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Abstract—A variety of distance measures for multivariate time
series has been proposed in recent literature. However, eval-
uations of such measures have been incomplete; comparisons
are limited to subsets of similar measures, lacking a holistic
view of the field with an appropriate taxonomy of measures.
This paper presents a structured evaluation of multivariate time
series distance measures. Through a novel taxonomy, measures
are categorized based on how they handle the multiple variates;
in an atomic or a holistic manner. Experimental evaluation of 12
measures shows that no single measure or approach is superior;
the optimal choice depends on the data and the task at hand.
Index Terms—Multivariate Time Series, Distance Measures

I. INTRODUCTION

With the rapid development of sensor technology, the analysis

of time series, and, particularly, of multivariate time series
(MTS), are becoming increasingly common [13]–[16], [21],

[22], [24], [26], [33], [36], [37], [39]. Multivariate time series

are collections of time series, measuring different signals at

the same resolution, usually sourcing from the same physical

object or process [47]. These different signals are referred

to as the dimensions or variates of the MTS. Examples

of MTS include data from climate sensor arrays (e.g., an

array measuring the temperature, humidity, and air pressure

at a certain location) [20] and motion capture data (e.g., the

position and acceleration of different body parts) [1], [7],

[18]. An open problem in the field of MTS processing is the

selection of appropriate distance measures for efficient and

effective similarity search [28], [35], [38],1 a core subroutine

in many downstream tasks such as classification [8], [29],

[40], [42], [43], [47], clustering [3], [30], [31], and anomaly

detection [4]–[6], [9], [10], [27], [32], [44], [45]. Existing

MTS distance measures can be classified into two categories;

element-wise and cross-wise distance measures. Element-wise

measures are extensions of measures on univariate time series

(UTS), and compare MTS by aggregating the per-variate

distances (i.e., comparing identical variates of different MTS).

In contrast, cross-wise measures are specialized for MTS, and

compare MTS by considering the internal distances between

the variates within each MTS (i.e., comparing the MTS as a

This work has received funding from the European Union’s Horizon Europe
research and innovation programme STELAR under grant agreement No.
101070122.

1Note that similarity is the inverse of distance. These concepts can be used
interchangeably in the context of similarity search

0

2

4

V
ar

.
1

A: Low L2

0

2

4

B: Same Correlations

0

2

4

C: No similarity

0 1 2 3
0

2

4

Time

V
ar

.
2

0 1 2 3
0

2

4

Time

0 1 2 3
0

2

4

Time

Fig. 1: Examples of pairs of MTS (the red and the blue) with

different types of similarity, left to right columns: (a) the L2

distances between the two variates of the two MTS is small,

(b) for both MTS, the correlation between their two variates

is -1, (c) no clear similarity exists between the MTS.

whole). A simple example of an element-wise distance is the

sum of per-variate Euclidean distances (i.e., L2) between two

MTS [42]. An example of a cross-wise measure is the sum of

squared differences of the correlation matrices of two MTS.

Figure 1 illustrates the difference between both approaches;

the MTS in the first column of plots are highly similar in

terms of their L2 distances, whereas the MTS in the second

column are similar in terms of their correlation structure,

captured by the squared differences, but not in terms of their

L2 distances. The MTS in the third column are not similar in

terms of either measure. While both approaches were studied

in isolation, it is unclear how they relate to one another, both

theoretically and empirically. Also, evaluation of cross-wise

measures has been limited to performance comparisons with

a few other measures over limited datasets. With the wide

range of measures serving different purposes, it is important

to establish general guidelines for selecting and using MTS

distance measures, such that practitioners can make informed

decisions.

Scope. This paper focuses on the quality and theoretical prop-

erties of MTS distance measures. The efficiency of measures is

not considered due to the lack of optimized similarity search

solutions for many measures. Our future work will include a

thorough evaluation of efficiency to provide a complete review

of MTS distance measures.

