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Distance measures are fundamental to time series analysis and have been extensively studied for decades.

Until now, research efforts mainly focused on univariate time series, leaving multivariate cases largely under-

explored. Furthermore, the existing experimental studies on multivariate distances have critical limitations: (a)

focusing only on lock-step and elastic measures while ignoring categories such as sliding and kernel measures;

(b) considering only one normalization technique; and (c) placing limited focus on statistical analysis of findings.

Motivated by these shortcomings, we present the most complete evaluation of multivariate distance measures

to date. Our study examines 30 standalone measures across 8 categories, 2 channel-dependency models, and

considers 13 normalizations. We perform a comprehensive evaluation across 30 datasets and 3 downstream

tasks, accompanied by rigorous statistical analysis. To ensure fairness, we conduct a thorough investigation of

parameters for methods in both a supervised and an unsupervised manner. Our work verifies and extends

earlier findings, showing that insights from univariate distance measures also apply to the multivariate case:

(a) alternative normalization methods outperform Z-score, and for the first time, we demonstrate statistical

differences in certain categories for the multivariate case; (b) multiple lock-step measures are better suited than

Euclidean distance, when it comes to multivariate time series; and (c) newer elastic measures outperform the

widely adopted Dynamic Time Warping distance, especially with proper parameter tuning in the supervised

setting. Moreover, our results reveal that (a) sliding measures offer the best trade-off between accuracy and

runtime; (b) current normalization techniques fail to significantly enhance accuracy on multivariate time series

and, surprisingly, do not outperform the no normalization case, indicating a lack of appropriate solutions for

normalizing multivariate time series; and (c) independent consideration of time series channels is beneficial

only for elastic measures. In summary, we offer guidelines to aid in designing and selecting preprocessing

strategies and multivariate distance measures for our community.
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Given a query       , find the closer match between        ("standing") and        ("walking").    

Example: Shape-based distance (SBD), sliding measure. Prediction:        is closer to        .

Distance Value: 0.4  Distance Value: 0.7 

SBD can handle
shifting distortions
by global alignment

Q

A B

Distinct patterns

Q

A

"Note: ED fails to identify that        is 'standing' as it cannot align the distinct patterns which discriminate the cases."

A Ground truth:         ("standing")Q B Q

Q

Q

Fig. 1. An illustrative example highlighting the importance of distance measure selection in time series
analysis, using synthetic data inspired by UEA’s StandWalkJump.

1 Introduction
Time series, ordered sequences of real-valued observations, have become ubiquitous in diverse

domains, such as meteorology, astrophysics, neuroscience, behavioral science, and finance [3, 44, 50,

58, 68, 73, 78, 91, 92, 95, 103]. In recent decades, the rapid development of sensing technologies has

facilitated the collection of vast amounts of time series data [52, 53, 60, 64, 65, 87, 99], commonly

categorized into univariate time series (UTS) and multivariate time series (MTS). UTS refers to

time-varying measurements where each observation is a scalar, while MTS consists of a collection

of co-evolving UTS, making each observation multi-dimensional [36, 86, 115]. For example, an

MTS in meteorology is a collection of measurements from sensors, where each sensor represents a

distinct channel, such as temperature or wind speed [51, 79, 111]. The identification of similarities

between time series, through a distance or similarity measure, constitutes the foundation for time

series analytics tasks such as querying [2, 28, 34, 55, 59, 62, 77, 89, 93], indexing [20–22, 24, 37, 38, 40,

57, 81, 96], clustering [6, 7, 10, 35, 54, 83, 84, 90, 94, 102], classification [4, 49, 100, 104, 105, 114, 115],

motif discovery [9, 25, 63, 75, 116, 117], and anomaly detection [11–19, 32, 66, 67, 80, 85, 107, 108].

However, the design of such measures is non-trivial. In contrast to other data types (e.g., text),

time series data has a temporal aspect that plays a crucial role in conducting an effective comparison,

and is often very high-dimensional [37]. Moreover, the difficulty in defining a suitable distance

measure for time series stems from the lack of a clear formulation of what constitutes a meaningful

similarity [88]. Specifically, humans can recognize perceptually similar time series, disregarding

various distortions in the series, such as temporal misalignments, scaling differences, and noise–

dissimilarities that are irrelevant to the comparison. Nevertheless, the implicit rules guiding this

process are intricate and context-dependent, making them difficult to mathematically formalize [39].

These intricacies are illustrated in Figure 1 in the context of motion capture data, where a phase

shift in a query signal leads to a misclassification when using a measure that does not correct for

distortions, but a correct prediction in the case of a measure like Shape-based distance (SBD), which

considers all possible shifts between time series.

The difficulty of handling various distortions in time series has resulted in the development of

dozens of distance measures over decades of research. Paparrizos et al. [88] introduced a taxonomy

categorizing distance measures into five groups: (a) lock-step measures, which compare values at

corresponding time points and aggregate the differences across time; (b) sliding measures, which

find the optimal shift between two time series; (c) elastic measures, which allow one-to-many

mappings of time steps to handle local temporal distortions; (d) kernel measures, which implicitly

project time series into a higher-dimensional space using a kernel function; (e) embedding measures,

which explicitly transform time series to new representations, which then serve as the new basis for
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Table 1. Summary of our experimental evaluation of 30 standalone MTS measures (46 variants in total
when considering channel-dependency models and ensembles) across two channel-dependency models (I:
independent, D: dependent) and three downstream tasks (CLS: classification, CLU: clustering, AD: anomaly
detection). The last two columns show the summary of prior evaluation studies [5] and [104].

Temp.
Model Measures Dep. Models,

#Norms
Downstream

Tasks [5] [104]

Lock-step 11 (I, 13) CLS, CLU, AD 1 | (I,1) | CLS 1 | (I,1) | CLS

Sliding 1 (I & D,13) CLS, CLU, AD ✗ ✗

Elastic 5 (I & D, 13) CLS, CLU, AD 1 | (I&D,1) | CLS 5 | (I&D,1) | CLS

Kernel 4 (I & D, 13) CLS ✗ ✗

Feature 2 (I, 13) CLS ✗ ✗

Model 2 (I & D, 13) CLS ✗ ✗

Embedding 5 (I & D, 13) CLS ✗ ✗

Ensemble 2 (I & D, 13) CLS ✗ ✗

comparison. The authors note that no single distance measure can effectively address all types of

distortions simultaneously. This becomes even more challenging the context of MTS, as distortions

may or may not be propagated across channels [105].

Despite extensive efforts in developing distance measures, misconceptions about their properties

and the trade-offs between accuracy and efficiency persist, due to the limited focus on perform-

ing comprehensive evaluation studies [88]. Recent works managed to debunk several of these

misconceptions by performing large-scale evaluations across a variety of datasets and distance

measures [34, 88]. Unfortunately, these evaluations were restricted to UTS, leaving the challenges

associated with MTS under-explored. The handful of existing studies on multivariate distance mea-

sures have key limitations [5, 104], including (a) mainly focusing on lock-step and elastic measures

while disregarding competing families such as sliding and kernel measures; (b) considering only a

single normalization; and (c) performing limited statistical analysis. Notably, with these limitations,

the guidance these studies offer remains constrained.

Motivated by these issues, this paper aims to provide a rigorous comparison of multivariate

distance measures through a holistic view. Namely, to accurately map the current landscape of

measures, we take a systematic approach that considers the three key axes: (a) Normalization,
which involves the rescaling of time series as a preprocessing step; (b) Temporal Model, which
determines how measures address temporal distortions between time series; (c) and the Channel-
Dependency Model, which determines the criteria to address correlations between channels, either

by assuming independence across all channels (channel-independent) or incorporating interdepen-

dencies (channel-dependent). These three axes serve as the basis for categorizing and comparing

existing MTS distance measures, facilitating the selection and discovery of effective preprocessing

techniques and new distance measure designs.

Guided by these three key axes, we present the most comprehensive study of MTS distance

measures to date: while prior works have faced notable limitations [5, 104] – from the lack of

extensions for MTS distance measures to the absence of meta-analyses – we implement, properly

parameterize, and evaluate a total of 30 standalone MTS distance measures. Specifically, we (a)

conduct a meta-analysis on 13 normalizations, and critically examine whether existing methods

outperform the case of not normalizing (Nonorm); (b) propose a taxonomy of eight categories

(seven temporal models + measure ensembles), assessing each measure based on both accuracy and

runtime performance; (c) explore two channel-dependency models, providing guidelines on how

to implement each model for each measure category and normalization method. We pay careful

attention to the parameterization of measures by considering broad ranges of values, validated to
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ensure convergence to optimal values. Furthermore, as a byproduct of the study, we provide an

easy-to-use library with implementations of all evaluated measures [1].

