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Understanding the decisions made by machine learning models is significant for building trust and enabling
the adoption of these models in real-world applications. Shapley values have emerged as a leading method
for model interpretability, offering precise insights by quantifying each feature’s contribution to predictions.
However, computing Shapley values requires exploring all possible combinations of features, which can be
computationally expensive, especially for high-dimensional data. This challenge has led to the development of
various approximation techniques, often composed of estimation and replacement strategies, to compute the
Shapley values efficiently. Our study focuses on the interpretability of machine learning models for tabular
datasets, one of the most common and widely used data type. However, the abundance of options has created
a substantial gap in determining the most appropriate technique for practical applications. Through this
study, we seek to bridge this gap by comprehensively evaluating Shapley value approximations, covering 8
replacement and 17 estimation strategies across diverse regression and classification tasks. The evaluation is
conducted exclusively on tabular data, leveraging 200 synthetic and real-world datasets, covering a wide range
of model types, from conventional tree-based and linear models to modern neural networks. We focus on
computational efficiency and the consistency of Shapley value estimates in handling high-dimensional feature
spaces. Our findings reveal that traditional sampling-based approaches significantly reduce computational
costs but fail to capture complex feature interactions. On the contrary, model-specific approaches that exploit
the structure of the underlying model consistently outperform model-agnostic techniques, delivering higher
accuracy and faster computations. Through the study, we aim to encourage further research on Shapley value
approximations, advancing data-centric explainable AI.
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1 Introduction
Machine learning (ML) and artificial intelligence (AI) have witnessed significant advances in
recent decades. The deployment of ML models to solve real-world problems has increased due
to their ability to outperform humans in terms of efficiency [140, 147]. The application of ML
models also extends to various domains [51, 77, 89, 105], including healthcare [58, 116, 117] and
criminal justice [39], where decisions must be accurate, fair, and transparent. A viable strategy for
building confidence in machine learning models is interpretability, which refers to understanding
and explaining their decision-making processes. However, as models with increasingly complex
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Fig. 1. Comparison between Ablation study and Shapley values on graduate admissions dataset [91]. Shapley
values offer more detailed explanations by evaluating all possible feature subsets, unlike the Ablation study

architectures, such as deep networks [40, 69, 71], gain prominence, the challenge of interpretability
grows. These black-box architectures make it challenging to trace the specific decisions the models
make. Unfortunately, the pursuit of higher accuracy has often driven a shift towards these more
sophisticated models, further affecting interpretability [29, 43, 50, 107, 129, 153, 160].
In database systems, interpretability [30, 38, 49, 64, 65, 73, 74, 82, 83, 85, 93–96, 106, 112, 114,

118, 125, 130, 134–136, 139, 145, 148, 152, 161, 162, 164] is especially critical in tasks such as query
execution, query optimization, indexing, similarity search, and data cleaning, where understanding
the impact of specific tuples or features on aggregate outcomes is essential. However, the growing
volume of data complicates the selection of relevant data features and the right data size for training.
Redundant data adds noise and makes training expensive, while insufficient data hampers the
model performance. Hence, understanding which features contribute most to a model’s predictions
helps prioritize relevant data, simplifying dataset selection and improving training efficiency and
accuracy. To satisfy this need, Shapley values [81, 137] have emerged as a leading feature explanation
technique for identifying the impact of individual features in a model’s decision-making process.
The concept of Shapley values [137], originally developed in cooperative game theory, was

subsequently adopted to explain machine learning models by modeling the prediction task as a
cooperative game. In this setting, each feature functions as a player in the game, collectively con-
tributing to the prediction task. Estimating feature contributions using Shapley values is analogous
to the conventional Ablation study [55], where a feature is systematically removed to observe
its impact on the model output. However, unlike the Ablation study, Shapley values go beyond
isolating individual features and instead estimate the contribution of a feature across all potential
subsets of the feature set. This exhaustive approach allows Shapley values to provide a thorough
and detailed feature comprehension. Evidently, as illustrated in Figure 1, performing an Ablation
study ignores several critical features and even fails to pinpoint the most influential feature. On the
contrary, Shapley values offer a more granular and accurate comprehension of individual feature
contributions, showcasing their superior interpretability.
Using Shapley values for feature explanations is a straightforward solution. However, this

solution involves two significant drawbacks. The first drawback arises when dealing with absent
features. When considering a subset of the feature set, some features are bound to be missing.
Handling these missing features without skewing the interpretation of feature contributions is
crucial. Various replacement strategies [47, 61, 80, 81, 128, 143, 159] have been proposed to address
this problem, such as imputing missing values or using a surrogate model to capture the behavior
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Table 1. A detailed comparison between the key aspects covered by works on Shapley value approximations.

