
BURST: Rendering Clustering Techniques Suitable
for Evolving Streams

Apostolos Giannoulidis
Computer Science Department,

Aristotle University of Thessaloniki
Thessaloniki, Greece

agiannous@csd.auth.gr

Anastasios Gounaris
Computer Science Department,

Aristotle University of Thessaloniki
Thessaloniki, Greece
gounaria@csd.auth.gr

John Paparrizos
The Ohio State University and

Aristotle University of Thessaloniki
Thessaloniki, Greece
jopa@csd.auth.gr

ABSTRACT
Identifying patterns or clusters in streaming time-series data is
crucial for decision-making, and underpins applications such as
anomaly detection, forecasting, and data quality monitoring. While
numerous clustering algorithms have been proposed, many remain
unexplored in the time-series domain, and others are unsuitable
for streaming scenarios. Moreover, many effective methods require
prior knowledge of the number of clusters, a significant limita-
tion when dealing with evolving data streams. To address these
challenges, we propose BURST, a principled and general-purpose
framework that enables the application of partition-based cluster-
ing methods in streaming time-series settings. At its core, BURST
integrates AutoKC, a novel, adaptive algorithm for automatically
estimating the number of clusters, enhancing robustness to evolv-
ing time-series streams. Experimental analyses show that BURST
is a robust strategy for real-time time-series clustering, effectively
generalizing across different partitioning methods, and achieving
state-of-the-art performance compared to existing algorithms.

PVLDB Reference Format:
Apostolos Giannoulidis, Anastasios Gounaris, and John Paparrizos. BURST:
Rendering Clustering Techniques Suitable
for Evolving Streams. PVLDB, 18(11): 4054 - 4063, 2025.
doi:10.14778/3749646.3749675

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/agiannoul/BURST-Clustering.

1 INTRODUCTION
Pattern detection in real-time, is essential for monitoring and explor-
ing time-series data, as it underpins unsupervised data exploration
and drives actionable insights. Applications such as anomaly de-
tection [5, 6, 8, 29, 38, 39, 55], predictive maintenance [16, 22, 27],
electricity consumption forecasting [26], and data quality monitor-
ing [19] rely on continuously capturing evolving patterns. As data
continuously flows in dynamic environments, capturing evolving
patterns in real-time demands novel methods that adapt to stream-
ing setting challenges. A key methodology to extract time-series
patterns in real-time is by performing online clustering [58].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749675

Figure 1: Evolving time-series from an industrial case study
alternating between A, B, and C patterns.

Although extensive research has advanced static time-series
clustering methods [2, 20, 25, 32, 37, 42, 47, 50, 51], online time-
series clustering [58], remains significantly under-explored despite
its practical importance on real-world problems. Online clustering
inherits the challenges of streaming applications, such as concept
drift, which leads to the continuous evolution of clusters [21, 56,
66, 67]. Cluster evolution in turn encompasses phenomena where
data gradually transition from one cluster to another, or where an
entire cluster abruptly ceases to appear. Consequently, online time-
series clustering must be robust against concept drifts, through
accommodating cluster merging, deletion, and updates.

Consider, for example, a cold-forming press operation in a smart
factory [22]. In this scenario, sensors continuously record the force
exerted when press contacts a metal strip, generating time-series
signals. As illustrated in Figure 1, force signals exhibit dynamic
behavior, alternating between known patterns (e.g., A and B), and
occasionally introducing new dominant patterns (e.g., pattern C).
Monitoring these evolving patterns is essential for understanding
press operation and enabling predictive maintenance [22]. While
existing state-of-the-art partition-based clustering, such as 𝑘-Shape
[41], effectively discovers time-series patterns in press historical
data, real-world applications require online pattern discovery. In
practice, newly detected patterns are evaluated by experts, while
real-time pattern detection continuously verifies whether the press
is functioning as expected or showing signs of potential faults.

The above example generalizes to many other scenarios where
monitored assets exhibit dynamic behavior, with new patterns con-
tinuously emerging. This evolution limits the effectiveness of static
clustering techniques, which rely solely on historical data, high-
lighting the need for real-time clustering algorithms. While existing
dynamic clustering approaches [58] have made progress in han-
dling evolving data streams, they have not been explicitly designed
neither tested for online clustering on time-series [47].

Motivated by (i) the aforementioned challenges and limitations,
(ii) the real-life need to deal with continuous time-series data,

https://doi.org/10.14778/3749646.3749675
https://github.com/agiannoul/BURST-Clustering
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749675

and (iii) the fact that effective static clustering solutions exist for
time-series, we propose the Batch-Updating Real-time assignment
STrategy (BURST), a general framework for enabling real-time
time-series partition-based clustering. BURST incrementally applies
partition-based clustering methods (e.g., 𝑘-means [32], 𝑘-medoids
[51], 𝑘-Shape [41]) to incoming data batches, enabling effective
clustering through mechanisms to support cluster merging, emer-
gence, and deletion, while also addressing scalability via batch-wise
incremental processing. A common limitation of partition-based
methods is the need to specify the number of clusters (𝑘). We intro-
duce AutoKC, a generic and model-agnostic 𝑘-estimation algorithm
for partition-based clustering methods. Unlike prior approaches
tied to specific algorithms (e.g., hierarchical clustering in [62] or
𝑘-means in [52]), AutoKC estimates 𝑘 in a principled manner by
combining adaptive thresholding with hierarchical cluster merging.
It requires no external information, such as the reference sets used
by gap-statistic methods [57, 62].

Our findings show that BURST can transform static clustering
algorithms like 𝑘-Shape [41], 𝑘-Means [32], and 𝑘-Medoids [51], to
perform effectively in an online setting. We assess the performance
of the BURST framework alongside 22 variants of online clustering
methods on UCR archive time-series datasets, thoroughly evaluat-
ing them on both evolving and stationary time-series streams.

We begin with background knowledge and related work in Sec-
tion 2. Our key contributions are as follows:

• We present BURST, a novel framework for efficient real-
time clustering in evolving data streams (Section 3).

• We propose AutoKC, an automated algorithm for identi-
fying the most representative clusters without requiring a
predefined number of clusters (𝑘) (Section 3.2).

• We evaluate our approach alongside 22 baseline clustering
methods variants presented in Section 4, on both evolving
and stationary time-series streams (Section 5).

• We demonstrate BURST’s generalizability in adapting par-
tition based clustering techniques to real-time time-series
clustering, and discuss its scalability (Section 6).

Finally we conclude and discuss future work in Section 7.

2 BACKGROUND AND RELATEDWORK
Data streams are defined as ordered sequences of measurements,
represented as an evolving sequence of real-valued numbers𝑇𝑖 ∈ R,
where 𝑖 denotes the timestamp at which a particular measurement is
observed. Thesemeasurements are continuously recorded, resulting
in data streams of potentially infinite length. By collecting a fixed
number 𝑙 ∈ N of consecutive measurements, we can form fixed-
sized univariate time-series 𝑇𝑖,𝑙 = {𝑇𝑖 ,𝑇𝑖+1, . . . ,𝑇𝑖+𝑙−1} ∈ R𝑙 . The
resulting time-series can be either overlapping, containing one or
more common timestamps (e.g., for 𝑙 = 10, the time-series 𝑇𝑖,10
and 𝑇𝑖+1,10 share 9 measurements), or non-overlapping, without
having any shared timestamps (e.g., 𝑇𝑖,10 and 𝑇𝑖+10,10). Our goal
is to discover clusters (common patterns) of time-series observed
over time. Clusters representation can be vary depending on the
technique, but commonly in partition-based clustering, a cluster
𝐶𝑖 ∈ 𝐶 (where 𝐶 is the set of all clusters) contain a set of similar
time series (𝑡𝑠 ∈ 𝐶𝑖 |𝑡𝑠 ∈ R𝑙), and is represented by a center 𝑐𝑖 ∈ R𝑙 .

Subsequently, we describe static and online clustering algorithms,
either designed for general vector data or tailored to time-series.