To quantify the discriminative power of each measure, we evaluate their accuracy in the one-

nearest-neighbor (1NN) classification task across all 30 datasets from the UEA archive [5], under

both supervised and unsupervised settings. Moreover, we perform two additional experiments on

clustering and anomaly detection to extend our findings. Alongside accuracy comparisons, we place

a strong emphasis on runtime performance, measuring how the runtime of measures scales across

varying time series lengths and numbers of channels in MTS. We validate our results and findings

using two statistical tests to assess the significance of differences, one for pairwise comparisons

and the other for evaluating global performance across multiple measures. In summary, we reaffirm

previous findings on distance measures in the context of multivariate time series, confirming

that: (a) Z-score normalization is not the best normalization technique; (b) various lock-step

measures outperform Euclidean distance; and (c) newer elastic measures outperform Dynamic

Time Warping (DTW) [101], the current state of the art, in the supervised setting. Furthermore,

our results show that: (a) sliding measures offer the best trade-off between accuracy and runtime

efficiency; (b) embedding measures, including deep-learning-based methods, are not superior to

traditional measures; (c) current normalization techniques do not significantly improve accuracy

on multivariate data; and (d) channel-dependent variants of measures generally outperform their

channel-independent counterparts, with the exception of elastic measures. Table 1 compares

statistics of our experimental evaluation against related studies [5, 104], highlighting the key

observations that motivated this research and demonstrating the comprehensiveness of our work.

We start with the related work in the field of distance measure evaluations (Section 2). Then, we

summarize our contributions in this work, which are detailed as follows:

• We present three axes that ensure the comprehensiveness of our evaluations on MTS measures:

normalization, temporal model, and channel-dependency model (Section 3).

• We provide a complete overview of existing distance measures for time-series analysis, struc-

tured by the introduced measure properties (Section 4).

• We conduct an evaluation of 30 standalone measures across 30 datasets with 13 normalization

techniques, measuring their performance in terms of accuracy and runtime efficiency (Section 5).

• We provide guidelines for MTS measures selection (Section 6).

Finally, we conclude with the implications of our work and a discussion of challenges and new

directions for possible future research (Section 7).

2 Related work
In this section, we review recent experimental studies on time series distance measures, emphasizing

the relevance of our work and illustrating how it aligns with, or challenges prior research. Additional

details on individual distance measures within each category are presented in Section 4.

Recently, Paparrizos et al. [88] introduced a taxonomy that classifies univariate distance measures

into five distinct categories and conducted a comprehensive comparison to challenge long-standing

misconceptions in the field. The experimental results yielded four key conclusions: (a) alternative

normalization methods can outperform Z-score normalization; (b) other lock-step distance mea-

sures surpass the widely used Euclidean distance; (c) sliding measures demonstrate competitive

performance compared to elastic measures in supervised and unsupervised settings; and (d) DTW

is not always the best-performing elastic measure, with newer measures like MSM outperforming it.

Inspired by this work, we extend this taxonomy to MTS, introduce two new categories, and propose

a principled approach to extending UTS distance measures to MTS. Our study partly confirms

the four main conclusions of the study of [88] in the multivariate case, but also uncovers several

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 121. Publication date: June 2025.



A Structured Study of Multivariate Time-Series Distance Measures 121:5

discrepancies and novel findings: (a) Not normalizing (Nonorm) is currently the best choice for

MTS, (b) elastic measures for MTS only outperform sliding measures under supervised parameter

tuning, and (c) state-of-the-art deep-learning-based measures are not superior to traditional mea-

sures. Furthermore, our study additionally considers ensemble methods and includes two extra

downstream tasks on clustering and outlier detection to extend our findings beyond classification.

Shokoohi-Yekta et al. [105] proposed two channel-dependency extension strategies for extending

DTW to the multivariate case: dependent (DTW-D) and independent (DTW-I). In DTW-D, all

channels are treated collectively and share a single warping path, whereas in DTW-I, each channel

is treated independently with its own warping path. The authors demonstrate the relevance of each

variant through real-world examples of RGB images (i.e., matrices with three channels). Namely,

the authors address the case of uneven color fading in manual illustrations in sixteenth-century

manuscripts; a case where DTW-I is more appropriate as it treats each color separately. Conversely,

in the case of photos that are uniformly faded to sun exposures or scanning artifacts, the authors

show that DTW-D is more appropriate as it corrects for hue shifts across all channels.

Bagnall et al. [5] introduced the UEA archive, one of the largest collections of datasets for MTS

classification. The work also includes an evaluation on Euclidean distance, DTW-D, and DTW-I,

comparing the effects of a single normalization method as well as Nonorm. Unfortunately, due to

the limited range of measures considered and the lack of comprehensive statistical testing, it is

challenging to draw general conclusions from this study about MTS distance measures as a whole.

Shifaz et al. [104] argued that the channel-dependency extension strategies are also applicable to

elastic measures besides DTW. They extended four additional measures to MTS and conducted

evaluations on the UEA archive. Similar to [105], the authors of [104] concluded that there exists

no superior measure or extension strategy that consistently outperforms others.

We challenge these findings by exploring a broader range of measures, normalizations, and

downstream tasks, and by considering parameter tuning to ensure comparison of measures in their

best possible form. Particularly, our study (a) considers measures from seven categories rather than

only lock-step and elastic measures, (b) considers 13 normalization methods (including 5 novel

ones) rather than one, (c) evaluates measures on clustering, anomaly detection, and classification,

and (d) analyzes results in a principled manner, with both pairwise and grouped comparisons,

supported by statistical tests. As such, the study provides a robust evaluation with a more complete

view of the full landscape of MTS distance measures (cf. Table 1). Further details of our findings

are presented in Section 5, with the resulting guidelines detailed in Section 6.

3 Primer on multivariate time series
We will first establish the necessary background and describe the three axes that will form a

structured framework for our comparison of multivariate distance measures; (a) normalization; (b)

temporal models; and (c) channel-dependency models. Normalization is a critical preprocessing

step, which corrects for distortions in the form of scale imbalances and offsets. As we will show

in Section 5.1.1, the choice of normalization methods is non-trivial, as it can have notable impact

on the accuracy of distance measures. The temporal model and channel-dependency model, as

fundamental properties of MTS distance measures, serve as the basis for our measure categorization.

By incorporating these two models, our study enables evaluation at both the level of individual

measures and the level of models. As such, the results can ultimately aid the design of future

measures and the choice between existing ones. We will now establish some key terminology,

definitions, and data assumptions that will be used throughout the paper. We then introduce the

three axes and their role in the comparison of MTS.
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3.1 Background
We consider a MTS as a collection of 𝐶 UTS, or channels, i.e., a real-values matrix with 𝐶 rows;

𝑿 = [𝑋 (1) , 𝑋 (2) , . . . , 𝑋 (𝐶 ) ] ∈ R𝐶×𝑇 , where each row 𝑋 (𝑖 ) = [𝑋 (𝑖 )
1
, 𝑋

(𝑖 )
2
, . . . , 𝑋

(𝑖 )
𝑇

] is an ordered

sequence with length 𝑇 . Accordingly, we consider an MTS dataset as a set of 𝑛 matrices D =

[𝑿1,𝑿2, . . . ,𝑿𝑛] ∈ R𝑛×𝐶×𝑇 . That definition implies that we consider each MTS to have the same

number of channels, and each channel to have the same length. Following standard practices [4,

5, 34, 88, 104, 112], we consider the sampling rates of all time series the same, and therefore, time

stamps are omitted from the notation. To ensure equal lengths and no missing values for all MTS,

certain preprocessing steps were applied to the data (i.e., resampling and imputation), as detailed

in Section 5, in order to create a standardized test bed for our evaluation, consistent with [5].

3.2 Axis #1: Normalization
While resampling and imputation are common preprocessing steps to ensure equal lengths and

no missing values, normalization is a critical preprocessing step to mitigate distortions caused

by differences in scale, variance, or offsets. As for all distortions, these differences can hinder the

identification of similar patterns between time series and are therefore crucial to address before

further analysis. To illustrate the relevance of normalization, consider two examples: (a) two stocks

following similar price patterns but trading at different volumes; and (b) two recordings of the same

song but played at different octaves. Directly comparing the raw values in these cases could lead to

key issues: the first case suffers from a difference in scale, while the second case has a difference in

offset. Although time series samples share similar patterns that are likely relevant for several tasks

(e.g., portfolio management or song recognition), they can still produce large dissimilarity scores

due to the illusion of distortion. This highlights the need for normalization.

Compared with the UTS case, the extra channels of MTS introduce new challenges. On the

one hand, when considering channels generated by different devices or entities, the nature of

the distortions can vary between channels, requiring different corrections to be applied to each

channel independently. On the other hand, this independent normalization strategy overlooks the

interdependencies between channels and may lead to suboptimal performance (further discussed in

Section 3.4). Despite the extensive studies on the normalization of UTS [88], multivariate-specific

normalization techniques remain unexplored. Particularly, existing works on multivariate distances

have (at best) only considered applying Z-score normalization on each channel independently [4,

105], without regard for other methods such as Min-Max scaling or normalization based on the

entire MTS (e.g., normalize with the global mean and standard deviation). Here, we consider a

wide of normalization techniques, and extend them to the multivariate case with two strategies.