Contributions: (a) We propose a novel taxonomy for MTS
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distance measures, which is based on the distinction between

element-wise and cross-wise measures, the constraints on time

alignment over the variates, and the support of varying variates

between MTS. (b) We provide a comprehensive overview of

the state-of-the-art in MTS distance measures, and use them to

populate the taxonomy. Additionally, two novel measures are

proposed that address some limitations of current approaches.

(c) We evaluate the distance measures on a variety of datasets,

and conclude that no single measure is universally the best.

While the latter insight is not new, we show that it remains

true for a larger and more diverse set of measures than

previously considered. Besides that, we provide conceptual

guidelines on the most suitable measure types for different

data characteristics.

Outline The remainder of this paper is structured as follows.

In Section II we discuss the preliminaries and related work. In

Section III we motivate and introduce the taxonomy for MTS

distance measures, and demonstrate its relevance through real-

world examples. In Section IV we populate the taxonomy with

the state-of-the-art and novel measures, and in Section V we

present a thorough experimental comparison of the measures.

We summarize the work in Section VI.

II. PRELIMINARIES

A. Notation

A multivariate time series T of length m with v variates is

denoted as a matrix T = [T1, ...,Tv], where Ti is the UTS

with m observations of variate i. An MTS distance measure d
is a function d : Rm×v × R

m×v → R, where d(A,B) is the

distance between time series A and B.

B. Related work

We will now discuss recent experimental studies of time series

distance measures. Relevant works on individual distance

measures are discussed separately in Section IV, when the

measures are introduced.

Recently, Paparrizos et al. [34], [35] performed a detailed

experimental study of UTS distance measures, focusing on

the quality of measures rather than their efficiency. In their

work, the authors debunk 4 misconceptions about univariate

measures. Namely, they show that (a) lesser-known normal-

ization methods outperform z-normalization on multiple dis-

tance measures, (b) alternative lock-step measures such as

Manhattan outperform the widely used Euclidean distance, (c)

sliding measures, such as cross-correlation, are not dominated

by elastic measures such as DTW, and (d) DTW is not always

the best elastic measure; measures such as Merge-Split-Move

outperform DTW on multiple datasets. While their work only

considers univariate measures, it provides a solid framework

for evaluating time series distances, and many univariate

measures can be extended to MTS. The first comparison of

MTS distance measures was by Shokoohi-Yekta et al. in [43].

The authors defined two approaches for extending DTW to the

multivariate case; through dependent (DTW-D) or independent
(DTW-I) time warping. With DTW-D, the warping path is

shared between all variates, while with DTW-I, each variate has

MTS distance measures

Element-wise distances

Dependent Independent

Cross-wise distances

Fixed Flexible

Fig. 2: Taxonomy of MTS distance measures

its own warping path. Comparing to Euclidean distance, the

authors showed both qualitatively and quantitatively that the

choice for DTW-D or DTW-I is relevant and domain-specific.

Shifaz et al. [42] recently extended 6 more univariate measures

to MTS, accounting both dependent and independent time

warping, and compared them on the task of classification

on the UEA archive [2]. Among the measures are Euclidean

distance, LCSS, Edit distance, and Move-Split-Merge. Similar

to [43], the authors concluded that no measure nor alignment

strategy is superior; all but one measures were the best on at

least one dataset.

III. TAXONOMY

In this section we will present a novel taxonomy of MTS dis-

tance measures, which separates the measures based on three

properties; (a) the way variates are handled during distance

computation, (b) the way point alignments are constrained

over the variates, and, (c) the support of variate mismatches

between MTS. The first property divides MTS measures into

element-wise and cross-wise distances. The second property di-

vides element-wise distances into dependent and independent
point alignments, and the third property divides cross-wise

distances into distances on fixed and flexible representations.

The taxonomy is depicted in Fig. 2.

Handling variates (element-wise/cross-wise) The first pro-

posed MTS distances involved aggregation of per-variate dis-

tances computed with univariate measures [42], [43], [46].

As such, they ignored possible interdependencies between

the variates within an MTS. Formally, these distances are

functions that only include terms on matching variates of

different MTS. We coin such measures element-wise distances.