Strategies evaluated
#

Datasets Analysis

Replacement Estimation Accuracy Runtime Statistical

[23] ✓(3) 1-3 ✓

[33] ✓(8) 3-5 ✓ ✓

[131] ✓(5) -

This
work ✓(8)✓(8)✓(8) ✓(17)✓(17)✓(17) 200 ✓✓✓ ✓✓✓ ✓✓✓

of absent features based on the present features. Another drawback is the exponential complexity
of the Shapley values. Due to its exhaustive nature, computing the Shapley values for all features is
computationally expensive. Numerous estimation strategies [20, 62, 81, 100, 141] have emerged to
efficiently compute the Shapley values in polynomial time, effectively addressing this drawback.
Various Shapley value approximations [1, 4, 20, 24, 32, 47, 52, 80, 81, 88, 100, 141, 143, 150]

develop from the effective combination of an appropriate replacement strategy and a robust
estimation strategy. The abundance of such approximations has motivated the development of
a standardized framework called SHapley Additive exPlanations (SHAP) [81]. Although some of
these approximations [24, 32, 80, 81, 141] are part of the SHAP framework, others [1, 4, 18, 31, 52,
62, 86, 88, 90, 100, 143, 150] continue to exist independently. Additionally, these approximations are
divided into: model-agnostic and model-specific solutions. The model-agnostic solutions [1, 20, 32,
47, 52, 81, 88, 100, 141, 143] are simple and flexible but rely on random sampling, adding variability.
In contrast, the model-specific solutions [4, 24, 80, 150] offer a significantly faster estimation of the
Shapley values by leveraging model properties to mitigate the exponential complexity.
The widespread use of Shapley value approximations demonstrates their reliability as an inter-

pretable method. However, despite the considerable progress made over the decades, a comprehen-
sive evaluation of these approximations is notably absent in the existing literature. The existing
surveys [23, 33, 131] focus primarily on theoretical discussions, performing very limited empirical
evaluations of the various approximation techniques. Our research aims to address this significant
gap by systematically evaluating the consistency, reliability, and scalability of the various Shapley
value approximations. Table 1 presents a comprehensive analysis of the key aspects addressed in
our study relative to existing surveys. In this study, we focus on tabular datasets, specifically for
regression and classification tasks, because they offer well-defined features, allowing for precise
evaluation of Shapley value approximations. Unlike domains such as image, text, or time series,
tabular data minimizes the need for extensive preprocessing or feature engineering, ensuring the
evaluation focuses purely on the accuracy and performance of Shapley value approximations.
We break down the approximation of the Shapley values into two principal dimensions. These

dimensions also serve as a guide for setting up the evaluation framework. The first dimension
involves properly treating missing values with the help of different replacement strategies. We
deploy each replacement strategy against an exhaustive computation of Shapley values. This
evaluation measure will highlight the strengths and weaknesses of replacement strategies, aiding
future research in selecting the most reliable strategy. The second dimension focuses on tractable
estimation strategies, which are crucial for efficiently computing Shapley values. We analyze the
performance of these tractable estimation strategies using established approximation algorithms.We
systematically evaluate 8 distinct replacement strategies and 17 distinct approximation algorithms
across a diverse set of 200 datasets. This comprehensive evaluation enables us to thoroughly assess
the performance and efficacy of individual strategies and the various approximations in estimating
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Shapley values across varied data scenarios. We open-source our code [53, 54] to ensure fairness,
reproducibility, and to encourage further research in this field.
Our analysis reveals that traditional sampling-based approaches significantly reduce computa-

tional costs but lead to higher variance in the Shapley value estimates. Several other estimation
strategies consistently delivered superior performance compared to the conventional sampling
approach. Similarly, in terms of replacement strategies, instance-conditioned methods consistently
capture high-order interactions more accurately than global strategies, offering a more reliable
approach. Furthermore, our study shows that while model-agnostic approximations using suitable
replacement and estimation strategies provide reasonable accuracy and efficiency, model-specific
approaches leveraging the model’s internal structure deliver significantly better results.