We introduce the considered techniques in the context of UTS here, and explain their extension

to the multivariate case in Section 3.4. In the context of UTS, several normalizations have been

proposed throughout the years, each focusing on different types of distortions in the data. We

briefly name 8 normalization techniques here, but refer to [88] for a more detailed description: (a)

Z-score (b) Min-Max (Minmax); (c) Mean (d) Median (e) Unit-length (Unit) (f) Adaptive scaling

(Adaptive) [27]; (g) Sigmoid and (h) Hyperbolic tangent normalization (Tanh). Additionally, we

consider not normalizing the data, which we refer to as Nonorm.

3.3 Axis #2: Temporal Models
The temporal model of a time series distance measure defines how the time dimension of data

is handled in the comparison. This involves the strategy of handling temporal distortions (e.g.,

by aligning the time steps in the original space or constructing a new representation to address

the distortion). In contrast to resampling, imputation, and normalization, temporal misalignments
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Fig. 2. Visualization of the seven temporal models.

are “pairwise distortions;” they only arise in the context of comparing two time series, and are

therefore handled on the fly by the distance measure during the comparison. As such, the temporal

model is a key property of a distance measure, and can be used as the basis for categorization.

Furthermore, as these concepts only regard the time dimension, they are not specific to univariate

or multivariate distance measures. For consistency, we therefore introduce the temporal models in

the context of UTS. The authors of [88] categorize UTS distances into five families of measures;

lock-step, sliding, elastic, kernel, and embedding measures. We adopt this categorization and extend

the taxonomy with two additional families, feature-based and model-based measures, which reflect

recent innovations in the field. Additionally, we introduce the concept of ensemble measures, which

combine the distance scores from multiple base measures to improve the accuracy and robustness

of the comparison. At a high level, lock-step, sliding, and elastic measures focus on handling

temporal distortions in the original space, differing in their freedom to align time points; Kernel,

feature-based, model-based, and embedding measures focus on implicitly or explicitly transforming

the time series to handle distortions. We will review the detailed information in Section 4. The

taxonomy of temporal models is visualized in Figure 2.

3.4 Axis #3: Channel-dependency models
In the multivariate case, questions may arise whether the transformations of normalizations and

temporal models should be derived and performed on the whole MTS, or individually per channel.

For example, in the case of sliding measures, should the optimal shift be derived across channels or

can each channel be shifted independently? This question holds for all normalizations and temporal

models, and determines how measure-specific concepts like scale, optimal shift and warping paths

should be derived and applied. The answer to this question is defined as a channel-dependency
model, and serves as a property of distance measures and normalizations for MTS. We identify

two channel-dependency models; channel-independent and channel-dependent, and provide their

realizations for each normalization and temporal model below.

Channel-independent model. The channel-independent model involves treating the channels

as independent UTS, normalizing and computing distances channel-by-channel. For normalization,

this implies that statistics used in the normalization are computed for each channel independently.

For the temporal model, this implies that temporal distortions are handled independently over

channels, and that representations are derived for each channel. Then, the distances between

channels are aggregated to form a final distance.

Channel-dependent model. The channel-dependent model involves treating the channels as a

single entity, applying normalization and computing distances over all channels simultaneously.
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Note: Warping paths are not shared.

Channel 1

Independent Alignment

MTS A MTS B MTS A MTS B

MTS A Alignment both channels

Dependent Alignment

Channel 2 MTS B

Warping path Channel 1 Warping path Channel 2 Warping path for both channels

Alignment

Alignment

Note: Warping paths are shared.

Fig. 3. Visualization of the alignment and resulting warping paths when utilizing either a channel-independent
(left) or channel-dependent (right) extension of DTW.

This essentially implies that distortions – either temporal or in scale – are assumed to be shared

across all channels. For example, the dependent version of elastic measures aims to find one

global warping path for an entire MTS, rather than individual warping paths for each channel

(Figure 2). In contrast to channel-independent extensions, the channel-dependent extension of

measures is specific to its temporal model. In the next section, we will demonstrate how to extend

a representative measure for each temporal model to be channel-dependent. For normalization

methods, the channel-dependent extension involves rescaling time series based on global statistics

rather than channel-specific ones. For example, channel-dependent Z-score involves computing

the mean and standard deviation over all channels, and subtracting and dividing each channel by

these values. Note that this model is not applicable to all normalizations; for example, Sigmoid

normalization includes no such statistics so it is inherently channel-independent. Only the following

methods have a channel-dependent extension: Z-score, Min-Max, Mean, Median, and Unit-length.

Channel weighting. An additional challenge with multivariate data is controlling the influence

of each channel. This can be relevant in two scenarios; (a) when channels differ in scale, the distance

score might be biased towards specific channels, and (b) when some channels are more important

than others to the task at hand (e.g., only channel is predictive of the class label). Case (a) is a

matter of normalization; both channel-dependent and channel-independent normalizations can

rescale channels to control their impact on the distance. Case (b) is a matter of the distance measure

itself; all temporal models and channel-dependency models provide the conceptual freedom to

weigh channels differently in the distance computation. This, however, always requires some form

of supervision, either by learning weights through ground-truth training data as done by some

embedding measures [41, 115, 118], or through the input of a domain expert, which falls beyond

the scope of this study and is therefore not considered.

4 Multivariate Distance Measures
In this section, we provide more detailed definitions of each temporal model and present an

overview of the measures to be evaluated in Section 5. In view of space, we focus on introducing

representative measures to illustrate the extension of univariate distance measures to a multivariate
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setting. We only discuss temporal models in the context of the channel-dependent model. The

channel-independent versions of measures can be derived by applying the univariate distance

measure to each channel individually, and summing the resulting distances.

Lock-step measures, compare values at corresponding time points between two UTS and

aggregate these differences across time. The lack of temporal alignment makes lock-step measures

applicable to cases where temporal distortions are unlikely to exist in the time series. Due to

the inherent properties of lock-step measures, the channel-independent and channel-dependent

extensions are identical. To illustrate the concept of multivariate lock-step measures, we provide

an example formula for the 𝐿𝑝 distance, defined as:

𝐿𝑝 (X,Y) = 𝑝

√√√ 𝐶∑︁
𝑖=1

𝑇∑︁
𝑗=1

|𝑋 (𝑖 )
𝑗

− 𝑌 (𝑖 )
𝑗

|𝑝 . (1)

In our evaluation, we selected representative measures that demonstrated strong performance

in the univariate case [88], including Euclidean, 𝐿1, Lorentzian, 𝐿1,𝑎𝑣𝑔,∞, Canberra, Chord, Clark,
Emannon4, Jaccard, Soergel, and Topsoe, as detailed in [88].

Sliding measures, shift one time series relative to another to find the alignment that minimizes

distance. To extend sliding measures to the multivariate case in a channel-dependent manner, a

single optimal shift is derived and applied uniformly across all channels. To illustrate this concept,

we consider the Shape-based Distance (SBD) [83]. The channel-dependent SBD (SBD-D) involves

finding the optimal shift 𝑤 only along the time dimension that maximizes the 2D Normalized

Cross-Correlation (NCC2) between X and Y, and substracts that from 1. The computation of NCC2

can be accelerated using 2D Fast Fourier Transform (FFT2) and Inverse FFT (IFFT2) and, thus, the

formula can be expressed in the following form:

𝑁𝐶𝐶2(X,Y) = 𝐼𝐹𝐹𝑇 2(𝐹𝐹𝑇 2(X) ∗ 𝐹𝐹𝑇 2(Y))
| |X| | · | |Y| | (2)

SBD-D(X,Y) = 1 −𝑚𝑎𝑥𝑤 (𝑁𝐶𝐶2𝑤 (X,Y)) (3)

where ∗ represents taking the complex conjugate in the frequency domain. Sliding measures are

particularly useful in cases where time series can suffer from phase shifts. In our evaluation, we

focus exclusively on SBD [83] as the representative sliding measure due to its highly competitive

performance in the evaluation of univariate measures [88].

Elastic measures handle temporal distortions in time series by deriving a non-linear mapping

(i.e., alignment) between time points, minimizing the distance between the aligned series. The

mapping of each time point makes elastic measures very applicable to cases where the temporal

distortions in time series can be complex, i.e., when individual readings can be delayed, repeated, or

missing. With the channel-dependent extension, these mappings are constructed simultaneously

for all channels at each time point, using three atomic operations: diagonal, vertical, and horizontal

movements. Each atomic operation incurs a specific cost, denoted as 𝑐𝐷 , 𝑐𝑉 , and 𝑐𝐻 for diagonal,

vertical, and horizontal movements, respectively. The optimal alignment is determined using

dynamic programming, with the total alignment cost (i.e., distance) being the sum of the selected

movements. Formally, the alignment cost up to time points 𝑖 and 𝑗 for two MTS is defined as:

𝐶𝑜𝑠𝑡 (𝑖, 𝑗) = min


𝐶𝑜𝑠𝑡 (𝑖 − 1, 𝑗 − 1) + 𝑐𝐷 diagonal
𝐶𝑜𝑠𝑡 (𝑖 − 1, 𝑗) + 𝑐𝑉 vertical
𝐶𝑜𝑠𝑡 (𝑖, 𝑗 − 1) + 𝑐𝐻 horizontal

(4)

where the border conditions are specific to the individual measures. The total alignment cost is

then defined as 𝐶𝑜𝑠𝑡 (𝑇1,𝑇2), with 𝑇1 and 𝑇2 the lengths of the two time series. Elastic measures
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vary in the cost functions assigned to each movement type and the constraints they impose on the

alignment process. For instance, in DTW, the cost is calculated as the squared Euclidean distance

between corresponding data points, and the difference between DTW-I and DTW-D is displayed in

Figure 3. In our evaluation, based on elastic measures’ performance in [88], we consider the five

representative measures: DTW [101], Longest Common Subsequence (LCSS) [110], Edit Distance

with Real Penalty (ERP) [23], Time Warp Edit (TWE) [72], and Move-Split-Merge (MSM) [106].