To illustrate, given two MTS X,Y , an element-wise distance

function d(X,Y ) only includes terms of the form f(Xi,Yi).
The DTW extensions of Shokoohi-Yekta et al. [43] (DTW-I
and DTW-D) are examples of element-wise distances. Other

works propose distance measures that treat the MTS variates

holistically, allowing preservation of correlations among the

variates. Formally, these measures are functions that, in ad-

dition to terms with matching variates, also include terms

on different variates, i.e., cross-terms of the form f(Xi,Yj)
or f(Xi,Xj), with i �= j. We call such measures cross-
wise distances. In several cases, these measures capture the

internal dependencies of an MTS by transforming it to a new
representation based on its internal distances, i.e., d(Xi, Xj),
and then computing distances on the transformed MTS using

a univariate measure [12], [47]. Examples of such distances

over transformations are the PCA Similarity Factor (SPCA)

and Eros [47], which capture similarities in the internal covari-

ance matrices of MTS by aggregating the cosine similarities
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Term type Element-wise Cross-wise
Two MTS, same variate; f(Xi,Yi) � �
Two MTS, different variates; f(Xi,Yj) �
One MTS, different variates; f(Xi,Xj) �

TABLE I: Terms used in element- and cross-wise distances.

between the principal components of the MTS [17]. Table I

summarizes the terms used in the functions of element-wise

and cross-wise distances.

Handling point-alignments (dependent/independent) As

raw processing of the MTS variates allows for elastic align-

ment between the time points of two MTS, the question

arises whether this alignment should be shared among variates

or not. Adopting the terminology of Shifaz et al. [42], we

split element-wise distances into subcategories based on the

way point alignments are constrained over the MTS variates;

dependent (when the alignment is shared among variates, e.g.,

DTW-D) or independent (e.g., DTW-I).

Handling variate mismatches (fixed/flexible) Frequently, not

all variates are relevant when comparing two MTS, or the MTS

do not contain measurements on exactly the same variates.2

In these cases, the MTS are compared on a subset of the

variates. We refer to this phenomenon as variate mismatches.

Handling variate mismatches can be non-trivial for cross-wise

distances when it involves transforming the MTS to a new

representation without the query in mind, and the original

variates cannot be clearly separated after the transformation.

For example, when designing an efficient similarity search

algorithm for SPCA [47], one likely stores and indexes the

principal components instead of the original data. As these

principal components are linear combinations of all original
variates they cannot be reduced at query time to the query

variates, leading to an error on the distance to the query when

the original variates did not match. We call such transfor-

mations fixed. Conversely, representations such as covariance

matrices of MTS are flexible; one can consider only the sub-

matrices corresponding to the query variates when computing

distances, thus allowing for matching of variates after the

transformation. We therefore differentiate cross-wise measures

on this property, to either fixed or flexible representations.

IV. POPULATING THE TAXONOMY

In this section, we discuss the key distance measures for

MTS, and group them by the subcategories of the taxonomy

presented in Section III. Table II summarizes all measures.

A. Element-wise distances

We start by looking into the different element-wise distance

measures that will be evaluated. For each measure we will

consider both the dependent and independent variant.

Multivariate Lp distance (Lp): Lp is defined as the p-norm of

the differences over all variates of two MTS [2]: Lp(X,Y ) =
p

√∑m
i=1

∑v
j=1(Xi,j − Yi,j)p. L2 was previously used in [41],

2This occurs in many real-world applications where the variates are not
standardized across measurements (e.g., different measuring standards or
medical equipment between hospitals in patient health monitoring).

Name Ref Type 2nd level class
Lp [2], [41]–[43], [46], [47] EW Dep./Indep.
DTW [2], [41]–[43], [46] EW Dep./Indep.
LCSS [41], [42], [46] EW Dep./Indep.
DPCA [47] CW Fixed
DEros [47] CW Fixed
DKL CW Flexible
Frob CW Flexible

TABLE II: Overview of multivariate distance measures.