We first discuss the related work and the necessary background for the Shapley values (Section 2).
Then, we present our contributions as follows:

• We provide an extensive overview of the various model-agnostic and model-specific approxi-
mation algorithms designed to efficiently estimate Shapley values. (Section 3).

• We present the different evaluation measures tailored to assess the various dimensions of the
Shapley value approximation techniques (Section 4).

• We conduct a comprehensive study on 200 datasets, examining the effectiveness of the
replacement strategies with an exhaustive estimation of Shapley values (Section 5.1).

• We perform a quantitative and a qualitative assessment of 17 distinct model-agnostic and
model-specific methodologies of approximating the Shapley values (Section 5.2).

• We offer guidelines for selecting appropriate Shapley value computation strategies based on
data characteristics, model complexity, and resource availability (Section 6).

Finally, we conclude with the implications of our work (Section 7)

2 PRELIMINARIES AND RELATEDWORK
We first introduce the necessary background relevant to Shapley values (Section 2.1), followed by
an overview of the application of this solution in explaining ML models (Section 2.2). Further, we
introduce the use of Shapley values in databases (Section 2.3), and subsequently, we delve into the
drawbacks of estimating Shapley values and solutions to overcome them (Section 2.4).

2.1 Shapley values in game theory
Shapley values [137, 156] have become increasingly popular in game theory due to their ability to
ensure fair distribution of credit. In a cooperative game setting, where a group of players work
together to receive a payout, a critical concern lies in fairly allocating the payout amongst the
participants. The challenge in the fair allocation of the payout is to estimate the exact contribution
of each player towards attaining the total payout. To tackle the above challenge, Shapley values are
employed as a measure of importance, indicating the significance of each player’s contribution.
To facilitate comprehension of the notion of Shapley values, we briefly overview the process

of estimating the Shapley value for a player playing a cooperative game. Specifically, given a set
of players (𝐷), let us consider a subset (𝑆 ⊆ 𝐷) of the set of all the players. For the remainder
of this paper, we will refer to the subset of players as a coalition. Let the payout attained by the
coalition 𝑆 be 𝑣 (𝑆). Thus, 𝑣 (𝜙) = 0, and 𝑣 (𝐷) is the total attainable payout through the game. Our
goal is to allocate 𝑣 (𝐷) fairly among the members of 𝐷 with the help of the Shapley values. The
difference between payouts attained when player 𝑖 takes part in the coalition game represents the
contribution of player 𝑖 towards 𝑆 . We refer to this contribution as player 𝑖’s marginal contribution
towards the coalition 𝑆 . The total contribution of player 𝑖 is the average marginal contribution of
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player 𝑖 over all possible coalitions 𝑆 ⊆ 𝐷 . Assuming that we know the payouts obtained by each
coalition 𝑆 ⊆ 𝐷 , the Shapley value of player 𝑖 can be defined as follows:

Φ𝑖 =
∑︁

𝑆⊆𝐷\{𝑖 }

|𝑆 |!( |𝐷 | − |𝑆 | − 1)!
|𝐷 |! [𝑣 (𝑆 ∪ {𝑖}) − 𝑣 (𝑆)] (1)

Despite the simplicity of the Shapley values as a solution, they are supported by robust theoretical
properties [137, 156]. The theoretical robustness of the Shapley values has led to their widespread
recognition. Shapley values are relevant in numerous fields other than just cooperative game
theory. Shapley values find significant applications in ML. In the subsequent section, we provide a
comprehensive overview of the utilization of the Shapley values to explain complex ML models.