2.1 State-of-the-art Overview
Traditional static clustering algorithms [20, 25, 32, 51] can be
performed over static data to find patterns and groups in (historical)
data. Such well known algorithms, like 𝑘-means [32] and 𝑘-medoids
[51], can be applied to time-series considering them as multidi-
mensional vectors. Another way to apply them is by transforming
time-series to multidimensional vectors through performing feature
extraction, using time-series representations [4, 17, 40], symbolic
approximations [60], or extracting the catch22 [31] features, a fea-
ture set selected after highly comparative time-series analysis [31].
The work in [47] provides a taxonomy of static time-series cluster-
ing methods, categorizing them into deep learning [33], partitional
[32, 41, 51], kernel-based [14, 34], density-based [20], distribution-
based [13], and hierarchical [9] ones. Moreover, [47, 48] evaluates
a plethora of static time-series clustering algorithms, using several
distance measures [15, 18, 44, 46, 49]. Since we are interested in
online clustering, static algorithms could naively used in streams,
by instantiating them over an initial batch of data and then, contin-
uously matching new time-series with the pre-calculated clusters.

Online (real-time) clustering is mainly applied to data streams.
The survey in [58] provides a comprehensive taxonomy of ex-
isting streaming clustering methods [1, 10, 23, 36], categorizing
them based on characteristics such as windowing strategies for
stream data, outlier detection capabilities, and data structures used
to summarize cluster information. However, the specific challenge
of clustering univariate time-series data remains underexplored.
Most existing methods are designed for vector-based data, where
features observed at the same timestamps form multidimensional
points. In our setting, such algorithms can be applied on either raw
time-series data or extracted features from the the time series.

2.2 Static vs. Online Clustering of Time-series
In a static setting, one of the most effective methods for clustering
time-series data is 𝑘-Shape [41]. This method leverages Shape-Based
Distance (SBD), a more robust distance measure [15, 45], to group
similar time series into clusters. However, 𝑘-Shape cannot be ap-
plied to a streaming data. The algorithm computes cluster centroids,
by identifying the time series that minimizes the SBD to all others
within the same cluster. This process requires the full dataset, mak-
ing it infeasible for real-time updates in an evolving data stream.

On the other hand, processing streaming time series can follow
two approaches. The first, batch processing, involves collecting a
fixed number of time series or waiting for a specific time period and
analyzes them as a batch. In contrast, real-time processing [11], as
defined in our work, processes each newly-arrived time series im-
mediately upon observation, without waiting to accumulate a batch,
enabling instant cluster assignment. BURST integrates instant clus-
ter assignment, while periodically refining clusters by processing a
batch of time-series together, making it a hybrid solution.

An attempt to adapt 𝑘-Shape for streaming data is found in
the SAND method [7, 8]. SAND focuses on anomaly detection in
time-series data [28, 30, 43] by applying 𝑘-Shape incrementally
to data arriving in batches. It merges batch-level clusters with

Algorithm 1: BURST
Data: 𝐾𝐶: A static partition-based 𝐾-clustering method
𝐵𝑠 : Batch size (integer)

1 𝐼𝑛𝑖𝑡 ← 𝐹𝑎𝑙𝑠𝑒 // Indicating whether clusters have initialized.

2 𝑀𝑑 ← {} // Metadata

3 𝐶 ← {} // Clusters set

4 𝑇𝑏𝑎𝑡𝑐ℎ ← {} // Current batch of time series

5 foreach 𝑇𝑖,𝑙 ∈ 𝑇 do
6 𝑇𝑏𝑎𝑡𝑐ℎ .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑖,𝑙) // Store data of current batch

7 if 𝐼𝑛𝑖𝑡 then
8 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐴𝑠𝑠𝑖𝑔𝑚𝑒𝑛𝑡 (𝑇𝑖,𝑙 ,𝐶)// Assign cluster

9 if |𝑇𝑏𝑎𝑡𝑐ℎ | ≥ 𝐵𝑠 then // Calculate and merge clusters

10 𝐶,𝑀𝑑 ← 𝐵𝑎𝑡𝑐ℎ𝑈𝑝𝑑𝑎𝑡𝑒 (𝐾𝐶,𝑇𝑏𝑎𝑡𝑐ℎ,𝐶,𝑀𝑑)
11 𝐼𝑛𝑖𝑡 ← 𝑇𝑟𝑢𝑒 ,
12 𝑇𝑏𝑎𝑡𝑐ℎ ← {}

existing clusters to deal with concept drifts, while anomalies are
detected based on cluster weights that quantify cluster activity
levels. Although SAND applies 𝑘-Shape in a streaming setting, it
primarily targets anomaly detection and batch processing rather
than real-time clustering. Critically, SAND for the clustering task
can be seen as the streaming version of 𝑘-Shape, but it does not
support real-time cluster assignment and requires prior knowledge
of the number of clusters. While automated estimation of𝑘 has been
explored in the literature, existing methods either target a single
clustering technique [3], or rely on selecting the best silhouette
score using 𝑘-means as an intermediate step [1], i.e., it is limited to
a single partition-based clustering method and is computationally
intensive. BURST addresses these limitations by enabling real-time
cluster assignment and automated 𝑘 estimation through AutoKC.

3 BURST DESCRIPTION
To address the challenges of applying state-of-the-art clustering
methods in an online setting and handling evolving time-series
data, we introduce BURST, detailed in Algorithm 1. BURST contains
two core functions: (i) real-time cluster assignment and (ii) periodic
batch-based cluster updates. New time series are assigned to clusters
immediately for fast pattern matching, while cluster updates occur
in batches to ensure efficiency. To handle infinite streams without
storing raw data, BURST maintains a compact metadata structure,
𝑀𝑑 , that encodes essential cluster characteristics.

Real-time Cluster Assignment: This task is achieved by using
centroids 𝑐𝑖 calculated by the underlying clustering method. When
a new time series arrives, it is assigned to its nearest cluster centroid.

Cluster Updates. Updating the set of clusters (𝐶𝑖 ∈ 𝐶) in a
streaming context poses challenges, especially when static clus-
tering algorithms like 𝑘-Shape are involved. BURST updates clus-
ters upon receiving each batch of time-series data by applying the
baseline algorithm (e.g., 𝑘-Shape) to the batch. After initialization,
BURST merges the new batch clusters 𝐶𝑛𝑖 ∈ 𝐶𝑛𝑒𝑤 with existing
clusters 𝐶𝑜𝑖 ∈ 𝐶𝑜𝑙𝑑 , based on their similarity and characteristics.
To address the constraints of a streaming setting, BURST avoids
retaining all past time series, while it calculates weights𝑊 for each

Algorithm 2: BatchUpdate
Data: 𝐾𝐶: A static partition-based 𝑘-clustering method
𝑇𝑏𝑎𝑡𝑐ℎ : Batch of time-series data
𝐶𝑜𝑙𝑑 : Existing cluster’s centers
𝑀𝑑 : Meta Data of existing clusters

1 𝐶 ← 𝐴𝑢𝑡𝑜𝐾𝐶 (𝑇𝑏𝑎𝑡𝑐ℎ, 𝐾𝐶)
// Match new clusters with old

2 𝑀𝐶 ← 𝑀𝑎𝑡𝑐ℎ_𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 (𝐶𝑜𝑙𝑑 ,𝐶𝑛𝑒𝑤 ,𝐶𝑠𝑢𝑏𝑠) // MC[j] contain

the clusters from 𝐶𝑛𝑒𝑤 that are matched to 𝐶
𝑗

𝑜𝑙𝑑

3 𝐶𝑚𝑒𝑟𝑔𝑒𝑑 ← {}
4 foreach 𝐶 𝑗

𝑜𝑙𝑑
∈ 𝐶𝑜𝑙𝑑 do // Merge matched clusters

// If old cluster is matched with new batch clusters

5 if 𝑀𝐶 [𝑗] then // merge old with new clusters

6 𝐶𝑚, 𝑀𝑑 ← 𝐾𝐶.𝑚𝑒𝑟𝑔𝑒 (𝑀𝑑,𝐶𝑜𝑙𝑑 𝑗 , {𝐶𝑖𝑛𝑒𝑤 ∈ 𝑀𝐶 [𝑗]})
7 𝐶𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝐶𝑚𝑒𝑟𝑔𝑒𝑑 +𝐶𝑚 // Add merged cluster

8 else
9 𝐶𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝐶𝑚𝑒𝑟𝑔𝑒𝑑 +𝐶

𝑗

𝑜𝑙𝑑
// Retain unmatched

clusters

10 foreach 𝐶𝑖𝑛𝑒𝑤 ∉ 𝑀𝐶 do // For each unmatched cluster

11 𝐶𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝐶𝑚𝑒𝑟𝑔𝑒𝑑 +𝐶𝑖𝑛𝑒𝑤
12 𝑀𝑑 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑒𝑡𝑎𝐷𝑎𝑡𝑎(𝑀𝑑,𝐶𝑖𝑛𝑒𝑤)

// Delete Obsolete Clusters based on weights

13 𝐶𝑚𝑒𝑟𝑔𝑒𝑑 , 𝑀𝑑 ← 𝐷𝑒𝑙𝑒𝑡𝑒𝑂𝑏𝑠𝑜𝑙𝑒𝑡𝑒 (𝐶𝑚𝑒𝑟𝑔𝑒𝑑 , 𝑀𝑑)
14 return 𝐶𝑚𝑒𝑟𝑔𝑒𝑑 , 𝑀𝑑

cluster to measure its relevance to the current data, which are used
to prune outdated clusters, ensuring adaptivity and efficiency.