[42], [46], [47]. Since Lp lacks any form of time elasticity, it

does not have a dependent and independent variant.

Multivariate DTW (DTW-D, DTW-I): We start by intro-

ducing DTW for UTS, before presenting its extension for

MTS. DTW distance is defined as the minimum cost of all

possible alignments (i.e., mapping of data points) between

two UTS. The cost of an alignment (or warping path) is

the Euclidean distance taken over the aligned values. The

independent extension of DTW (DTW-I) is defined as the

sum of the univariate DTW distances over the variates of

two MTS [43]. The dependent extension of DTW (DTW-D)

is the same as univariate DTW, with the exception that it

uses the multivariate Euclidean distance (i.e., L2) over the

aligned points as cost function [43]. Consequently, where

DTW-I results in v unique alignments, DTW-D results in a

single alignment shared between all variates.

Multivariate LCSS (LCSS-D, LCSS-I): Univariate Longest

Common Subsequence (LCSS) distance is defined as the

length of the longest subsequence of two time series, po-

tentially starting at different time points [46]. Real-valued

subsequences are considered matching if all data points are

within a certain threshold ε of each other and the temporal

offset between the subsequences is lower than δ ∈ N
+. The

independent variant of LCSS (LCSS-I) is defined as the sum

of the univariate LCSS distances over the variates of two

MTS [42]. The dependent variant (LCSS-D) introduced in [46],

requires subsequences to match on all variates.

B. Cross-wise distances

We now present the state-of-the-art cross-wise distance mea-

sures, including two novel measures: Cross-wise-Frobenius,

and the KL-divergence between multivariate gaussians.

PCA distance (DPCA): The PCA Similarity Factor is defined

as the sum of the cosine similarities of all pairs of princi-

pal components of two MTS [19], [47]: SPCA,k(X,Y ) =∑k
i=1

∑k
j=1 cos

2(ωi,j) where ωi,j is the angle between the

i-th and j-th principal component of X and Y , and k ≤ v is

the number of considered principal components. As discussed

in Section III, SPCA involves fixed representations. As SPCA

is similarity measure, we convert it to a distance measure by

taking the reciprocal [23], i.e., DPCA,k = 1
1+SPCA,k

.

Eros distance (DEros): Eros similarity is defined as the

weighted sum of the cosine similarities of the ordered

principal components of two MTS [47]: SEros(X,Y ) =∑v
i=1 wi| cos(ωi,i)| where the weight vector w is based on

the (normalized) aggregated eigenvalues of a training set of

MTS, as a measure of average importance. As such, Eros is
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Element-wise Cross-wise
L2 DTW-D DTW-I LCSS-D LCSS-I DEros DKL DPCA Frob-L1 Frob-L2 Frob-Cov Frob-DTW

r = 1 Unnormed 1 7 3 0 7 1 3 0 1 0 2 1
Normed 2 4 3 0 4 0 2 1 0 0 0 2

r = 5 Unnomed 10 17 17 2 11 3 9 2 5 6 7 6
Normed 9 13 14 1 9 4 6 3 2 1 3 4

Median Unnomed 0.550 0.675 0.754 0.510 0.650 0.534 0.511 0.259 0.545 0.555 0.538 0.511
Accuracy Normed 0.596 0.676 0.743 0.500 0.648 0.505 0.503 0.259 0.481 0.500 0.503 0.514

TABLE III: Number of datasets where each measure was in the r highest classification accuracies.

a weighted version of SPCA considering only corresponding

axes instead of all pairs. Eros similarity can be transformed to

a distance measure as DEros =
√
2− 2 ∗ SEros [47] and has

the same fixed representations as DPCA.

KL-divergence of Multivariate Gaussians (DKL): As a

more theoretically sound alternative to DPCA and DEros, we

propose to model MTS as single multivariate gaussians and

use the (closed-form) KL-divergence as a distance measure.