2.2 Shapley values in machine learning
A fundamental supervised machine learning framework involves training a black-box model 𝑓 on
a dataset consisting of features 𝑥1, . . . 𝑥𝑑 , where 𝑓 makes predictions for unknown instances. To
establish confidence in the predictions made by 𝑓 , 𝑓 must possess a high level of interpretability.
When interpreting a simple model, the most efficient strategy is to utilize the model itself. If 𝑓
is a linear model of the form 𝑓 (𝑥) = 𝑤1𝑥1 + · · · + 𝑤𝑑𝑥𝑑 , (𝑤𝑖 : weight coefficient of feature 𝑥𝑖 in
attaining 𝑓 (𝑥)), then the model representation suffices to generalize individual feature contributions.
However, using complex models such as ensembles, boosting, or deep networks for self-explanation
is not feasible because of their opaque structure.

LIME [128], a widely used approach, leverages the concept of linear models to explain complex
models. LIME offers an approximate explanation of a complex model by squeezing it into an inter-
pretable version that accurately captures the model’s behavior for a specific instance. Specifically,
LIME trains a local surrogate model to explain individual predictions of the original black-box ML
model. However, the prediction capacity of the surrogate model poses a limitation in achieving
predictions that would accurately represent the original model [3, 126]. Therefore, an ideal scenario
demands the utilization of the original model to provide explanations.

The concept of Shapley values helps to meet the aforementioned demand. The prediction task of
the black-box model corresponds to the coalition game. The input features are the players of the
game. Consequently, the objective boils down to explaining an individual prediction by allocating a
Shapley value to each feature, signifying its contribution towards attaining the prediction. Formally,
given a black-box model 𝑓 , an explicand, or the instance to be explained 𝑥𝑒 , feature set 𝐷 , and a
coalition of the feature set 𝑆 ⊆ 𝐷 , the Shapley value of input feature 𝑖 can be expressed as follows:

Φ𝑖 =
∑︁

𝑆⊆𝐷\{𝑖 }

|𝑆 |!( |𝐷 | − |𝑆 | − 1)!
|𝐷 |! [𝑓 (𝑥𝑒

𝑆∪{𝑖 } ) − 𝑓 (𝑥𝑒𝑆 )] (2)

The model prediction of the explicand, denoted as 𝑓 (𝑥𝑒
𝑆
), represents the model prediction when

only the features 𝑖 ∈ 𝑆 are visible to the model. The total contribution of feature 𝑖 is the average
marginal contribution of feature 𝑖 over all possible feature coalitions 𝑆 ⊆ 𝐷 . Therefore, assuming
that we know the model prediction for each of the 2 |𝐷 | feature coalitions, we can compute the
contribution of individual features towards attaining the model prediction. Shapley values are
additive in nature. Analogous to the distribution of the total payout among players in a coalition
game, the Shapley values of distinct features sum up to the model’s prediction. The additivity
attribute enables a thorough scrutiny of the predictions, leading to a deeper insight into the
significance of different features in the model’s decision-making structure.
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Fig. 2. Replacement strategies such as Predetermined Baseline and Distributional Baseline address the
absence of features, eliminating the necessity to train an exponential number of models and mitigating
computational complexity. The Predetermined baseline imputes missing data with zeros or the mean, while
the Distributional baseline samples missing feature values based on specified distributions, such as the
Marginal (independent of explicand) or the Conditional (dependent on explicand).

2.3 Shapley values in databases
The application of Shapley values in the context of databases [7, 8, 37, 49, 59, 63, 66, 67, 79, 82, 84, 85,
125, 161] necessitates a shift in focus from the individual features of data instances to the specific
tuples within the database that influence the outcome of a query. Here, the utility function is defined
not by the predictions of a model but by the results of an aggregate query [7, 8, 37, 66, 67, 78],
which may include operations such as summation, averaging, or counting. The primary challenge
is determining each tuple’s contribution in obtaining the result. For instance, in a database that
holds sales records, a query that calculates the total revenue would allow for determining the
Shapley value for each tuple, reflecting its contribution to the overall revenue. In this scenario,
the utility function corresponds to the total revenue, while the tuples represent the entities whose
contributions are being assessed. Another important application of Shapley values in databases
involves treating tables as players [30, 83, 85, 125, 152], particularly in revenue distribution within
data markets. These markets require collaboration between data owners to generate datasets, and
Shapley values are used to fairly allocate revenue based on each owner’s contribution.