3.1 Cluster Updating
BURST’s cluster updating involves several steps: automated batch
clustering, matching new to old clusters, merging matches, adding
unmatched clusters, updating weights, and removing obsolete clus-
ters. These steps are summarized in Algorithm 2 and detailed below.

Automated Batch Clustering uses a static clustering method
𝐾𝐶 to find clusters in a batch of time-series 𝑇𝑏𝑎𝑡𝑐ℎ , without re-
quiring a predefined number of clusters (𝑘 parameter). To achieve
that, we propose the AutoKC algorithm, which applies the static
clustering method with a big 𝑘 and then merges redundant clusters
internally. More details on AutoKC are provided in Section 3.2.

Cluster Matching matches the clusters derived from the cur-
rent batch (𝐶𝑛𝑒𝑤) with the existing clusters (𝐶𝑜𝑙𝑑). When a new
batch of time-series arrives, the algorithm calculates clusters for the
batch (𝑇𝑏𝑎𝑡𝑐ℎ). To determine whether a new cluster 𝐶𝑖𝑛𝑒𝑤 matches
an existing cluster 𝐶 𝑗

𝑜𝑙𝑑
, the intra-cluster average distance 𝜏 𝑗 =∑︁

𝑇𝑖,𝑙 ∈𝐶 𝑗

𝑜𝑙𝑑

𝑑𝑖𝑠𝑡 (𝑇𝑖,𝑙 ,𝐶
𝑗

𝑜𝑙𝑑
)/|𝐶 𝑗

𝑜𝑙𝑑
| is used as a threshold. If the dis-

tance between the centers of a new cluster 𝑐𝑖𝑛𝑒𝑤 and an old cluster
𝑐
𝑗

𝑜𝑙𝑑
is smaller than 𝜏 𝑗 , the two clusters are matched. The value of

𝜏 𝑗 is computed in 𝑈𝑝𝑑𝑎𝑡𝑒𝑀𝑒𝑡𝑎𝐷𝑎𝑡𝑎() and stored in𝑀𝑑 . In case of
merging the updated 𝜏 is given by weighted sum of the merged
clusters 𝜏 values, with weights being equal to the size of each cluster.

Merging matched clusters involves updating cluster centers by
combining the existing cluster centers with their corresponding

matched clusters from the new batch. Additionally, unmatched
clusters from the new batch are treated as new clusters, with their
meta-data (e.g., 𝜏 ,𝑊) calculated and added to the cluster set𝐶𝑚𝑒𝑟𝑔𝑒𝑑 .
For matched clusters, new centers are computed using information
from both the old and the new clusters, ensuring that the updated
clusters accurately reflect the latest data.

We use the example of 𝑘-Shape to provide more details regard-
ing this step. 𝑘-Shape solves an optimization problem to derive in
final cluster centers. Specifically, the only component of 𝑘-Shape
optimization that depends on the raw time-series is the matrix
that stores the sum of the dot products between all time-series
within the same cluster (referred to as 𝑆 matrix) [8, 41]. But, when
merging clusters from older batches, we do not have access to
their time-series. To solve that, instead of storing the time series
of previous batches, we store only the matrix 𝑆 ∈ R𝑙×𝑙 for each
cluster, as part of the meta-data, i.e., space requirements remain
constant. Then, for merging two clusters, the 𝑆 matrix is updated
just adding the dot products of time series from the new cluster:
𝑆∗ = 𝑆𝑜𝑙𝑑 +

∑︁
𝑇𝑖 ∈𝐶𝑖

𝑛𝑒𝑤
𝑇𝑖,𝑙 ·𝑇𝑇𝑖,𝑙 . The updated 𝑆 matrix is then used in

the standard 𝑘-Shape procedure to compute the new cluster centers.
Weighting quantifies the relevance of each cluster to the cur-

rent data. Higher weights indicate clusters with greater activity
or importance, while lower weights signify clusters that are be-
coming obsolete. The weight𝑤 𝑗 of a cluster 𝐶 𝑗 is defined as𝑤 𝑗 =

|𝐶 𝑗 |2
𝐷 𝑗 ∗∑︁

𝐶𝑗 ∈𝐶 𝑑𝑖𝑠𝑡 (𝑐𝑖 ,𝑐 𝑗) where 𝑑𝑖𝑠𝑡 is the distance function used for
time series (e.g., SBD for 𝑘-Shape), |𝐶 𝑗 | is the size of the clus-
ter, and 𝐷 𝑗 is a decay factor. The decay factor is computed as:
𝐷 𝑗 = 1 +𝑚𝑎𝑥 (0, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑡 − 𝐵𝑠 − 𝑙𝑎𝑠𝑡 𝑗). Here, 𝑙𝑎𝑠𝑡 𝑗 is the last time-
series index assigned to𝐶 𝑗 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑡 is the index of the most recent
time series, and 𝐵𝑠 is the batch size. Clusters containing recent time
series will have a decay factor of 1, while older clusters will have
larger decay factors, resulting in lower weights. Such weights are
computed for all clusters after the merging step.

Regarding updating the weights of old clusters𝑤𝑜𝑙𝑑 (potentially
merged or not), to ensure the weights reflect long-term cluster
relevance rather than being overly biased by the latest batch, BURST
combines old and new weights using a weighted sum: 𝑤 𝑗 = (1 −
𝛼) ∗𝑤 𝑗

𝑜𝑙𝑑
+ 𝛼 ∗𝑤 𝑗

𝑛𝑒𝑤 where 𝛼 controls the rate of change. Finally
weights are normalized to lie between 0 and 1 after computation.

Cluster Deletion improves the efficiency of the algorithm by
freeing memory occupied by obsolete cluster data. This is impor-
tant in evolving data streams, where a large number of obsolete
patterns can accumulate over time. Since cluster weights quantify
the relevance of clusters to the observed time-series, clusters with
low weights (e.g., below 0.1) are considered no longer significant.
These clusters, i.e., their meta-data, are deleted to optimize resource
usage while ensuring that only relevant clusters are retained.

3.2 Automated k-Clustering with AutoKC
Reflect that automated determination of clusters is a crucial step
for dynamically identifying time-series patterns, eliminating the
need for a user-defined 𝑘 parameter. AutoKC offers such a solution
for partition-based clustering methods.

AutoKC initially performs a static clustering algorithm with a
large initial value of 𝑘 (𝑏𝑖𝑔𝑘), which yields an initial set of clusters

Algorithm 3: AutoKC
Data: 𝐵𝑙 : A set of time series 𝐵𝑙 = {𝑇0,𝑙 , ...,𝑇𝑚,𝑙 }
𝑏𝑖𝑔𝑘 =𝑚𝑎𝑥 (20,

√︁
|𝐵𝑙 |): Big initial k

𝐾𝐶: A static partition-based 𝑘-clustering method
1 𝐶 ← 𝐾𝐶 (𝐵𝑙 , 𝑏𝑖𝑔𝑘) // baseline clustering

2 𝐶𝐿 ← {{𝑐 𝑗 }∀𝐶 𝑗 ∈ 𝐶}// consider centers as clusters

3 𝐻𝐷 ← {},𝑠𝑡𝑒𝑝 ← {𝐶𝐿}// Keep track of merges

4 while |𝐶𝐿 | ≠ 1 do
5 ℎ𝑑, 𝑐𝑙𝑎, 𝑐𝑙𝑏 ← 𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑝𝑎𝑖𝑟 (𝐶𝐿) // Merge distance: hd

6 𝐻𝐷.𝑎𝑝𝑝𝑒𝑛𝑑 (ℎ𝑑)
7 𝐶𝐿 ← 𝐶𝐿 − {{𝑐𝑙𝑎}, {𝑐𝑙𝑏 }} + {𝑐𝑙𝑎, 𝑐𝑙𝑏 }
8 𝑠𝑡𝑒𝑝.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐶𝐿)
9 𝑡ℎ ←𝑚𝑒𝑎𝑛(𝐻𝐷) + 2 ∗ 𝑠𝑡𝑑 (𝐻𝐷)// 2T thresholding