DKL supports ad-hoc matching of variates by marginalizing

the multivariate gaussians to the matched subset of variates. By

modelling MTS as a gaussian, we do not address the temporal

aspect of MTS at all. Instead, the data points are handled as

i.i.d. samples from a distribution.

Cross-wise-Frobenius (Frob): Frob takes the Frobenius norm

of the element-wise differences of the distance matrices of

two MTS. As such, when applied to the covariance matri-

ces of two MTS, Frob effectively measures the Euclidean

distance between the vectors containing the variances and

covariances of the two MTS. Formally, Frob is defined as:

Frob(X,Y , f) = ||ΣX,f − ΣY,f ||F where ΣX,f indicates

the distance matrix of X using some distance measure f .

Furthermore, as one can select subsets of variates through

the submatrices of ΣX,f , the representations are flexible. We

refer to instances of Frob by including the respective distance

measure in the name, e.g., Frob-DTW. In our evaluation we

consider Frob-L1, Frob-L2, Frob-Cov, and Frob-DTW.

V. EVALUATION

The experiments aimed to evaluate the discriminative power

of the measures, using classification as the downstream task

(Section V-A). This goal is motivated by the fact that classifi-

cation is a common proxy for such comparisons when direct

quantitative evaluation of measures is non-trivial [34], [41]–

[43], [47]. We stress again that this work focuses on evaluating

the quality of distance measures; computational efficiency is

not the focus of this work.

Implementation and datasets. All measures are implemented

in Python. The code is available on GitHub. Our evaluation

uses the popular UEA archive, which contains 30 labeled real-

world datasets from diverse domains, with varying number of

variates and lengths [2].

A. Classification performance

Classification is performed using 5-NN classifiers. Perfor-

mances are measured through accuracies on leave-one-out

cross-validation. Additionally, we investigate the use of z-

normalization. Analyzing the performance of the all mea-

sures in Table III, we find that element-wise measures on

average perform better than cross-wise distances, but they do

not dominate them. In fact, there are datasets where cross-

wise measures perform significantly better than element-wise

measures. This is the case for BasicMotions, Cricket, and

EigenWorms, among others. Particularly for the latter, the

average accuracies of cross-wise measures are significantly

higher than those of element-wise measures. Overall, the

results show that there is no ’one-size-fits-all’ measure that

exclusively outperforms all others. This is also the case for

normalization of the data, which does not consistently improve

or degrade performance. This is in line with the findings

of [2], [41]–[43], [47]. Therefore, the choice of measure

and normalization should be made based on the dataset and

application at hand, and the measure properties that fit that

context. Analyzing the differences among element-wise mea-

sures, we find that DTW-D ranks highest on average, while

DTW-I has the highest average accuracy. This tells us that

DTW-I is more robust compared to DTW-D, and that there

is also no one best element-wise measure, confirming [41]–

[43]. Similar insights are obtained for cross-wise measures,

with DKL ranking highest on average, and Frob-L2 having

the highest average accuracy among cross-wise measures, but

no exclusive superiority of any cross-wise measure.

B. Future work
Although this work evaluates 12 diverse measures, it excludes

element-wise measures based on Lorentzian distance, Cross-

Correlation, and Merge-Split-Move, and normalizations such

as UnitLength, which all showed promising performance

in [34]. Future work should include these measures and

normalizations, and compare them more robustly through

statatical tests such as the Friedman test [11] and the post-

hoc Nemenyi test [25]. Such work should go in tandem with

efficiency evaluations such as the studies of Echihabi et al. [9],

[10] to offer a complete handbook for measure selection in

MTS applications.

VI. CONCLUSIONS

In this paper, we made the first steps towards a structured eval-

uation of MTS distance measures. Through a novel taxonomy,

distance measures were categorized into two groups based on

the way they handle the variates of the MTS. Both groups

were split into subcategories based on properties relevant to

each group. Experimental results show that no MTS measure

is superior, and the optimal choice depends on the data. While

this work proposes effective alternatives to existing cross-wise

measures, we argue that future work should focus on the

development of new measures that capture both aspects of

similarity in MTS explicitly and dynamically.
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