Kernel measures implicitly map the raw time series data to a higher-dimensional space through

using a kernel function. As such, the extension of kernel measures differs according to the base

measures on which the kernel functions are applied. For example, the dependent extension of Shift

Invariant Kernel (SINK) relies on the channel-dependent version of NCC (NCC2). In this work,

we consider four kernel measures: one using a lock-step base (Radial Basis Function (RBF) [30]),

two using an elastic base (global alignment kernels (GAK) [31], Kernel Dynamic Time Warping

(KDTW) [71]), and one using a sliding base (SINK [82]).

Feature-based measures transform a raw time series to a feature vector based on pre-defined

features, e.g., mean, variance, slope, entropy, etc. Feature-based measures differ in the features

used to describe the MTS and the distance measure used to compare the feature vectors. In this

work, we consider two widely adopted feature sets: (a) the CAnonical time series CHaracteristics

set (catch22) [70], and (b) the TSFresh feature set [26]. We also propose two feature-based methods

accordingly, referred to as Catch22 and TSFresh, which both use the Euclidean distance to compare

the feature vectors of two MTS. While conceptually possible, both methods were initially proposed

for UTS, lacking a straightforward extension to incorporate multivariate features (e.g., captur-

ing inter-channel correlations). Therefore, they are inherently channel-independent. Developing

new features to create a channel-dependent variant is beyond our scope as it requires in-depth

understanding of feature contributions to downstream tasks [46, 47].

Model-based measures construct probabilistic models to represent time series – either a single

model for the entire MTS in channel-dependent cases or separate models for each channel in

channel-independent cases – which are then used as proxies for computing distances. Model-based

measures differ in the model used to represent the MTS, and the measure for comparing the models.

In this work, we consider two types of models: Multivariate Gaussian Models (Gauss) and Hidden

Markov Models (HMM) [8], and compare them using the Kullback-Leibler (KL) divergence as a

measure, which has a closed form for Gaussian models and can be approximated for HMMs [43].

Embeddingmeasures project the time series into a latent space for capturing the most important

characteristics, allowing for the calculation of dissimilarity. Embedding measures differ in their

choice of the embedding method. For example, the extension process of Generic Representation

Learning (GRAIL) [82] directly depends on the multivariate SINK, its core kernel function for

representation learning. In this work, we consider and extend five representative embedding

measures: TS2Vec [118] and TLoss [41], two deep learning-based embedding methods, GRAIL [82],

the best-performing embedding method in [88], and PCA similarity factor (𝐷𝑃𝐶𝐴) [115] and Eros

(𝐷𝐸𝑟𝑜𝑠 ) [115], two embedding methods based on PCA projections that are inherently channel-

dependent. TS2Vec and TLoss were transformed to distance functions by taking the Euclidean

distance over the embeddings obtained by the encoder-based models.

Ensemble measures combine the distance scores of multiple measures to improve robustness.

They cannot be classified as a temporal model, but rather as a “meta-model” that combines the

strengths of individual measures. This is achieved by aggregating (e.g., averaging) the distance

scores of the individual measures, optionally with weights assigned to each measure. As the

distances scores of different measures can have varying ranges and distributions, distances are
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Table 2. Parameter spaces for MTS distance measures. 𝑑 denotes the number of input channels for MTS
comparison. Specifically, 𝑑 = 𝐶 for channel-dependent measures (using all channels), and 𝑑 = 1 for channel-
independent measures.

Distance Measure Parameter Range
DTW 𝛿 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 100}

LCSS

𝛿 ∈ {5, 10, 20, 50, 100}
𝜖 ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0} ∗

√
𝑑

MSM c ∈ {0.01, 0.1, 1, 10, 100, 0.5, 5, 50, 500} ∗
√
𝑑

TWE

𝜆 ∈ {0, 0.25, 0.5, 0.75, 1} ∗
√
𝑑

𝜈 ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0}
SINK 𝛾 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 100, 1000}
GAK 𝛾 ∈ {0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 5, 10, 15, 20}

KDTW

𝛾 ∈ {2−15, 2−14, 2−13, 2−12, 2−11, 2−10, 2−9, 2−8, 2−7, 2−6, 2−5
2
−4, 2−3, 2−2, 2−1, 20}

RBF 𝛾 ∈ {−1, 1}
GRAIL 𝛾 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 100, 1000}
TS2Vec Embedding size ∈ {40, 80, 160, 320, 640}
TLoss Embedding size ∈ {40, 80, 160, 320, 640}
𝐷𝑃𝐶𝐴 𝜎2

covered
∈ {50%, 60%, 70%, 80%, 95%, 100%}

normalized before aggregation. In this work, we consider two ensembles: SBD-D + DTW-I and

SBD-D + MSM-I, with Minmax normalization applied to the distance scores before averaging.
1

Time complexities: The differences in the temporal models’ approaches to handling temporality

and distortions lead to varying computational complexities. Namely, lock-step measures, which

process each value in the MTS only once, have a linear complexity with respect to the number

of channels and time steps, 𝑂 (𝐶𝑇 ), making them the most efficient. Sliding measures utilize

FFTs to compute distances efficiently, resulting in a complexity of 𝑂 (𝐶𝑇 log𝑇 ) for SBD-I and
𝑂 (𝐶𝑇 log𝐶𝑇 ) for SBD-D. For elastic measures, computation of the optimal time-alignment worst-

case requires to compare all pairs of time points, resulting in a quadratic complexity of 𝑂 (𝐶𝑇 2)
for both channel-dependent and channel-independent versions. Kernel measures and ensembles

inherit the complexities of their base measures. The complexities of feature-based, model-based, and

embedding measures are highly dependent on the underlying methods used to extract features, fit

models, or learn representations, respectively; and thus do not have a general complexity. Empirical

complexities are investigated and presented in Section 5.4.

5 Evaluation
The purpose of our evaluation is threefold: (a) to evaluate the discriminative power of individual

measures; (b) to analyze what normalization methods, temporal models, and channel dependency

models are best suited for MTS; and (c) to determine whether previous findings on UTS also hold for

the MTS case [88]. With this evaluation, we aim to lay the foundation for future research, paving

the way for a practical handbook to guide the selection of MTS measures for downstream tasks.

Datasets: We utilize the UEA archive for experiments on classification and clustering. The UEA

archive is the largest set of labeled datasets for MTS classification, comprising 30 labeled real-

world datasets from diverse domains, with varying number of channels and lengths [5]. We adopt

the predefined train-test splits, which have been widely used in MTS tasks [4, 74, 100, 104, 105].

Following the author’s recommendation [5], we resample shorter time series to match the length

of the longest for each dataset, and impute missing values using linear interpolation for MTS

1
The min and max distance scores are derived over a set of training MTS.
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comparison. For the task of anomaly detection (AD), we use the TSB-AD-M archive [67], which is

one of the largest collections of datasets for AD on MTS, consisting of 200 real-world time series

with labeled anomalous time points and varying lengths and channels.

Distance Measures:We consider the MTS measures listed in Section 4, and indicate the channel-

dependencymodel of eachmeasure by adding a suffix to themeasure name. For example, 𝑆𝐵𝐷-𝐷 and

𝑆𝐵𝐷-𝐼 denote the channel-dependent and independent variants of multivariate SBD, respectively.

Evaluation framework: In line with prior works [5, 88, 104], we evaluate the performance of

distance measures on classification, clustering, and anomaly detection using kNN-based algorithms

(i.e., 1NN classifier for classification, 𝑘-means for clustering, and a 1NN detector for AD), which

are well-suited to this evaluation for three key reasons [34, 88]: (a) they reflect a similar workflow

to time series similarity search tasks, the primary application of distance measures [37]; (b) they

are parameter-free and straightforward to implement; (c) they solely depend on the discriminative

power of distance measures. Our study includes a parameterization phase, where we determine the

best parameters for each distance measure and dataset, and a performance phase. The performance

phase consists of six analyses, three of which focus on the axes of MTS comparison in the context

of classification (Section 5.1), two focus on the validation of findings in clustering and anomaly
detection (Section 5.2-5.3), and one is a runtime analysis, where we focus on the accuracy-to-runtime

trade-off of the distance measures (Section 5.4).