10 𝐻𝐷′ ← {ℎ𝑑 ∀ ℎ𝑑 ∈ 𝐻𝐷 | ℎ𝑑 < 𝑡ℎ}
11 𝑡ℎ′ ←𝑚𝑒𝑎𝑛(𝐻𝐷′) + 2 ∗ 𝑠𝑡𝑑 (𝐻𝐷′)
12 while 𝑡ℎ′ ≠ 𝑡ℎ do
13 𝑡ℎ ← 𝑡ℎ′

14 𝐻𝐷′ ← {ℎ𝑑 ∀ ℎ𝑑 ∈ 𝐻𝐷 | ℎ𝑑 < 𝑡ℎ}
15 𝑡ℎ′ ←𝑚𝑒𝑎𝑛(𝐻𝐷′) + 2 ∗ 𝑠𝑡𝑑 (𝐻𝐷′)

// Optimal center merges are those of the step which produced

the last 𝐻𝐷 ′ merging distance

16 𝐺𝑟𝑜𝑢𝑝𝑠 ← 𝑠𝑡𝑒𝑝 [𝐻𝐷.𝑖𝑛𝑑𝑒𝑥𝑂𝑓 (𝐻𝐷′ [−1])]
17 𝐶𝑓 𝑖𝑛𝑎𝑙 ← {}
18 foreach 𝐺 ∈ 𝐺𝑟𝑜𝑢𝑝𝑠 do // Merge clusters of the same group

19 𝐶𝑚 ← 𝐾𝐶.𝑖𝑛𝑛𝑒𝑟𝑀𝑒𝑟𝑔𝑒 (𝐺𝑐𝑒𝑛𝑡𝑒𝑟𝑠 ,𝐺𝑡𝑠)
𝐶𝑓 𝑖𝑛𝑎𝑙 ← 𝐶𝑓 𝑖𝑛𝑎𝑙 + {𝐶𝑚}

20 return 𝐶𝑓 𝑖𝑛𝑎𝑙

𝐶 . Subsequently, an inner-merging of these clusters is performed
using hierarchical clustering over cluster centers, as outlined in Al-
gorithm 3. Then, the algorithm treats each cluster center 𝑐 𝑗 (which
is a time series) in 𝐶 as an individual cluster. Hierarchical cluster-
ing is then performed iteratively, merging the two closest clusters
at each step and recording the merging distances in the list 𝐻𝐷 .
Cluster distances are calculated using complete linkage (maximum
linkage), which measures the farthest distance between any two
points from the two clusters [35].1 This iterative merging continues
until all clusters are combined into a single cluster, resulting in an
ordered sequence of merging distances stored in 𝐻𝐷 .

To determine the optimal number of clusters, we use the 2𝑇
adaptive thresholding method [61], originally proposed for thresh-
olding outlier scores. This method separates the merging distances
in 𝐻𝐷 into "normal" and "outlier" distances. Specifically, a statis-
tical threshold is calculated as 𝑡ℎ =𝑚𝑒𝑎𝑛(𝐻𝐷) + 2 · 𝑠𝑡𝑑 (𝐻𝐷), and
distances greater than 𝑡ℎ are iteratively excluded from 𝐻𝐷 . The
threshold is recalculated after each iteration until all remaining
distances are below 𝑡ℎ. This iterative process ensures the threshold
is not influenced by outliers. The final threshold 𝑡ℎ determines the
optimal clustering step—corresponding to the last step in which the
merging distance remains below 𝑡ℎ. Finally, clusters within each
group identified by hierarchical clustering are merged. Coming
1Utilizing single linkage resulted in same performance but we leave this topic out of
our scope due to space constraints.

Table 1: Algorithms used for real-time time-series clustering
(22 competitors in total).

Method Need 𝑘 Real-Time Configuration
𝑘-means [32] ✓ Static L2, catch22
𝑘-medoids [51] ✓ Static L2, SBD, catch22

DTC [33] ✓ Static DL, catch22
𝑘-Shape [41] ✓ Static SBD
Clustream [1] ✓ Stream L2, catch22
StreamKM [36] ✓ Stream L2, catch22
MBKmeans [54] ✓ Stream L2, catch22
DbStream [23] ✗ Stream L2, catch22
DenStream [10] ✗ Stream L2, catch22
BirchK [64] ✓ Stream L2, catch22
Birch [64] ✗ Stream L2, catch22

BURSTK 𝑘-Shape ✓ Stream SBD
BURST 𝑘-Shape ✗ Stream SBD

back to the example of 𝑘-Shape, this involves recalculating the 𝑆
matrix using the time-series of each group (denoted as 𝐺𝑡𝑠) and
apply 𝑘-Shape optimization for cluster center calculation [41].

In summary, AutoKC presents a principled and flexible approach
to automated clustering by integrating hierarchical clustering in-
sights with adaptive thresholding into the partition-based cluster-
ing paradigm. By eliminating the need to predefine the number of
clusters and supporting a wide range of 𝑘-based algorithms, Au-
toKC delivers a robust, method-agnostic solution adaptable to both
static and streaming data contexts, with the ability to preserve the
consistency of the original clustering method.

4 BASELINES
The selected baselines originate from two main sources i) online
clustering and ii) static clustering as discussed in Section 2.1.

Online clustering: To cluster streaming time-series, we adopt
classical methods originally designed for vector data. Streaming
clustering methods are extensively reviewed in [58] and include sev-
eral well-established approaches. DenStream [10] is a density-based
method that extends DBSCAN to streaming data by maintaining
and refining micro-clusters over time. Similarly, DBSTREAM [23]
organizes data into micro-clusters but introduces a shared density
graph to improve cluster evolution tracking. CluStream [1] main-
tains micro-clusters while continuously updating their statistical
properties, enabling dynamic adaptation to evolving data distri-
butions. Lastly, StreamLS [36] simplifies streaming clustering by
retaining only cluster centers from batches and iteratively refining
them. All these methods are considered in our evaluation.

Static clustering: We employ state-of-the-art techniques de-
signed for static time-series clustering, following the benchmarking
framework of Odyssey [47]. We select the four highest-performing
methods and adapt them for real-time processing. 𝑘-Shape [41]
leverages SBD for improved time-series similarity measurement.
𝑘-means [32] iteratively assigns time-series to the nearest clus-
ter center and updates the centers as the mean of assigned series.
𝑘-medoids [51] follows a similar approach but selects actual time-
series as cluster centers instead of their means. Deep Temporal
Clustering (DTC) [33] is a deep learning-based approach that jointly
learns feature representations and cluster assignments. To integrate

static clustering methods into our real-time setting, we first com-
pute clusters using the initial batch and subsequently assign newly
observed time-series to the precomputed clusters.

We categorize the clustering techniques used in our evaluation
based on key characteristics, as summarized in Table 1. One distinc-
tion is streaming capability (real-time operation) or static clustering
(operating on the full dataset). Another factor is the need of param-
eter 𝑘 to define the number of clusters. Moreover, some techniques
are distance-independent (e.g., 𝑘-medoids), while others are con-
strained by the properties of their distance functions (e.g., 𝑘-Shape
with SBD and 𝑘-means requiring triangle inequality). Lastly, we
explore clustering after applying catch22 [31] feature extraction on
the time-series rather than directly applied to raw data.

5 EVALUATION
We use the UCR archive time-series datasets [12] to assess the
performance of various clustering approaches. Each dataset consists
of a collection of time-series, normalized using z-score, and tagged
with ground truth classes. These are treated as streams of time-
series data. The UCR time-series benchmark poses a significant
challenge for clustering, as indicated by low overall silhouette scores
(Euclidean: median = 0.03, IQR = [0.00–0.12]; SBD: median = 0.07,
IQR = [0.00–0.23]). To demonstrate the capabilities of clustering
algorithms we categorize the datasets into two main categories:

(1) Not Evolving streams: Time-series streams where the initial
batch (fixed at 10% of the complete dataset) contains at least
one time-series from each class in the dataset.

(2) Evolving streams: Time-series streams, where the initial
batch (10%) does not contain samples from all classes.

Evolving streams are used specifically to evaluate the ability
of clustering methods to discover new clusters over time. In total,
there are 60 evolving and 68 non-evolving data stream.