While the focus in databases shifts from features to tuples, the computational challenges remain
similar to those in machine learning. Similar challenges also arise in fields like genomics or finance,
where the interpretation of time series [9, 11, 14, 16, 41, 42, 103, 104, 111, 113, 115, 155] is critical
for downstream tasks [5, 10, 12, 13, 15, 75, 76, 108–110, 119, 144]. Explanation techniques like
TimeSHAP [6], and WindowSHAP [97] efficiently handle such extremely high-dimensional data
with extensive processing. In the above-mentioned domains, efficient sampling and replacement
strategies still play a crucial role in managing the complexity of Shapley value computation. Hence,
our analysis of these strategies provides valuable insights that can be leveraged in data-centric AI
systems and data markets, supporting accurate data valuation and transparent attribution.
Beyond databases, Shapley values are widely used for diverse applications, such as evaluating

model performance by quantifying the contributions of individual data points [154]. They facilitate
subgroup behavior analysis by uncovering patterns in classifier behavior across various subgroups
[121]. In the context of model rankings, Shapley values assist in identifying biased subgroups within
ranking and classification tasks, promoting fairness in machine learning models [57, 120]. Further-
more, in federated learning, Shapley values are employed to assess participants’ contributions to
collaborative learning, ensuring equitable evaluation while preserving data privacy [72]. These
applications highlight the adaptability of Shapley values in delivering interpretable insights across
multiple areas of data science and machine learning.

2.4 Efficient Computation Strategies
The Shapley values appear to offer a straightforward solution for explaining any black-box ML
model. However, this seemingly simple solution comes with a significant drawback. To estimate
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the Shapley values of individual players, one must possess the knowledge of the payouts attained
by each coalition set of the players (Refer Section 2.1 for the underlying assumption of Equation 1).
Similarly, in the context of machine learning, where the objective is to generate predictions, one
must know the model prediction for every possible coalition of the feature set. The original model
trained on a dataset containing all the input features will not be able to generate a prediction for an
arbitrary coalition that may only include a subset of the feature set. Thus, given a feature coalition
𝑆 ⊆ 𝐷 , an explicand 𝑥𝑒 and a black box model 𝑓 trained on input features 𝑥1, . . . , 𝑥𝑑 , the model
prediction of the coalition is defined as 𝑓 (𝑥𝑒

𝑆
) = 𝑓𝑆 (𝑥𝑒𝑆 ), where 𝑓𝑆 is an extension of the original

model trained only on features in the coalition set 𝑆 .
Consequently, the estimation of Shapley values of all features demands training a separate

model [165] for each coalition 𝑆 ⊆ 𝐷 . However, there are 2𝑑 feature coalitions (𝑑 : cardinality of
the feature set 𝐷), and training a distinct model for every coalition can be pretty cumbersome.
Moreover, as the number of features increases, the number of coalitions will grow exponentially,
requiring the training of an exponential number of models. Training andmaintaining an exponential
number of models can be time-consuming, resource-intensive, and impractical. Thus, despite the
straightforwardness and the theoretical robustness of the Shapley values, this computational burden
poses a significant drawback to its application in explanations. Dealing with the exponentially
growing complexity is critical for effectively implementing Shapley values in explaining models.
The following section will provide a succinct overview of various strategies to combat this challenge.

2.4.1 Strategies for handling the absent features: We use the notion of present and absent
features to address the aforementioned computational complexity better. When examining a feature
coalition 𝑆 , the features that form 𝑆 are designated as present features, while the remaining features
are regarded as absent. By effectively handling the values of the absent features, we can eliminate
the requirement of training an exponential number of models. The strategies for handling absent
features can be classified into two categories. Refer to Figure 2 for a description of each category.