Parameterization: To ensure comparison of distance measures in their best possible form,

we start by fine-tuning their parameters (where applicable) under two experimental settings:

(i) supervised setting, where the optimal model parameters are selected on the training set of

each dataset using Leave-One-Out Cross-Validation (LOOCV); (ii) unsupervised setting, we derive

a default parameter setting for each distance measure by analyzing which single set of values

performed generally well across all datasets. Our parameterization phase not only incorporates a

broad parameter range, but it also accounts for both channel-dependency models for each measure

when applicable. Furthermore, parameterization was performed across different normalizations,

though optimal parameter values showed to be fairly similar across different normalizations. Note

that for clustering and anomaly detection only the unsupervised setting is considered as both

methods are inherently unsupervised tasks. The parameter ranges for all measures are shown in

Table 2. The default parameters are presented along with the results (e.g., Table 5).

Statistical analysis: We assess the significance of the differences in classification accuracy

between measures, normalization methods, and channel-dependency models using two widely

adopted statistical tests [4, 34, 88, 104]. Specifically, for pairwise comparisons, we employ one-sided

Wilcoxon tests [113] with 𝛼 = 0.05, following the guidelines of [33]. For global comparisons, we

apply the Friedman test [42] followed by a post-hoc Nemenyi test [76] with 𝛼 = 0.1 to determine

the significance of differences (referred to as the Friedman-Nemenyi test). Such global comparisons

are then visualized by critical diagrams (e.g., Figure 4b), which show the average rankings of the

compared methods, with horizontal lines connecting methods that exhibit insignificant differences.

Platform and implementations: We conduct our experiments on a server equipped with

2xAMDEPYC 7713 64-Core processors and 1 TB RAM, running Ubuntu 22.04.3 LTS. All measures are

implemented in Python 3.8.5. We use the hmmlearn library [61] for HMMs, the scipy library [109]

for PCA, and the sktime library [69] for feature-based measures. Experiments for runtime analysis

are evaluated in a single-threaded fashion without use of acceleration libraries such as numba or

Cython, excluding the data preprocessing time. All code used in this work is publicly available [1].

5.1 Task 1: Classification
The following present the evaluation of distancemeasures on classification. The analysis is organized

into three subsections, each focusing on an axes of our taxonomy in Section 3.
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(b) Ranking of normalization methods based on the average of their ranks across
measures and datasets.

Fig. 4. Meta-analysis of normalization methods

5.1.1 Normalization methods
In this section, we consider 13 unique normalizations, along with Nonorm, and assess their effect

on the classification accuracy of multivariate distance measures. Similar to distance measures, the

channel-dependency model of each normalization is indicated by a suffix (e.g., Z-score-I and Z-score-

D). In UTS literature, Z-score normalization has long been regarded as the optimal choice [2, 40, 45].

Paparrizos et al. [88] debunked this misconception for the UTS case. However, previous evaluations

of multivariate distance measures have limited exploration of the impact of normalization methods.

To address this gap, we extend the analysis of [88] to the multivariate case, conducting a meta-

analysis to evaluate whether their findings on normalization apply to MTS as well.

Figure 4a presents the average ranks of normalization methods based on the classification

accuracies across measure-dataset combinations. The results indicate that Z-score-I – the natural

extension of the popular UTS normalization – consistently underperforms compared to other
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normalization methods across the temporal models; it ranks 12th in the overall meta-ranking and

ranks 8th or lower for all temporal models except elastic measures. Our findings confirm and

extend the conclusion of [88] that Z-score is not the best normalization method, showing that

this also holds true for the multivariate case. Additionally, we observe that Nonorm consistently

outperforms other normalization methods; ranking first overall and placing in the top four across

all temporal models except kernel measures. This indicates that normalization methods do not

always offer improvements over the natural baseline of no normalization, as also observed in

previous studies on the UEA archive [100, 104]. In those studies, this finding was interpreted as

a sign that the scales and variances of channels serve as discriminatory factors in classification

tasks, and that normalization removes this information. While we recognize the validity of this

hypothesis, we now also show that channel-dependent normalizations – that should better preserve

this information – also do not significantly improve upon Nonorm. This suggests that the loss

of channel-specific information is not the only factor at play, and that the existing normalization

methods themselves (i.e., designed for UTS) may not be well-suited for MTS data.

To gain deeper insight into the performance of normalization methods, we evaluate the statistical

significance of the differences between the methods using the Friedman-Nemenyi test. The results

(Fig. 4b) reveal that no single method or group of methods performs statistically better than the

others, neither on a global level, nor when considering specific temporal models. This, combined

with the fact that Nonorm ranks first overall, suggests that current normalization methods, which

are direct extensions of methods for UTS, do not significantly impact classification accuracy for

most temporal models. This demonstrates that existing normalization approaches do not generalize

well to the multivariate case, and highlights the need for new MTS-specific normalizations that better
accommodate the multivariate nature of the data. In the current absence of those methods, we will

use Nonorm as the default for the remainder of our analyses.

5.1.2 Temporal models
The objective of the next round of experiments is (a) to identify the best-performing measure

within each temporal model, but also (b) to compare the performance of these temporal models as a

whole. To achieve this, we employ an approach that starts with lock-step measures, comparing each

to a baseline, and based on the results, decide whether to update the baseline before proceeding

to the next temporal model. This method enables a dynamic evaluation, continuously refining

comparisons with a reasonable baseline to achieve accurate and reliable results. We begin with

Euclidean distance as the baseline, since it is the most widely used measure in the literature [88].

5.1.2.1 Lock-step measures. Table 3 presents the pairwise comparison of lock-step measures

under Nonorm based on the Wilcoxon test, using Euclidean distance as the baseline, and their order

is determined by the average ranks across datasets. The results show that three lock-step measures,

𝐿1,𝑎𝑣𝑔,∞, 𝐿1, and Lorentzian, significantly outperform the baseline. This confirms and extends a

key finding from [88], that Euclidean distance is not necessarily the best lock-step measure in

the multivariate case, and that 𝐿1,𝑎𝑣𝑔,∞, 𝐿1, and Lorentzian offer superior alternatives. To identify

the best-performing lock-step measure, we recompute the average ranks for the top-performing

measures, and assess their significance using the Friedman-Nemenyi test. The results (Fig. 5a) show

(a) additional evidence that 𝐿1,𝑎𝑣𝑔,∞ and Lorentzian significantly outperform Euclidean, and (b) that

Lorentzian ranks the highest, making it the new baseline for subsequent comparisons.

5.1.2.2 Sliding measures. Table 4 presents the pairwise comparison of sliding measures with

Lorentzian, all under Nonorm. We observe that only SBD-D significantly outperforms Lorentzian;

SBD-I shows better performance on most datasets but without reaching statistical significance.
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Table 3. Pairwise comparison of lock-step measures with Euclidean under Nonorm, with measures ordered
by their average rank across datasets. ✓, ✗, and ≈ indicate significantly better, worse, or equal performance
compared to the baseline based on the Wilcoxon test (𝛼 = 0.05). “>”, “=”, and “<” indicate how many datasets
the given combination performs better, equal, or worse than the baseline, respectively.

Measure Diff Average Accuracy > = <

𝐿1,𝑎𝑣𝑔,∞ ✓ 0.6321 18 4 8

Lorentzian ✓ 0.6334 20 2 8

Jaccard ≈ 0.6507 15 7 8

𝐿1 ✓ 0.6321 21 2 7

Chord ≈ 0.6261 15 1 14

Topsoe ✗ 0.5589 11 0 19

Soergel ✗ 0.4153 9 1 20

Clark ✗ 0.4462 8 0 22

Canberra ✗ 0.3104 8 1 21

Emanon4 ✗ 0.3246 6 0 24

Euclidean ≈ 0.6264 0 30 0

Table 4. Pairwise comparison of sliding measures with Lorentzian (Nonorm). See Table 3 for descriptions.

Measure Diff Average Accuracy > = <

SBD-D ✓ 0.6817 19 0 11

SBD-I ≈ 0.6520 17 0 13

Lorentzian ≈ 0.6334 0 30 0

(b) Sliding vs. Lorentzian

(c) Elastic vs. SBD-D (Supervised)

(a) Lock-step vs. Euclidean

(d) Elastic vs. SBD-D (Unsupervised)

Fig. 5. Ranking of lock-step, sliding, and elastic measures under Nonorm based on the average of their ranks
across datasets.

These findings are validated through a Friedman-Nemenyi test (Fig. 5b), where both sliding mea-

sures rank higher than Lorentzian, with SBD-D showing statistical significance. These findings

demonstrate that SBD-D’s ability to address global misalignments can increase classification ac-

curacy. Moreover, the superior performance of SBD-D over SBD-I suggests that the additional

flexibility in temporal alignment provided by SBD-I does not always lead to better accuracy and

may result in overly liberal alignments. We explore this difference between channel-dependency

models further in Section 5.1.3. As SBD-D outperformed the previous baseline, Lorentzian, SBD-D

will be used as the new baseline for the following experiment on elastic measures.

5.1.2.3 Elastic measures. We now present a comparison of elastic measures, both in supervised

and unsupervised settings, with SBD-D as the baseline on a downsampled version of the UEA

archive. The reason for downsampling the original archive is that variants of MSM and TWE

were very time-consuming; the classification process exceeded server’s time limit of 7 days on 7
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Table 5. Pairwise comparison of elastic measures against SBD-D (Nonorm). See Table 3 for descriptions.