For a fair evaluation, we further categorize techniques based on
their dependency on prior knowledge of the number of clusters.
Specifically, we evaluate methods that require a predefined number
of clusters 𝑘 (𝐾𝐶) separately from those that do not (𝐴𝐶). Cluster-
ing methods requiring a predefined 𝑘 (𝐾𝐶 methods) are evaluated
with parameter 𝑘 equal to the number of clusters observed in the
initial batch. Within this category, we also include BURSTK, which
represents BURST without the use of AutoKC algorithm.

5.1 Evaluation Setup
In our evaluation, we consider 22 variants of clustering methods,
derived from a combination of online algorithms, static algorithms,
feature transformations, and distance metrics, as presented in Sec-
tion 4. A demonstration of the real-time time-series clustering setup,
using BURST, is shown in Figure 2. For each stream, we segment
the time series into non-overlapping samples of fixed length (𝑙). The
initial 10% of the data is used as a fitting set, which may involve
identifying initial clusters or performing unsupervised training. Af-
terwards, new samples are processed sequentially, with each sample
being assigned a cluster identifier. Depending on the algorithm,
new clusters may be formed over time (e.g. Birch and Clustream).

In our setting, the real-time requirement for clustering algo-
rithms applies only to cluster assignment, meaning that after the
initial batch, each new observation is immediately assigned to a

Figure 2: BURST with AutoKC adapts a static clustering
method for evolving time series, assigning new data in real-
time and updating clusters per batch. The required function-
ality for BURST compatibility is marked by *.

cluster. Beyond cluster assignment, many clustering methods also
include cluster updates. These do not need to occur after every new
time-series sample but can instead be performed in batch mode,
after accumulating a predefined number of samples. For such algo-
rithms, we set the update interval to one-tenth of the data stream
length to ensure periodic refinement while maintaining efficiency.

To assess the performance of clustering and whether they could
accurately discover and identify the existing patterns in the data
stream, we compare the results of clustering with the ground truth
classes of the time-series. We show twometrics, Purity [65], and Ad-
justed Rand Index (ARI) [24] in the manuscript. However, we have
also calculated additional metrics (RI [53] and NMI [63]) that show
similar results to the presented ones and are available along with
our codebase at https://github.com/agiannoul/BURST-Clustering.

5.2 BURST Performance
Figure 3 presents the performance of the𝐾𝐶 and𝐴𝐶 methods across
all time-series datasets using box plots. Additionally, it includes
the performance of the best static clustering method (referred to
as Oracle), applied to all available time-series data statically and
using the correct number of clusters (𝑘). Although Oracle violates
the streaming clustering setting, we include its results to assess
how well dynamic methods perform compared to an ideal scenario
where all data and the correct 𝑘 are provided. For both 𝐾𝐶 and
𝐴𝐶 , we report the best-performing variant among different choices
regarding catch22 feature transformation and distance metric.

Our analysis shows that BURSTK consistently outperforms other
𝐾𝐶 methods in both ARI and Purity, while BURST achieves signif-
icantly higher ARI scores when the number of clusters (𝑘) is not
predefined (𝐴𝐶 methods). The only instance where BURST ranks
second among𝐴𝐶 methods is regarding Purity, where the Birch sur-
passes BURST, even outperforming the Oracle. This performance
discrepancy is due to Birch generating an extremely high number

of clusters, over 20 times the number of real classes in the data. Pre-
dicting a large number of clusters results in high purity, as multiple
time-series from the same original class tend to be grouped together
(for reference, assigning each time-series to a separate cluster yields
a purity of 1). However, this also leads to a low ARI, as the cluster
assignments fail to align well with the true cluster structure. Ad-
justing Birch’s parameters to reduce the predicted-to-actual cluster
ratio lowers purity but does not improve ARI.

Our main emphasis is on cases of evolving patterns and tech-
niques that do not assume predefined number of existing patterns
(i.e. no 𝑘 parameter). Figure 4 top panel, shows the ranking of such
methods (with no need of setting the 𝑘 parameter), when applied on
a) evolving and b) non-evolving datasets. In evolving time seriers,
BURST achieves higher ranking than the other techniques. This also,
holds for non-evolving datasets, where results of BURST are statis-
tically significant better than the remaining dynamic techniques,
and without a statistically significant difference from Oracle.

Concerning the 𝐾𝐶 scenario, we compare the performance of
clustering techniques versus BURSTK (BURST with predefined
𝑘 instead of AutoKC). In Figure 4 bottom panel, we report the
results for the best variant of such methods, on evolving a) and
non-evolving b) datasets. BURSTK achieves the highest ranking
among clustering methods on the former), while only 𝑘-Shape is
better in non-evolving datasets, and without statistically significant
difference from Oracle. Although BURSTK uses a static 𝑘 parameter
(in the 𝐾𝐶 setting), it can result in more than 𝑘 total clusters in the
end, since its mechanism dynamically forms new clusters during
the batch update process. This holds also for Clustream and BirchK.

In summary, the BURST achieves state-of-the-art performance,
consistently ranking first or among the best methods. Interestingly,
well known dynamic clustering techniques, such as DBSTREAM
and DenStream, show poor performance mainly due to the diffi-
culty of tuning their parameters. In our experimental setting, we
performed fine-tuning of parameters on 10 datasets (containing
both evolving and non-evolving datasets), and then, we used this
parametrization across all datasets, to estimate the robustness of
techniques. BURST does not need fine-tuning; the only parameter
is 𝑏𝑖𝑔𝑘 , which does not impact the performance. By contrast, in
methods like DenStreams, the parameter highly influences the per-
formance (e.g., picking the right 𝜖 parameter, that is the maximum
distance between two samples of the same cluster). Moreover, good
parameters for one case, are not guaranteed that are valid in others.

5.3 BURST’s Performance Sensitivity
To better understand when BURST excels or falters, we analyzed
its performance relative to dataset compactness, measured by the
silhouette score, where higher scores indicate more distinct, com-
pact clusters. We selected two subsets from the evaluation datasets:
the 30 with the highest and the 30 with the lowest silhouette scores.
Figure 5 compares BURST with the second-best method, Birch, on
these subsets. BURST performs better on datasets with high silhou-
ette scores, consistently achieving top rankings in both ARI and
Purity. The statistically significant ARI gap with Birch highlights
BURST’s strength in well-clustered data. In contrast, for the low
silhouette score subset, BURST’s performance drops, ARI scores
approach 0, and Birch significantly outperforms BURST in Purity.

https://github.com/agiannoul/BURST-Clustering

Figure 3: Box plots of ARI and Purity performance for best variant of 𝐾𝐶 and 𝐴𝐶 methods, sorted by median, along with
performance of the best statically applied clustering, shown to the right of the dashed vertical line.

Figure 4: Ranking of𝐴𝐶 (top) and𝐾𝐶 (bottom)methods (ARI).

Figure 5: Cluster compactness impact.

Additionally, we conducted an ablation study to assess the con-
tribution of each BURST module. Table 2 shows the impact of re-
placing key components for the top 30 datasets. Removing adaptive
thresholding (replaced by a 2𝜎 rule) or disabling AutoKC (setting
k=2) while allowing the merging step to form new clusters led to
performance drops in both ARI and Purity. Eliminating the merging
mechanism entirely caused new clusters to form in every batch,
significantly increasing the total number of clusters. This led to

Figure 6: BURST performance when applied with variants of
𝑘-means and 𝑘-medoids versus the variant without BURST.

a sharp ARI drop (-45%), while the slight Purity gain is due to
over-segmentation (see Section 5.2).

6 BURST GENERALIZATION
To demonstrate the robustness of the BURST framework, we im-
plement Algorithm 1 using 𝑘-means and 𝑘-medoids as baseline
clustering models. An illustration of the overall process is provided
in Figure 2. BURST initializes clusters using AutoKC on the first
batch. Then, real-time cluster assignment is performed based on
the nearest-center principle. As new batches form, clusters are re-
calculated using AutoKC and merged with previously identified
clusters. BURST performs two types of merging: AutoKC inner
merging (𝐾𝐶.𝑖𝑛𝑛𝑒𝑟𝑀𝑒𝑟𝑔𝑒 () in Algorithm 3) merges clusters within
same batch, while cluster update merging (𝑀𝑎𝑡𝑐ℎ_𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 () in Al-
gorithm 2) combines clusters from the previous and current batch.

