measures. These lines can be attributed to the
time series length |T |. The convergence of VUS and VUSopt
when α grows shows the stronger dependence that VUSopt
execution time has on α, as already observed with the syn-
thetic data (cf. Section5.7.1).

In Fig. 18b, we observe that the variation of the execu-
tion time with �a is limited when compared to the two other
parameters. We conclude that the variation of �a is not a key
factor in determining the execution time of themeasures. Fur-
thermore, as depicted in Fig. 18c, VUSopt and VUSmem

opt are
more scalable thanVUSwhen |T | increases.We also confirm
the linear dependence of execution time on the time series
length for all the accuracymeasures, which is consistent with
the experiments on the synthetic data. The two abrupt jumps
visible in Fig. 18c are explained by significant increases of α

in time series of the same length.
We now perform a linear regression between the execu-

tion time of VUS, VUSopt and VUSmem
opt , and α, �a and |T |.

We report in Table 6 the slope coefficient for each param-
eter, as well as the R2. The latter shows that the VUSopt
and VUSmem

opt execution times are impacted by α at a larger
degree than α affects VUS. On the other hand, the VUSopt
and VUSmem

opt execution times are impacted to a significantly
smaller degree by the time series length when compared to
VUS. We also confirm that the anomaly length does not
impact the execution time of VUS, VUSopt , or VUSmem

opt .
Finally, our experiments show that our optimized imple-
mentations VUSopt and VUSmem

opt significantly speedup the
execution of the VUS measures (i.e., they can be computed
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Fig. 17 Execution time of VUS, R-AUC, AUC-based measures when we vary the parameters listed in Table 4. The solid lines correspond to the
average execution time over 10 runs. The colored envelopes are to the standard deviation

Fig. 18 Execution time of VUS, R-AUC, AUC-based measures on the TSB-UAD benchmark, versus α, �a , and |T |
within the same order of magnitude as R-AUC), rendering
them practical in the real world.

5.8 Summary of results

Figure 19 depicts the ranking of the accuracymeasures for the
different tests performed in this paper. The robustness test is
divided into three sub-categories (i.e., lag, noise, and Normal
vs. abnormal ratio). We also show the overall average rank-
ing of all accuracy measures (most right column of Fig. 19).
Overall, we see that VUS-ROC is always the best, and VUS-
PR andRange-AUC-basedmeasures are, on average, second,
third, and fourth. We thus conclude that VUS-ROC is the
overall winner of our experimental analysis.

In addition, our experimental evaluation shows that the
optimized version of VUS accelerates the computation by a
factor of two. Nevertheless, VUS execution time is still sig-
nificantly slower than AUC-based approaches. However, it
is important to mention that the efficiency of accuracy mea-
sures is an orthogonal problem with anomaly detection. In
real-time applications, we do not have ground truth labels,
andwe do not use any of thosemeasures to evaluate accuracy.
Measuring accuracy is an offline step to help the community
assess methods and improve wrong practices. Thus, execu-
tion time should not be the main criterion for selecting an
evaluation measure.

123



32 Page 24 of 26 P. Boniol et al.

Fig. 19 Ranks of the accuracy evaluation measures for the three differ-
ent tests (i.e., on robustness, separability, and consistency) performed
in the experimental evaluation, as well as the overall ranks (averaged
for each measure on all tests)

6 Conclusions

Time-series AD is a challenging problem, and an active
area of research. Given the multitude of solutions proposed
in the literature, it is important to be able to properly eval-
uate them. In this paper, we demonstrate the limitations
of threshold-based accuracy measures. Even though AUC-
based measures solve the threshold issues, we show that
they cannot handle lag and noise. Overall, we show that the
proposed VUS-based measures are more robust, and better
separate accurate methods from inaccurate ones.

Despite the significant scalability improvement brought
by VUSopt and VUSmem

opt , the execution time is still higher
than that of the simple AUC-based and the threshold-based
approaches. Nevertheless, since the VUS-based measures
are more robust, separable, and consistent, studying further
optimization strategies is an important research direction.
Even though VUS-based methods are only relevant to the
offline accuracy evaluation step, improving the execution
time would benefit the relevant benchmarks.
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