• Predetermined Baseline: A modified instance is defined by considering a predetermined
baseline sample, which serves as a reference point for treating the absent features of the
explicand. When given a feature coalition 𝑆 , a predetermined baseline sample 𝑥𝑏 , and an
explicand 𝑥𝑒 , this approach defines the modified instance as follows:

𝑥𝑖 =

{
𝑥𝑒
𝑖

... if 𝑖 ∈ 𝑆

𝑥𝑏
𝑖

... otherwise

Thus, the modified instance is comparable to the explicand, except the features not present in
the coalition are extracted from the predetermined baseline. Now using the baseline sample,
we can approximate the prediction of the coalition-specific extension of the original black
box model 𝑓𝑆 (𝑥𝑒𝑆 ) as follows 𝑓 (𝑥

𝑒
𝑆
, 𝑥𝑏

𝑆
). The most predominant choices for the predetermined

baseline are the all-zeros [124, 133, 159] and the default [36, 128, 143] baseline. As the
name suggests, the all-zeros baseline involves replacing absent feature values with zeros.
This method assumes that the absent feature values have no significant impact on estimating
the Shapley values and can be safely replaced with a neutral value. It is a straightforward,
easy-to-implement solution, especially with large datasets. On the other hand, the default
baseline uses a user-defined sample to replace the absent features. Since we are focusing
on regression-based models, the mean baseline is of concern. The rest of the approaches
[44, 45, 70, 163] are tailored explicitly for computer vision problems and are beyond the scope
of this study. The mean baseline calculates the average of the feature column from the training
dataset and utilizes it to replace the absent features. The mean value replacement technique
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aims to preserve the overall distribution dataset and provides a better approximation of 𝑓𝑆 (𝑥𝑒𝑆 ).

• Distributional Baseline: Instead of relying on a fixed baseline and imputing absent features
with a predetermined value, this approach allows a more flexible and probabilistic treatment
of missing data. This replacement strategy treats the absent features as random variables by
drawing their values from the data distribution. The data distributions are categorized into
two main distributions: the marginal distribution and the conditional distribution.
The marginal distribution handles absent features independent of the present features by
sampling the missing values according to the distribution 𝑝 (𝑋𝑆 ). Consequently, we can
modify the definition of the model prediction as follows:

𝑓𝑆 (𝑥𝑒𝑆 ) ≈ E[𝑓 (𝑥𝑒𝑆 , 𝑋𝑆 )]

Conversely, the conditional distribution addresses absent features by leveraging the present
features. Unlike the marginal distribution, the conditional approach does not assume feature
independence. The absent feature values are drawn according to the conditional distribution
𝑝 (𝑋𝑆 |𝑋𝑆 = 𝑥𝑒

𝑆
), thereby altering the definition in the following manner:

𝑓𝑆 (𝑥𝑒𝑆 ) ≈ E[𝑓 (𝑋 ) |𝑋𝑆 = 𝑥𝑒𝑆 ]

The marginal distribution approach is employed through an empirical strategy [60, 81, 88,
128, 143]. This strategy entails randomly drawing a set of instances from the training data
independent of the explicand and determining the prediction for a particular coalition by
averaging over the sampled set of instances. Using an empirical strategy to handle conditional
distribution involves randomly sampling a set of instances from the training data conditioned
on the present features of the explicand. However, a caveat associated with this approach is
the potential occurrence of an empty set, resulting in inaccurate Shapley value estimates.
To address this concern, there exist several strategies: the Parametric Assumption [47]
assumes that the data follows either a Gaussian or a Copula distribution; the Generative
model [21, 157] trains a deep learning model to predict missing feature values by compre-
hensively learning all the conditional data distributions; the Surrogate model [27, 61] trains
a deep learning model to predict the absent features using the target label of the explicand.
All these strategies use the conditional distribution approach of treating the absent features.

Thus, implementing one of the aforementioned replacement approaches suffices to eliminate
the need to train an exponential number of models. However, handling an exponential number of
coalitions still makes the estimation of Shapley values challenging. In the subsequent section, we
explore a method for mitigating this drawback by employing random sampling techniques.