Implementing the merging steps requires modifications to the
BURST meta-data structure. For 𝑘-means, 𝐾𝐶.𝑖𝑛𝑛𝑒𝑟𝑀𝑒𝑟𝑔𝑒 () recal-
culates merged cluster centers as the mean of their time-series.
Since previous batch data are unavailable,𝑀𝑎𝑡𝑐ℎ_𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 () uses
meta-data instead of storing all time-series, maintaining only cluster
counts to compute merged centers as their weighted sum.

For𝑘-medoids,𝐾𝐶.𝑖𝑛𝑛𝑒𝑟𝑀𝑒𝑟𝑔𝑒 () updatesmerged cluster centers
by selecting the most central time-series of the merged clusters.
Then,𝑀𝑎𝑡𝑐ℎ_𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 () relies on meta-data, storing each cluster
center’s centrality as |𝐶𝐿𝑗 |

𝑎𝑣𝑔 (𝐷𝑎𝑙𝑙) , where |𝐶𝐿𝑗 | is the cluster size and
𝑎𝑣𝑔(𝐷𝑎𝑙𝑙) is the average distance from the center to all time-series
in the cluster. During the merging process, the center with the
highest centrality is selected as the center of the merged cluster.

Table 2: Impact of replacing BURSTmodules. Arrows indicate
statistically significant changes.

BURST Components ARI Purity
No adaptive thresholding -9 % ↓ -14 %

Without AutoKC -8% ↓ -19%
Without Merging ↓ -45% 6%

Figure 7: Performance of BURST (𝐵_) strategy (with AutoKC)
versus 𝐴𝐶 clustering algorithms.

Figure 8: BURST runtime scalability.

6.1 BURST with k-means and k-medoids
We assess the performance of BURST using 𝑘-means and 𝑘-medoids
as baseline methods, in both𝐾𝐶 and𝐴𝐶 settings. Figure 6 shows the
performance improvement (in the 𝐾𝐶 setting) in terms of ARI and
Purity when the BURST framework is applied to baseline variants.
In all cases, BURST results in more wins (i.e., better performance)
than the baseline methods. Moreover, in all but one case, BURST
leads to statistically significantly better performance. To assess
whether BURST results in statistically significant improvements,
we perform pairwise comparisons (between performance with and
without BURST) using the Wilcoxon test [59], testing whether the
application of BURST yields significantly better results.

We also evaluate the two variants in the 𝐴𝐶 setting, incorpo-
rating the AutoKC algorithm. Figure 7 shows the performance of
𝑘-medoids and 𝑘-means variants with BURST (𝐵_), compared to𝐴𝐶
methods, using both box plots and a critical diagram. The results
highlight the superiority of the BURST framework over traditional
methods. Specifically, BURST with 𝑘-means and 𝑘-medoids per-
forms similarly to BURST employing 𝑘-Shape (referred to simply
as BURST), where all BURST variants ranking at top, without sta-
tistical difference between them.

6.2 Scalability
Figure 8 illustrates the runtime performance of BURST combined
with two baseline methods: 𝑘-Shape (linear time complexity) and 𝑘-
medoids (quadratic time complexity). We evaluate scalability across

three setups: (1) clustering each batch independently, (2) applying
the baseline statically to the full stream, and (3) using BURST.

BURST’s runtime depends on the baseline’s complexity, with
added overhead from computing metadata, merging clusters, and
executing the AutoKC algorithm. The main overhead stems from
computing cluster centrality, which scales linearly with batch size.
Figure 8 a), presents the runtime comparison between BURST along
with baselinemethods (𝑘-Shape in the upper panel and𝑘-medoids in
the lower panel) across varying dataset sizes. For BURST, we report
results with both fixed batch sizes (1k and 3k) and a dynamic batch
size set to 10% of the dataset size, as used in our main evaluation.
Column b) displays the runtime of each method when the dataset
size and batch size are fixed, but the time-series length varies. The
results demonstrate that, for linear-complexity clustering methods
like 𝑘-Shape, BURST introduces only a modest overhead per batch,
leading to overall runtimes that are similar to the static application.
In contrast, for clustering algorithms with quadratic complexity,
such as 𝑘-medoids, BURST can actually improve efficiency. This is
because BURST processes data in smaller batches, thereby reducing
the sample size per iteration. Finally, column c) shows the average
throughput of BURST using 𝑘-Shape and 𝑘-medoids, again across
varying time series lengths. All experiments ran on a single machine
equipped with 16 GB of RAM and an Intel Core i5 processor with
four cores running at 3.20 GHz. In that setting, BURST handles
approximately 630 time series per second for a series length of 52,
around 470 per second for length 159, and about 142 per second for
length 996. The 𝐵_𝐾𝑀𝑒𝑑𝑜𝑖𝑑𝑠 method processes 630 time series per
second for length 52, 500 for length 156, and 225 for length 996.

7 CONCLUSION AND FUTUREWORK
We address the problem of identifying clusters in evolving time
series. While robust solutions exist for static time-series cluster-
ing, the streaming setting requires both incremental approaches
and adaptability to evolving data. To this end, we propose BURST,
which builds upon partition-based clustering algorithms and in-
creases their effectiveness in real-time applications (and thus avoids
re-inventing the wheel) through accounting for cluster merging,
appearance and deletion without the need for setting a predefined
number of clusters. Technically, it introduces a novel combination
of hierarchical clustering and adaptive thresholding in a model-
agnostic manner. Our approach demonstrates state-of-the-art per-
formance in discovering clusters in time series hile remaining scal-
able. To further cover real-worlds cases, in the future we plan to
extend the framework to multi-variate time-series, through incor-
porating distance functions specifically designed for these cases.

ACKNOWLEDGMENTS
The second author was co-funded by SECUR-EU. The SECUR-EU
project funded under Grant Agreement 101128029 is supported by
the European Cybersecurity Competence Center.

REFERENCES
[1] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. 2003. A frame-

work for clustering evolving data streams. In Proceedings of the 29th International
Conference on Very Large Data Bases - Volume 29 (Berlin, Germany) (VLDB ’03).
VLDB Endowment, 81–92.

[2] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. 2015. Time-
series clustering – A decade review. Information Systems 53 (2015), 16–38. https:
//doi.org/10.1016/j.is.2015.04.007

[3] Sahar Ahsani, Morteza Yousef Sanati, and Muharram Mansoorizadeh. 2023. Dy-
namicCluStream: An algorithm Based on CluStream to Improve Clustering Qual-
ity. International Journal of Web Research 6, 2 (2023), 77–87.

[4] Peter Bloomfield. 2000. Fourier Analysis of Time Series: An Introduction. Wiley.
https://doi.org/10.1002/0471722235

[5] Paul Boniol, Ashwin K Krishna, Marine Bruel, Qinghua Liu, Mingyi Huang,
Themis Palpanas, Ruey S Tsay, Aaron Elmore, Michael J Franklin, and John
Paparrizos. 2025. VUS: effective and efficient accuracy measures for time-series
anomaly detection. The VLDB Journal 34, 3 (2025), 32.

[6] Paul Boniol, Qinghua Liu, Mingyi Huang, Themis Palpanas, and John Paparrizos.
2024. Dive into Time-Series Anomaly Detection: A Decade Review. arXiv preprint
arXiv:2412.20512 (2024).

[7] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J Franklin. 2021.
Sand in action: subsequence anomaly detection for streams. Proceedings of the
VLDB Endowment 14, 12 (2021), 2867–2870.

[8] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. 2021.
SAND: streaming subsequence anomaly detection. Proc. VLDB Endow. 14, 10
(jun 2021), 1717–1729. https://doi.org/10.14778/3467861.3467863

[9] Athman Bouguettaya, Qi Yu, Xumin Liu, Xiangmin Zhou, and Andy Song. 2015.
Efficient agglomerative hierarchical clustering. Expert Systems with Applications
42, 5 (2015), 2785–2797. https://doi.org/10.1016/j.eswa.2014.09.054

[10] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. 2006. Density-Based
Clustering over an Evolving Data Stream with Noise. In Proceedings of the Sixth
SIAM International Conference on Data Mining, April 20-22, 2006, Bethesda, MD,
USA, Joydeep Ghosh, Diane Lambert, David B. Skillicorn, and Jaideep Srivastava
(Eds.). SIAM, 328–339. https://doi.org/10.1137/1.9781611972764.29

[11] Yixin Chen and Li Tu. 2007. Density-based clustering for real-time stream data.
In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (San Jose, California, USA) (KDD ’07). Association for
Computing Machinery, New York, NY, USA, 133–142. https://doi.org/10.1145/
1281192.1281210

[12] Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan
Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh.
2019. The UCR time series archive. IEEE/CAA Journal of Automatica Sinica 6, 6
(2019), 1293–1305.