Measure Parameter Tuning Diff. Average Accuracy > = <
MSM-I LOOCV ✓ 0.6573 20 2 8

𝑐 = 0.5 ≈ 0.6525 18 0 12

DTW-I LOOCV ≈ 0.6570 16 3 11

𝛿 = 100 ≈ 0.6529 16 2 12

𝛿 = 10 ≈ 0.6413 15 2 13

TWE-I LOOCV ✓ 0.6561 21 2 7

𝜆 = 0.5, 𝜈 = 0.01 ≈ 0.6325 13 1 16

MSM-D LOOCV ≈ 0.6384 13 3 14

𝑐 = 0.5 ∗
√
𝑑 ≈ 0.6200 15 2 13

DTW-D LOOCV ≈ 0.6296 13 1 16

𝛿 = 100 ≈ 0.6276 12 2 16

𝛿 = 10 ≈ 0.6237 12 2 16

ERP-D 𝛿 = 100 ≈ 0.6301 14 2 14

LCSS-I LOOCV ≈ 0.6385 16 0 14

𝛿 = 5, 𝜖 = 1.0 ✗ 0.5456 6 0 24

TWE-D LOOCV ≈ 0.6298 13 2 15

𝜆 =
√
𝑑, 𝜈 = 0.0001 ✗ 0.6184 13 3 14

ERP-I 𝛿 = 100 ≈ 0.6400 12 3 15

LCSS-D LOOCV ✗ 0.5969 9 3 18

𝛿 = 10, 𝜖 = 0.5 ∗
√
𝑑 ✗ 0.4981 5 3 22

SBD-D - - 0.6496 0 30 0

different datasets. All datasets that had over 500 MTS in their training/testing size, 500 channels,

or 500 time points per MTS, were downsampled in their respective dimensions, using stratified

sampling, random sampling, and polyphase resampling [48] respectively. The results in Table 5

demonstrate that only MSM-I and TWE-I significantly outperform SBD-D under supervised tuning.
This shows that SBD-D, being parameter-free, is a highly competitive baseline, with most elastic

measures unable to outperform it in either the supervised or unsupervised setting. Furthermore, we

conclude that (a) elastic measures are highly sensitive to parameter settings, with fixed values often

not being optimal across all datasets, and that (b) the ability to handle local temporal distortions

does not necessarily lead to improved accuracy. We also assess the significance of the differences

when considering multiple elastic measures alongside the baseline. Figures 5c-d reinforce previous

findings, showing that MSM-I and TWE-I outperform SBD-D significantly under supervised tuning,

but not in the unsupervised setting. These findings align with those from the univariate case

reported in [88], allowing us to both confirm and extend two key conclusions to the multivariate

setting: elastic measures are not necessarily superior to sliding measures and alternative elastic

methods can outperform DTW in the supervised setting. While tuning parameters is crucial for the

performance of elastic measures, we stress that it substantially increases the computational load as

it requires a grid search over the full parameter range. This cost comes on top of the already high

theoretical complexity of elastic measures, as discussed in Section 4. This computational load may

hinder the scalability and application of elastic measures on large-scale datasets. Further details are

provided in the runtime analysis in Section 5.4. In view of this observation, we retain SBD-D as the

running baseline for the next comparison.

5.1.2.4 Kernel measures. Table 6 shows the performance of kernel measures compared to SBD-D,

evaluated on the downsampled UEA archive discussed in Section 5.1.2.3. We observe here that no

measure is able to significantly outperform SBD-D; only GAK-D and SINK-D are able to match the

performance of SBD-D with and without tuning. KDTW-I and RBF perform significantly worse,

even with supervision. We further observe no statistical significance in a grouped comparison
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(a) Kernel vs. SBD-D (Supervised) (b) Kernel vs. SBD-D (Unsupervised)

Fig. 6. Ranking of kernel measures under Nonorm across UEA datasets, using (a) supervised and (b) unsuper-
vised tuning for their parameters

Table 6. Pairwise comparison of kernel measures under Nonorm normalization with SBD-D as a baseline.
See Table 3 for column descriptions.

Measure Parameter Tuning Diff. Average Accuracy > = <
GAK-D LOOCV ≈ 0.6302 16 2 12

𝜎 = 0.5 ≈ 0.6140 14 2 14

SINK-D LOOCV ≈ 0.6482 10 3 17

𝛾 = 5 ≈ 0.6404 11 3 16

GAK-I LOOCV ≈ 0.6440 12 0 18

𝜎 = 0.05 ✗ 0.5950 6 2 22

KDTW-D LOOCV ≈ 0.6256 12 2 16

𝜎 = 64 ✗ 0.5769 8 2 20

SINK-I LOOCV ≈ 0.6270 9 3 18

𝛾 = 5 ✗ 0.6166 7 1 22

KDTW-I LOOCV ✗ 0.6142 9 0 21

𝜎 = 32 ✗ 0.5372 2 2 26

RBF LOOCV ✗ 0.5845 4 0 26

𝛾 = −1 ✗ 0.5757 3 0 27

SBD-D - - 0.6496 0 30 0

(Fig. 6), where GAK-D ranks slightly higher than SBD-D in the supervised setting but not in the

unsupervised setting. These findings can be attributed to the sensitivity of kernel measures to their

scaling parameter, which influences the similarity between data points in the kernel space and,

consequently, impacts the classifier’s decision boundaries. Naturally, the optimal scaling parameter

is dataset-dependent, requiring tuning for good performance. This sensitivity also explains why

kernel measures are generally paired with classifiers that adaptively learn these decision boundaries,

such as Support Vector Machines (SVM) [29], rather than being used as a standalone measure

with 1NN classifiers. Still, what is particularly surprising is that none of the measures significantly

outperform SBD-D; not even those with an elastic foundation like GAK-D and GAK-I. This comes

in contrast to the UTS cases, which showed that kernel measures – when properly tuned – were

able to improve upon the performance of their base measures [88], e.g., KDTW versus DTW. This

discrepancy may hint that the temporal alignment happening in these measures does not generalize

well to the multivariate case, and either better temporal or channel-dependency models may be

required for optimal performance. We leave this for future investigation.

5.1.2.5 Feature-based, model-based, and embedding measures. Moving on to the final three tem-

poral models, we again observe that these measures perform significantly worse than SBD-D. To

prevent only comparing against an overly strong baseline, we report comparison of these measures

to Euclidean distance on the downsampled archive in Table 7. From the results we observe that

only GRAIL-D, TS2Vec-D, and TS2Vec-I significantly outperform Euclidean distance in both the

supervised and unsupervised settings; all other measures except TLoss, GRAIL-I, and 𝐾𝐿𝐺𝑎𝑢𝑠𝑠 -D

perform significantly worse in the comparison. These observations are reinforced by the global

comparisons in Figure 7, where most methods rank lower than Euclidean distance (though not

significantly), with GRAIL, TLoss, and TS2Vec being the only exceptions. Still, the results also show
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(a) Feature-based vs. Euclidean (b) Model-based vs. Euclidean

(c) Embedding vs. SBD-D and Euclidean (d) Sliding + Elastic Ensembles (Supervised)

Fig. 7. Ranking of different measure families (Nonorm) based on the average of their ranks across datasets.

Table 7. Pairwise comparison of representation-based measures under Nonorm with Euclidean as a baseline.
See Table 3 for column descriptions.

Measure Parameter Tuning Diff. Average Accuracy > = <

E
m
b
e
d
d
i
n
g

TS2Vec-I LOOCV ✓ 0.6538 21 2 7

Embedding length = 320 ✓ 0.6409 19 3 8

TS2Vec-D LOOCV ✓ 0.6559 23 0 7

Embedding length = 320 ✓ 0.6454 19 1 10

GRAIL-D LOOCV ✓ 0.6371 16 2 12

𝛾 = 2 ✓ 0.6337 18 0 12

GRAIL-I LOOCV ≈ 0.6144 15 6 9

𝛾 = 2 ✓ 0.6241 18 2 10

TLoss-I LOOCV ≈ 0.6159 13 1 16

Embedding length = 320 ≈ 0.6088 12 0 18

TLoss-D LOOCV ≈ 0.6129 13 0 17

Embedding length = 320 ≈ 0.6038 12 1 17

𝐷𝐸𝑟𝑜𝑠 - ✗ 0.4842 10 2 18

𝐷𝑃𝐶𝐴 LOOCV ✗ 0.2793 7 0 23

Covered Variance = 95% ✗ 0.3031 10 1 19

F
e
a
t
.

Catch22-I - ✗ 0.4977 10 4 16

TSFresh-I - ✗ 0.4102 10 2 18

M
o
d
e
l

𝐾𝐿𝐺𝑎𝑢𝑠𝑠 -𝐷 - ≈ 0.5191 10 1 19

𝐾𝐿𝐺𝑎𝑢𝑠𝑠 -𝐼 - ✗ 0.4322 11 1 18

𝐾𝐿𝐻𝑀𝑀 -𝐷 ℎ = 2 ✗ 0.4164 9 1 20

𝐾𝐿𝐻𝑀𝑀 -𝐼 ℎ = 2 ✗ 0.4406 8 0 22

Euclidean - - 0.5853 0 30 0

that these measures still no not outrank SBD-D.