2.4.2 Tractable estimation strategies: The random sampling approach was the first intuitive
solution to tackle the exponential complexity of computing Shapley values [20, 141]. Randomly
selecting subsets of feature combinations instead of analyzing every possible one significantly
reduces the computational burden while maintaining a comparable explanation quality to that
of exhaustive methods. However, this random sampling approach can introduce variability in
estimates, which can be minimized using more advanced techniques [18, 19, 90, 146]. Beyond
random sampling, several estimation strategies offer polynomial-time solutions for Shapley value
approximation. These include multilinear sampling [100], optimization-based methods [32, 47, 81],
and model-specific solutions [4, 24, 80]. Together with replacement strategies (Section 2.4.1), these
methods form the foundation for efficient Shapley value approximations. The various Shapley
value approximations are summarized in the subsequent section.
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Table 2. A detailed summary of model-agnostic and model-specific Shapley value approximations based on
various estimation and replacement strategies. "M" and "C" denote Marginal and Conditional distribution
replacements, respectively. The "Complexity" column outlines time and space complexities in big-O notation,
while "Approximation Guarantees" indicate theoretical bounds. Notation includes d (features), m (sampled
subsets), k (SGD iterations), L (tree leaves), D (tree depth), n (neural network neurons), and r (reference
samples). The "Usage" column lists implementation languages and marks methods implemented from scratch
with a "✓"; others rely on available GitHub code.

Approaches
Strategies Complexity

Approximation Guarantees Usage
Estimation Replacement Time Space

Exhaustive sampling Exact Separate models O(2𝑑 ) O (2𝑑 ) Gold standard for accuracy Python | ✓

M
od

el
-a
gn

os
ti
c

IME [141] RO Empirical (M) O(𝑚𝑑 ) O (𝑚 + 𝑑 ) O (1/
√
𝑚) convergence rate Python | ✓

CES [143] RO Empirical (C) O(𝑚𝑑 ) O (𝑚 + 𝑑 ) Reduces variance compared to IME Python | ✓

Cohort [88] RO Empirical (C) O(𝑚𝑑 ) O (𝑚 + 𝑑 ) No formal approximation guarantees Python | ✓

MLE [100] MLE Empirical (M) O(𝑚𝑑 ) O (𝑚 + 𝑑 ) O (1/𝑚) convergence rate Python | ✓

Kernel [32] WLS Empirical (M) O(𝑚𝑑2 ) O (𝑚𝑑 ) O (1/𝑚) convergence rate with optimized
sampling

Python

SGD-Shapley [52] WLS Mean O(𝑘𝑑 ) O (𝑑 ) O (1/
√
𝑘 ) convergence with SGD Python

Parametric [47] WLS Gaussian/Copula O(𝑚𝑑2 ) O (𝑑 ) Same as KernelSHAP [32] Python | ✓

Non-Parametric [47] WLS Empirical (C) O(𝑚𝑑2 ) O (𝑚𝑑 ) Same as KernelSHAP [32] Python | ✓

FastSHAP [62] WLS Surrogate model O(𝑚𝑑 ) O (𝑛) Amortized approach for real-time Shapley
value estimation. O(1) : inference time

Python

Linear [24] Linear Empirical (M) O(𝑑 ) O (𝑑 ) Best if features are independent Python

M
od

el
-s
pe

ci
fi
c

Correlated Linear [24] Linear Gaussian O(𝑑2 ) O (𝑑2 ) Assumes Gaussian data distribution Python

Tree interventional [80] Tree Empirical (M) O(𝐿𝐷 ) O (𝐿𝐷 ) Polynomial time exact computation Python

Tree path-dependent [80] Tree Empirical (C) O(𝐿𝐷 ) O (𝐿𝐷 ) Captures feature interactions Python/C++

DeepLIFT [127] Deep All-zeros O(𝑛) O (𝑛) No formal approximation guarantees but
empirically approximates backprop

Python

DeepSHAP [25] Deep Empirical (M) O(𝑛𝑟 ) O (𝑛𝑟 ) Extends DeepLIFT for better accuracy Python

DASP [4] Deep Mean O(𝑛𝑑 ) O (𝑛𝑑 ) Uses uncertainty prop to reduce bias Python

3 Shapley Value Approximations
There are several approximation approaches proposed to make the computation of Shapley val-
ues feasible. These approaches can be broadly classified into model-agnostic and model-specific
approaches. Model-agnostic approaches can be applied to any model regardless of their type. Model-
specific approaches are designed to provide an edge by utilizing that specific model’s properties.
We will now offer a concise overview of each approach category, followed by a comprehensive list
of the approaches falling under each category in Table 2.