[13] A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum Likelihood from
Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical Society:
Series B (Methodological) 39, 1 (1977), 1–22. https://doi.org/10.1111/j.2517-6161.
1977.tb01600.x arXiv:https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-
6161.1977.tb01600.x

[14] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. 2004. Kernel k-means: spec-
tral clustering and normalized cuts. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Seattle, WA,
USA) (KDD ’04). Association for Computing Machinery, New York, NY, USA,
551–556. https://doi.org/10.1145/1014052.1014118

[15] Jens E d’Hondt, Haojun Li, Fan Yang, Odysseas Papapetrou, and John Paparri-
zos. 2025. A Structured Study of Multivariate Time-Series Distance Measures.
Proceedings of the ACM on Management of Data 3, 3 (2025), 1–29.

[16] Alberto Diez, Nguyen Lu Dang Khoa, Mehrisadat Makki Alamdari, Yang Wang,
Fang Chen, and Peter Runcie. 2016. A clustering approach for structural health
monitoring on bridges. Journal of Civil Structural Health Monitoring 6, 3 (2016),
429–445.

[17] Adam Dziedzic*, John Paparrizos* (*equal contribution), Sanjay Krishnan, Aaron
Elmore, and Michael Franklin. 2019. Band-limited training and inference for
convolutional neural networks. In International Conference on Machine Learning.
PMLR, 1745–1754.

[18] Jens E d’Hondt, Odysseas Papapetrou, and John Paparrizos. 2024. Beyond the
Dimensions: A Structured Evaluation of Multivariate Time Series Distance Mea-
sures. In 2024 IEEE 40th International Conference on Data Engineering Workshops
(ICDEW). IEEE, 107–112.

[19] Lisa Ehrlinger and Wolfram Wöß. 2022. A survey of data quality measurement
and monitoring tools. Frontiers in big data 5 (2022), 850611.

[20] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (Portland, Oregon) (KDD’96). AAAI Press, 226–231.

[21] João Gama, Indrundefined Žliobaitundefined, Albert Bifet, Mykola Pechenizkiy,
and Abdelhamid Bouchachia. 2014. A survey on concept drift adaptation. ACM
Comput. Surv. 46, 4, Article 44 (March 2014), 37 pages. https://doi.org/10.1145/
2523813

[22] Apostolos Giannoulidis, Anastasios Gounaris, Athanasios Naskos, Nikodimos
Nikolaidis, and Daniel Caljouw. 2025. Engineering and evaluating an unsuper-
vised predictive maintenance solution: a cold-forming press case-study. J. Intell.
Manuf. 36, 3 (2025), 2121–2139. https://doi.org/10.1007/S10845-024-02352-Z

[23] Michael Hahsler and Matthew Bolaños. 2016. Clustering data streams based on
shared density between micro-clusters. IEEE transactions on knowledge and data
engineering 28, 6 (2016), 1449–1461.

[24] Lawrence Hubert and Phipps Arabie. 1985. Comparing partitions. Journal of
classification 2 (1985), 193–218.

[25] Leonard Kaufman and Peter J. Rousseeuw. 1990. Finding Groups in Data: An Intro-
duction to Cluster Analysis. John Wiley. https://doi.org/10.1002/9780470316801

[26] Peter Laurinec and Mária Lucká. 2019. Interpretable multiple data streams
clustering with clipped streams representation for the improvement of electricity
consumption forecasting. Data Mining and Knowledge Discovery 33, 2 (01 Mar
2019), 413–445. https://doi.org/10.1007/s10618-018-0598-2

[27] Peng Lin, Bang Zhang, Yi Wang, Zhidong Li, Bin Li, Yang Wang, and Fang
Chen. 2015. Data Driven Water Pipe Failure Prediction: A Bayesian Non-
parametric Approach. In Proceedings of the 24th ACM International on Confer-
ence on Information and Knowledge Management (Melbourne, Australia) (CIKM
’15). Association for Computing Machinery, New York, NY, USA, 193–202.
https://doi.org/10.1145/2806416.2806509

[28] Qinghua Liu, Paul Boniol, Themis Palpanas, and John Paparrizos. 2024. Time-
Series Anomaly Detection: Overview and New Trends. Proceedings of the VLDB
Endowment (PVLDB) 17, 12 (2024), 4229–4232.

[29] Qinghua Liu, Seunghak Lee, and John Paparrizos. 2025. TSB-AutoAD: Towards
Automated Solutions for Time-Series Anomaly Detection. PVLDB 18, 11 (2025),
4364–4379.

[30] Qinghua Liu and John Paparrizos. 2024. The Elephant in the Room: Towards A Re-
liable Time-Series Anomaly Detection Benchmark. In The Thirty-eight Conference
on Neural Information Processing Systems.

[31] Carl H Lubba, Sarab S Sethi, Philip Knaute, Simon R Schultz, Ben D Fulcher, and
Nick S Jones. 2019. catch22: CAnonical Time-series CHaracteristics: Selected
through highly comparative time-series analysis. Data Mining and Knowledge
Discovery 33, 6 (2019), 1821–1852.

[32] J MacQueen. 1967. Some methods for classification and analysis of multivariate
observations. In Proceedings of 5-th Berkeley Symposium onMathematical Statistics
and Probability/University of California Press. University of California Press, 281–
297.

[33] Naveen Sai Madiraju. 2018. Deep temporal clustering: Fully unsupervised learning
of time-domain features. Master’s thesis. Arizona State University.

[34] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2001. On Spectral
Clustering: Analysis and an algorithm. In Advances in Neural Informa-
tion Processing Systems 14 [Neural Information Processing Systems: Natural
and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia,
Canada], Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani
(Eds.). MIT Press, 849–856. https://proceedings.neurips.cc/paper/2001/hash/
801272ee79cfde7fa5960571fee36b9b-Abstract.html

[35] Frank Nielsen. 2016. Hierarchical Clustering. Springer International Publishing,
Cham, 195–211. https://doi.org/10.1007/978-3-319-21903-5_8

[36] Liadan O’Callaghan, AdamMeyerson, RajeevMotwani, NinaMishra, and Sudipto
Guha. 2002. Streaming-Data Algorithms for High-Quality Clustering. In Proceed-
ings of the 18th International Conference on Data Engineering, San Jose, CA, USA,
February 26 - March 1, 2002, Rakesh Agrawal and Klaus R. Dittrich (Eds.). IEEE
Computer Society, 685–694. https://doi.org/10.1109/ICDE.2002.994785

[37] Ioannis Paparrizos. 2018. Fast, scalable, and accurate algorithms for time-series
analysis. Ph.D. Dissertation. Columbia University.

[38] John Paparrizos, Paul Boniol, Qinghua Liu, and Themis Palpanas. 2025. Advances
in Time-Series Anomaly Detection: Algorithms, Benchmarks, and Evaluation
Measures. In SIGKDD.

[39] John Paparrizos, Paul Boniol, Themis Palpanas, Ruey S Tsay, Aaron Elmore, and
Michael J Franklin. 2022. Volume under the surface: a new accuracy evaluation
measure for time-series anomaly detection. Proceedings of the VLDB Endowment
15, 11 (2022), 2774–2787.

[40] John Paparrizos and Michael J Franklin. 2019. GRAIL: efficient time-series
representation learning. Proceedings of the VLDB Endowment 12, 11 (2019),
1762–1777.

[41] John Paparrizos and Luis Gravano. 2016. k-Shape: Efficient and Accurate
Clustering of Time Series. SIGMOD Rec. 45, 1 (jun 2016), 69–76. https:
//doi.org/10.1145/2949741.2949758

[42] John Paparrizos and Luis Gravano. 2017. Fast and Accurate Time-Series Cluster-
ing. ACM Transactions on Database Systems (TODS) 42, 2 (2017), 1–49.

[43] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S Tsay, Themis Palpanas, and
Michael J Franklin. 2022. TSB-UAD: an end-to-end benchmark suite for univariate
time-series anomaly detection. Proceedings of the VLDB Endowment 15, 8 (2022),
1697–1711.

[44] John Paparrizos, Haojun Li, Fan Yang, Kaize Wu, Jens E d’Hondt, and Odysseas
Papapetrou. 2024. A Survey on Time-Series Distance Measures. arXiv preprint
arXiv:2412.20574 (2024).