For embedding measures, the unexpectedly poor performance from the PCA-based measures

(𝐷𝑃𝐶𝐴 and 𝐷𝐸𝑟𝑜𝑠 ) may be due to the fact that current PCA-based approaches in the MTS context

primarily capture correlations between channels. When these correlations are not strongly indica-

tive of class labels, they may lead to suboptimal performance. Looking at the deep-learning-based

measures, we see that TS2Vec performs a lot better than TLoss. This ranking is in line with the

results in the original paper [118], where TS2Vec outperformed TLoss on the UEA archive when

paired with a supervised SVM classifier. However, it also shows their dependency on such clas-

sifiers to obtain the state-of-the-art performance reported in the original paper, as the obtained

accuracies here are notably lower than those reported in [118] for both methods. Most importantly,

TS2Vec, being one of the state-of-the-art encoder-based deep learning methods, is still worse than

SBD-D in terms of performance (Figure 7), demonstrating that deep-learning-based measures do

not necessarily outperform traditional measures in the MTS domain.
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Fig. 8. Histogram of the number of measures whose channel-dependent variant outperforms the channel-
independent variant, and vice versa, for each dataset. Stars indicate significant differences between the
models according to a two-sided Wilcoxon test (𝑝 < 0.1).

As shown in Table 7 and Figure 7a, we observe the low performance of feature-based measures

compared to Euclidean distance. This can be attributed to two key reasons: (a) Catch22 and TSFresh

primarily focus on global properties of the time series, overlooking critical local information that

the considered embedding measures do capture in their features, and (b) the feature-based measures

included in this study consider only channel-independent features, neglecting channel-dependent

characteristics. Further exploration of these two directions represents a potential future work.

For model-based measures, we note that the considered measures employ models that assume

the time series to be i.i.d samples from a distribution, overlooking the temporal structure critical

to time series classification. Namely, while HMMs can conceptually capture temporal dependen-

cies, the limited number of hidden states (fewer than 5) likely restricts their focus to long-term

trends, missing short-term patterns. We therefore conclude that while model-based approaches are

promising, simple probabilistic models like Gaussian distributions and HMMs are not yet effective

as demonstrated from this study. Future work should therefore investigate utilizing models that

can better capture temporal patterns in time series.

5.1.2.6 Ensemble measures. Finally, we evaluate the ability of ensemble measures to improve

upon the performance of their base measures. Motivated by the findings up to now, we combine

SBD-D with MSM-I and DTW-I to investigate if we can surpass the current state-of-the-art perfor-

mance of supervised MSM-I and unsupervised DTW-I. Our results (Fig. 7d) show that this is not

the case; while combining SBD-D with DTW-I seems to improve upon the performance of DTW-I

alone, the ensemble of SBD-D and MSM-I performs worse than MSM-I alone. This shows that

ensembles are not guaranteed to improve upon the performance of their components, and thus that

careful selection of the ensemble members is crucial. Furthermore, we stress that there currently

exist no principled approach to aggregating distance scores; the current method of averaging and

Minmax scaling is a simple example introduced for this study, though a lot of work remains to be

done in this area to determine the optimal ensembling approach.

5.1.3 Channel-dependency models
We now investigate whether the channel-independent model delivers better performance than

the channel-dependent model. As the impact of normalizations was shown to be insignificant, we

limit ourselves here to the comparison of channel-dependent vs. channel-independent measures
in this section. Comparison of dependency models for normalizations is left for future work,

when normalizations are found that do significantly impact performance. Previous studies have

consistently suggested that the optimal channel-dependency model is data-dependent, as it reflects

the nature of distortions inherent to the dataset [104, 105]. To validate this claim beyond elastic
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Table 8. Pairwise comparison of channel-dependent vs. independent model for different temporal models.

Measures Diff. > = <
All dependent ≈ 180 42 175

Sliding-D ✓ 19 3 8

Elastic-D ✗ 60 14 76

Kernel-D ✓ 53 10 27

Model-based-D ≈ 33 6 21

Embedding-D ≈ 38 8 44

Independent measures ≈ 0 360 0

measures, we conduct a comprehensive analysis across all temporal models. Specifically, our

methodology involves evaluating measures that have channel-dependent and channel-independent

variants, and tallying the number of times each variant outperforms its counterpart for each dataset.

The results in Fig. 8 reveal that there are indeed datasets where the channel-dependent variant

outperforms its counterpart for most measures (i.e., the left-most bars), and vice versa (i.e., the

right-most bars). Furthermore, the star-highlighted bars indicate that the channel-dependent model

significantly outperforms the independent model on six datasets, while the opposite is true for two

datasets. The remaining datasets show no significant difference between the models. Based on our

findings, we validate the claim that the choice of the channel-dependency model is data-dependent.

Therefore, the optimal choice of channel-dependency model should be determined through training

and validation, as suggested by the introduction of adaptive DTW (DTW-A) in [105].

To gain deeper insights into the two channel-dependency models, we perform a pairwise compar-

ison between them for each temporal model. Table 8 shows that there is no statistically significant

difference between the two models in general. However, we do observe significant differences at the

level of temporal models. Specifically, for sliding and kernel measures, the dependent model signifi-

cantly outperforms the independent model, whereas for elastic measures, the channel-independent

model is significantly better. Furthermore, we observe that although no statistical difference is

observed for model-based and embedding measures, the channel-dependent model outperforms its

counterpart in at least half of the comparisons. These findings indicate that, in general, independent

consideration of time series channels is advantageous only for elastic measures. This conclusion

also aligns with our previous findings in Section 5.1.2. This discrepancy between elastic measures

and the other temporal models can be attributed to the types of distortions that they aim to correct

for. Sliding measures, for example, correct for global shifts between time series, which are typically

caused by uncalibrated sensor arrays or different starting points of measurements. Consequently,

those shifts are likely to be the same for all channels, favouring channel-dependent alignment in

case such distortions are present. Elastic measures, on the other hand, correct for local distortions

through time warping, which are generally caused by short-term events or measurement errors like

sensor latency or jitter. The nature of such distortions makes that they are more likely to happen

only in one or a few channels, and not across all channels, which makes that channel-independent

alignment is more suitable and effective in these cases.

5.2 Task 2: Clustering
To extend our findings on classification to other tasks, we perform a study on clustering. For this

experiment, we use Partitioning Around Medoids (PAM) [56], a clustering algorithm that iteratively

updates 𝑘 medoids
2
, which are actual time series from the dataset, and assigns each time series

to its closest medoid until convergence. The method is parameter-free besides the choice of 𝑘 ,

2
The value of 𝑘 is set equal to the number of unique classes in the respective dataset.
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(b) Inference Runtime vs. Time-series Lengths (c) Inference Runtime vs. Number of Channels(a) Accuracy-to-runtime Comparison

Fig. 9. Time efficiency analysis. (a) Accuracy-to-runtime comparison across all categories. Effect of (b) time
series length and (c) the number of channels on the runtime of the top measures per category.

Table 9. Pairwise comparison of lock-step and sliding measures with Euclidean and elastic measures with
SBD-D on the task of clustering on the UEA archive (Nonorm). See Table 3 for column descriptions.

Clustering Method Parameters Diff Avg. RI > = <

SBD-D - ✓ 0.7522 20 0 10

SBD-I - ✓ 0.7408 18 0 12

Lorentzian - ≈ 0.6979 15 3 12

Euclidean - ≈ 0.6647 0 30 0

DTW-D 𝛿 = 100 ≈ 0.7048 17 2 11

DTW-I 𝛿 = 100 ≈ 0.7384 17 0 13

ERP-I 𝛿 = 100 ≈ 0.7296 17 0 13

MSM-D 𝑐 = 0.5 ∗
√
𝑑 ≈ 0.6785 14 0 16

MSM-I 𝑐 = 0.5 ≈ 0.7117 16 0 14

ERP-D 𝛿 = 100 ≈ 0.7001 16 0 14

TWE-I 𝜆 = 0.5, 𝜈 = 0.01 ≈ 0.7119 17 1 12

TWE-D 𝜆 =
√
𝑑, 𝜈 = 0.0001 ✗ 0.6582 11 0 19

LCSS-I 𝛿 = 5, 𝜖 = 1.0 ✗ 0.6638 8 0 22

LCSS-D 𝛿 = 10, 𝜖 = 0.5 ∗
√
𝑑 ✗ 0.6205 6 0 24

SBD-D - ≈ 0.7522 0 30 0

and performance directly depends on the distance matrix of the respective measure, making it an

appropriate proxy to evaluate distance measures. In view of computational feasibility, we focus on

the most prominent lock-step, sliding, and elastic measures under unsupervised parameter settings,

as their comparisons constitute the main findings of our study so far and as clustering is inherently

an unsupervised task. Furthermore, we conduct the evaluation on the UEA archive with Nonorm

and report the average performance over 10 random initializations to mitigate variance.

Table 9 first presents the pairwise comparison of Lorentzian and SBD variants with Euclidean

distance, based on the Rand Index (RI) [98] which measures the similarity between the cluster as-

signment of PAM and the ground truth of the dataset, with a value of 1 indicating perfect agreement

and 0 indicating no agreement. The results reconfirm our finding that sliding measures with SBD-D

significantly outperform lock-step measures. Lorentzian again outperforms Euclidean among the

lock-step measures, though lacking statistical significance in this case. Furthermore, the compari-

son of elastic measures with SBD-D in Table 9 shows that SBD-D ranks first in terms of average

performance, and that again no elastic measure significantly outperforms SBD-D with unsupervised

parameters, which is consistent with the findings from Section 5.1.2.3. In conclusion, the study on

clustering demonstrates the generalizability of our previous findings from the classification task.

5.3 Task 3: Anomaly detection
To further extend our findings to more tasks, we also perform a study on anomaly detection (AD),

which involves computation of distances between MTS subsequences to identify anomalous periods

in a time series. We consider the top-performing lock-step, sliding, and elastic measures under
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Table 10. Pairwise comparison of lock-step, sliding, and elastic measures on the TSB-AD-M archive, using a
1NN anomaly detector. See Table 3 for column descriptions.

AD Methods Diff Avg. VUS-PR > = <

Lorentzian ✗ 0.4238 62 8 130

SBD-D ✗ 0.3720 69 6 125

DTW-D ✗ 0.3909 55 5 140

DTW-I ✗ 0.3694 46 4 150

SBD-I ✗ 0.2469 58 2 140

Euclidean ≈ 0.4413 0 200 0

unsupervised parameter settings. MSM and TWE measures are excluded in this study for their

extremely high computation cost (estimated 3-4 months of computation time). We employ 1NN

detection as our AD algorithm [97], which involves computing for each 𝑤-length subsequence

in an MTS, the closest 𝑤-length subsequence from that same MTS. The distance between them

indicates the anomaly score for each subsequence, where high values indicate greater dissimilarity

from the rest of the time series, suggesting a higher likelihood of an anomaly. In our experiment we

use𝑤 = 100 and a stride of 50 to keep the experiment tractable for expensive distance measures.

Table 10 presents the average Volume Under Surface Precision-Recall (VUS-PR) [80] of the

distance measures, and their pairwise comparison with Euclidean distance through the Wilcoxon

test. We observe a clear discrepancy with the results on classification and clustering: here Euclidean

distance significantly outperforms all other measures. The ranking of measures is almost perfectly

inverse to the rankings observed for classification and clustering. While these results might seem

counterintuitive, they are actually in line with expectations for AD. Namely, where it is imperative

for classification and clustering to ignore or correct for distortions, AD actually focuses on identifying
distortions, as these frequently correspond to anomalies. As lock-step measures do not address

distortions, their distance score will be more sensitive to them, making it a key indicator to identify

an anomaly. Sliding and elastic measures, on the other hand, correct for distortions in their distance

computation, thereby losing critical information. These observations show the importance of

considering the downstream task in measure selection for similarity search, and particularly, to

what case of similarity search this task belongs: the case where distortions should be corrected
for, or the case where distortions are the target. Lastly, we note that these results shed some light

on measures’ behavior on subsequences, but they do not signify subsequence search in general.

Subsequence search is expected to follow the same rules as similarity search on whole time series,

where the optimal choice of measure depends on the role of distortions in the downstream task.

Unfortunately, as there currently exist no ground-truth datasets for MTS subsequence classification

or clustering, this hypothesis cannot be tested as part of this study.

5.4 Runtime analysis
Up to this point, our analysis has focused exclusively on the discriminative power of the measures.

However, in practical applications, the computational efficiency of these measures is equally critical.

Figure 9a presents a comparative analysis of the accuracy-to-runtime performance of the top

measures per category on the task of classification. The reported accuracies are averaged across

all 30 datasets from the downsampled UEA archive [5] under the supervised setting, while the

runtime represents the median inference time over five runs on the AtrialFibrillation dataset (to

accommodate the slower methods). In line with the theoretical analysis in Section 4, we observe

that lock-step measures are generally the fastest, with the top-performing lock-step measure,

Lorentzian, exhibiting a runtime of only 0.004 seconds on AtrialFibrillation dataset, albeit with a

relatively modest accuracy of 0.60. SBD-D and SINK-D, both of which leverage FFT2, also lie on
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Table 11. Guidelines for measure selection.

Available time Best temporal model Best measure
Limited time (< ms) Lock-step Lorentzian

General case (ms - sec) Sliding SBD-D
Unlimited time (days) Elastic MSM-I + tuning

the Pareto frontier, i.e., the sets of methods that achieve the highest accuracy at a given runtime.

These measures outperform lockstep by a significant margin in downstream accuracy, with SBD-D

reaching up to 0.65, while maintaining a relatively low runtime of 0.05 seconds.

Elastic measures do achieve marginally higher accuracies (≈ 0.66), yet this improvement requires

a high computational cost, withMSM-I taking 4982 seconds and DTW-D taking 297 seconds, making

them 4-5 orders of magnitude slower than SBD-D. Again note though that elastic measure and their

kernel variants require parameter tuning in the absence of domain experts, which further multiplies

the runtime proportional to the parameter searching space. For instance, given our parameter

space for MSM, the total runtime would approximate 3 hours (including both parameterization

and inference) on this relatively small dataset, assuming parallel execution of validation runs.

Considering the quadratic complexity of elastic measures, this would result in weeks of runtime on

the largest datasets in the UEA archive, as observed during the execution of our experiments. Lastly,

feature-based, model-based, and embedding measures generally fall below the Pareto frontier with

exception of GRAIL, which remains near the Pareto frontier by benefiting from high inference speed

through dimensionality reduction. Note that TS2Vec and TLoss were excluded from this analysis

due to their dependency on GPU acceleration, making them incomparable to all other CPU-based

measures. Still, we note that their training phase never exceeded 1 hour on the downsampled

datasets, using a single NVIDIA A100 GPU.

Regarding measure scalability, the results in Figure 9b reveal that lock-step, sliding, elastic, and

kernel measures scale accordingly to their theoretical complexity w.r.t. the length of the time

series 𝑇 (cf. Section 4). Furthermore, we see that current model-based measures scale linearly

with the length of the time series, and that GRAIL scales identically to SBD due to their reliance

on FFT2. Regarding the number of channels 𝐶 , Figure 9c reveals that empirical scaling w.r.t. 𝐶

can deviate substantially from the theoretical worst-case complexity. Namely, we find for elastic

measures that while both channel-dependency variants share the same theoretical complexity, the

channel-dependent variants of measures often exhibit substantially lower runtimes. This is possibly

due to the construction of a single warping path, reducing the overhead from resursive method

calls and enabling vectorization to compute the cost of alignments.

In summary, these findings emphasize the importance of selecting temporal and channel-

dependency models that balance accuracy and runtime in practical applications.

6 Guidelines
Based on this evaluation study, we provide the following guidelines for selecting a distance mea-

sure for MTS similarity search when the downstream task requires correction of distortions (e.g.,
classification, clustering, pattern matching):

• In the general case, we recommend SBD-D, a parameter-free sliding measure that handles global

misalignment, providing highly competitive performance with low computational complexity.

• In the case of runtime performance being the primary concern, lock-step measures are the

optimal choice. Among them, Lorentzian outperforms the commonly used Euclidean distance,

making it the recommended choice for performance.

• In the casemaximizing accuracy being the primary concern and runtime is not a constraint,

a channel-independent elastic measure like MSM-I with supervised parameter tuning is the
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best option. However, it is worth noting that this measure requires significant runtime on large

datasets for both parameterization and inference.

• In the case of selecting a channel-dependency model for a given distance measure, we rec-

ommend the channel-independent variant for elastic measures, while the channel-dependent

variant is generally preferred for all other measures.

We summarize these guidelines in Table 11. When the downstream task requires preservation of
distortions (e.g., anomaly detection), we provide the following guideline:

• Choose a measure family that does not correct for distortions. Lock-step measures are the

most efficient and effective choice here, with the recommended choice being Euclidean distance.

These guidelines were obtained by studying distance measures in the context of MTS of equal
length and equal number of channels. Appropriate preprocessing steps are expected to be performed

(prior to analysis) to ensure the applicability of these guidelines.

7 Conclusion
In this paper, we conducted a structured evaluation of MTS distance measures, benchmarking 30

standalone measures across 8 categories and 2 channel-dependency models, utilizing 13 normal-

ization methods on 30 datasets, and evaluating over 3 downstream tasks with proper parameter

tuning. This evaluation was structured through considering the three key axes of MTS comparison:

normalization, temporal model, and channel-dependency model. The results extend findings of

prior works to the multivariate case but also provide insights specific to multivariate distances:

(a) SBD-D offers the best accuracy-to-runtime trade-off across all temporal models, delivering

performance comparable to elastic measures while being significantly faster and parameter-free; (b)

no existing normalization method provides significant benefit over not normalizing, highlighting

the need for MTS-specific normalizations to be developed; and (c) channel-independent variants of

measures prove beneficial only for elastic measures. Through this study, we pave the way for a

practical handbook that guides the selection and design of MTS distance measures.
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