[45] John Paparrizos, Chunwei Liu, Aaron J. Elmore, and Michael J. Franklin. 2020. De-
bunking Four Long-Standing Misconceptions of Time-Series Distance Measures.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data (Portland, OR, USA) (SIGMOD ’20). Association for ComputingMachinery,

https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1002/0471722235
https://doi.org/10.14778/3467861.3467863
https://doi.org/10.1016/j.eswa.2014.09.054
https://doi.org/10.1137/1.9781611972764.29
https://doi.org/10.1145/1281192.1281210
https://doi.org/10.1145/1281192.1281210
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1977.tb01600.x
https://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1145/1014052.1014118
https://doi.org/10.1145/2523813
https://doi.org/10.1145/2523813
https://doi.org/10.1007/S10845-024-02352-Z
https://doi.org/10.1002/9780470316801
https://doi.org/10.1007/s10618-018-0598-2
https://doi.org/10.1145/2806416.2806509
https://proceedings.neurips.cc/paper/2001/hash/801272ee79cfde7fa5960571fee36b9b-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/801272ee79cfde7fa5960571fee36b9b-Abstract.html
https://doi.org/10.1007/978-3-319-21903-5_8
https://doi.org/10.1109/ICDE.2002.994785
https://doi.org/10.1145/2949741.2949758
https://doi.org/10.1145/2949741.2949758

New York, NY, USA, 1887–1905. https://doi.org/10.1145/3318464.3389760
[46] John Paparrizos, Chunwei Liu, Aaron J Elmore, and Michael J Franklin. 2023.

Querying Time-Series Data: A Comprehensive Comparison of DistanceMeasures.
Data Engineering (2023), 69.

[47] John Paparrizos and Sai Prasanna Teja Reddy. 2023. Odyssey: An Engine Enabling
the Time-Series Clustering Journey. Proc. VLDB Endow. 16, 12 (Aug. 2023),
4066–4069. https://doi.org/10.14778/3611540.3611622

[48] John Paparrizos and Sai Prasanna Teja Reddy. 2025. Time-Series Clustering: A
Comprehensive Study of Data Mining, Machine Learning, and Deep Learning
Methods. Proceedings of the VLDB Endowment 18, 11 (2025), 4380–4395.

[49] John Paparrizos, Kaize Wu, Aaron Elmore, Christos Faloutsos, and Michael J
Franklin. 2023. Accelerating Similarity Search for Elastic Measures: A Study
and New Generalization of Lower Bounding Distances. Proceedings of the VLDB
Endowment 16, 8 (2023), 2019–2032.

[50] John Paparrizos, Fan Yang, and Haojun Li. 2024. Bridging the Gap: A Decade
Review of Time-Series Clustering Methods. arXiv preprint arXiv:2412.20582
(2024).

[51] Hae-Sang Park and Chi-Hyuck Jun. 2009. A simple and fast algorithm for K-
medoids clustering. Expert systems with applications 36, 2 (2009), 3336–3341.

[52] Dan Pelleg and Andrew W. Moore. 2000. X-means: Extending K-means with
Efficient Estimation of the Number of Clusters. In Proceedings of the Seventeenth
International Conference on Machine Learning (ICML ’00). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 727–734.

[53] WilliamM Rand. 1971. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical association 66, 336 (1971), 846–850.

[54] D. Sculley. 2010. Web-scale k-means clustering. In Proceedings of the 19th Inter-
national Conference on World Wide Web (Raleigh, North Carolina, USA) (WWW
’10). Association for Computing Machinery, New York, NY, USA, 1177–1178.
https://doi.org/10.1145/1772690.1772862

[55] Emmanouil Sylligardos, Paul Boniol, John Paparrizos, Panos Trahanias, and
Themis Palpanas. 2023. Choose Wisely: An Extensive Evaluation of Model Selec-
tion for Anomaly Detection in Time Series. Proceedings of the VLDB Endowment
16, 11 (2023), 3418–3432.

[56] Andreas Theissler, Judith Pérez-Velázquez, Marcel Kettelgerdes, and Gordon
Elger. 2021. Predictive maintenance enabled by machine learning: Use cases and
challenges in the automotive industry. Reliability engineering & system safety
215 (2021), 107864.

[57] Robert Tibshirani, Guenther Walther, and Trevor Hastie. 2001. Es-
timating the number of clusters in a data set via the gap statis-
tic. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 63, 2 (2001), 411–423. https://doi.org/10.1111/1467-9868.00293

arXiv:https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9868.00293
[58] Xin Wang, Zhengru Wang, Zhenyu Wu, Shuhao Zhang, Xuanhua Shi, and Li Lu.

2023. Data Stream Clustering: An In-depth Empirical Study. Proc. ACM Manag.
Data 1, 2, Article 162 (June 2023), 26 pages. https://doi.org/10.1145/3589307

[59] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83. http://www.jstor.org/stable/3001968

[60] Fan Yang and John Paparrizos. 2025. SPARTAN: Data-Adaptive Symbolic Time-
Series Approximation. Proceedings of the ACM on Management of Data 3, 3 (2025),
1–30.

[61] Jiawei Yang, Susanto Rahardja, and Pasi Fränti. 2019. Outlier Detection: How
to Threshold Outlier Scores?. In Proceedings of the International Conference on
Artificial Intelligence, Information Processing and Cloud Computing (Sanya, China)
(AIIPCC ’19). Association for Computing Machinery, New York, NY, USA, Article
37, 6 pages. https://doi.org/10.1145/3371425.3371427

[62] Antoine Zambelli. 2016. A data-driven approach to estimating the number
of clusters in hierarchical clustering. F1000Research 5 (2016), 2809. https:
//doi.org/10.12688/F1000RESEARCH.10103.1

[63] Hui Zhang, Tu Bao Ho, Yang Zhang, and Mao Song Lin. 2006. Unsupervised Fea-
ture Extraction for Time Series Clustering Using Orthogonal Wavelet Transform.
Informatica (Slovenia) 30, 3 (2006), 305–319. http://www.informatica.si/index.
php/informatica/article/view/98

[64] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. 1996. BIRCH: an efficient
data clustering method for very large databases. SIGMOD Rec. 25, 2 (June 1996),
103–114. https://doi.org/10.1145/235968.233324

[65] Ying Zhao and George Karypis. 2004. Empirical and Theoretical Comparisons of
Selected Criterion Functions for Document Clustering. Machine Learning 55, 3
(01 Jun 2004), 311–331.

[66] Shuxin Zhong, William Yubeaton, Wenjun Lyu, Guang Wang, Desheng Zhang,
and Yu Yang. 2023. RLIFE: Remaining Lifespan Prediction for E-Scooters.
In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management (, Birmingham, United Kingdom,) (CIKM ’23). Asso-
ciation for Computing Machinery, New York, NY, USA, 3544–3553. https:
//doi.org/10.1145/3583780.3615037

[67] Jiaqi Zhu, Shaofeng Cai, Fang Deng, Beng Chin Ooi, and Wenqiao Zhang. 2023.
METER: A Dynamic Concept Adaptation Framework for Online Anomaly De-
tection. Proc. VLDB Endow. 17, 4 (Dec. 2023), 794–807. https://doi.org/10.14778/
3636218.3636233

https://doi.org/10.1145/3318464.3389760
https://doi.org/10.14778/3611540.3611622
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1111/1467-9868.00293
https://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9868.00293
https://doi.org/10.1145/3589307
http://www.jstor.org/stable/3001968
https://doi.org/10.1145/3371425.3371427
https://doi.org/10.12688/F1000RESEARCH.10103.1
https://doi.org/10.12688/F1000RESEARCH.10103.1
http://www.informatica.si/index.php/informatica/article/view/98
http://www.informatica.si/index.php/informatica/article/view/98
https://doi.org/10.1145/235968.233324
https://doi.org/10.1145/3583780.3615037
https://doi.org/10.1145/3583780.3615037
https://doi.org/10.14778/3636218.3636233
https://doi.org/10.14778/3636218.3636233

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 State-of-the-art Overview
	2.2 Static vs. Online Clustering of Time-series

	3 BURST description
	3.1 Cluster Updating
	3.2 Automated k-Clustering with AutoKC

	4 Baselines
	5 Evaluation
	5.1 Evaluation Setup
	5.2 BURST Performance
	5.3 BURST's Performance Sensitivity

	6 BURST Generalization
	6.1 BURST with k-means and k-medoids
	6.2 Scalability

	7 Conclusion and future work
	Acknowledgments
	References