3.1 Model-agnostic approximations
3.1.1 Semi Value (SV): The original coalition game, defined using Shapley values, is known as
the SemiValue [99] estimation strategy. The Shapley value of a feature can be computed by averaging
its marginal contribution across all possible feature coalitions, as shown in Equation 1. However,
this strategy still grapples with the issue of handling an exponential number of coalitions. To
tackle this challenge, Castro et al. [20] introduced an alternative method called ApproSemiValue.
This approach involves sampling coalitions based on the probability distribution obtained from
the weight function. Thus, implementing the SemiValue strategy demands sampling of coalitions
according to the distribution: 𝑃 (𝑆) = |𝑆 |!( |𝐷 |− |𝑆 |−1)!

|𝐷 |! . While ApproSemiValue successfully reduces
the time complexity, drawing coalitions according to the probability distribution 𝑃 (𝑆) is quite
challenging. Moreover, this method does not offer any solution for handling the absent features.
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Fig. 3. Shapley values, an additive local feature attribution technique central to Weighted Least Squares
(WLS) estimation strategy. In this illustration, the instance is composed of 3 features. An individual model
prediction is expressed as a sum of the average model output and the Shapley values.

Local Shapley (L- Shapley) and Connected Shapley (C- Shapley) [26] are two approaches
based on the SemiValue estimation strategy. These approaches are explicitly tailored for structured
data like images with significant spatial correlation and, hence, are outside of the scope of our
study. Apart from L-Shapley and C-Shapley, no approximation utilizes the SemiValue strategy.

3.1.2 Random Order (RO): The initial approach to calculating the Shapley values incorporates
a weight function assigned to each coalition. The size of the coalition determines the value of
this weight function. However, we can eliminate the need for a weight function by modifying
the solution to work with permutations of features instead of feature subsets. Consequently, the
modified solution can be formulated in the following manner:

Φ𝑖 =
1

|𝐷 |!
∑︁

𝜋∈Π (𝐷 )
(𝑣 [𝑃𝑟𝑒𝜋 (𝑖) ∪ {𝑖}] − 𝑣 [𝑃𝑟𝑒𝜋 (𝑖)]) (3)

In the above expression, Π(𝐷) represents the set of all permutations of the feature set 𝐷 . 𝑃𝑟𝑒𝜋 (𝑖)
denotes the set of features preceeding feature 𝑖 in a specific permutation of features 𝜋 ∈ Π(𝐷).
The marginal contribution of feature 𝑖 towards the permutation 𝜋 is the difference in the model
predictions when the feature 𝑖 is included in 𝑃𝑟𝑒𝜋 (𝑖). Now, since there are |𝐷 |! total permutations,
the total contribution of a feature is averaged over all the permutations instead, eliminating the
concept of the weight function from Equation 1.
With this modified definition, the focus shifts from randomly sampling subsets of features to

randomly sampling permutations from the set of all permutations of the feature set. This estimation
technique for the Shapley values is referred to as Random Order [92, 137]. Various approaches,
including IME (Interactions-based Method for Explanation) [141], CES (Conditional Expec-
tations Shapley) [143], Shapley Cohort refinement [88], and Surrogate models [1] utilize
this technique in combination with one of the replacement strategies from Section 2.4.1.

3.1.3 Multilinear Extension (MLE): Owen introduced a multilinear extension [102] of the
Shapley values. It involves imposing a probabilistic structure on the feature space, where each
feature 𝑗 is treated as a random variable with a probability 0 ≤ 𝑞 ≤ 1 of including in a coalition.
Consequently, each coalition is represented as a random variable 𝐸 𝑗 . Using the above-mentioned
probabilistic structure, the Shapley value can be defined as follows:

Φ𝑗 =

∫ 1

0
E[𝑣 (𝐸 𝑗 ∪ {𝑥 𝑗 }) − 𝑣 (𝐸 𝑗 )] 𝑑𝑞 (4)

Owen [102] established that the summation in Equation 2 can be transformed into an integral by
treating the coalitions as random variables. Based on Owen’s notion of the multilinear extension,
Okhrati and Lipani later introduced a sampling approximation approach known as the MLE
(MultiLinear Extension sampling) [100] for estimating the Shapley values.
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3.1.4 Weighted Least Squares (WLS): Figure 3 demonstrates the additive property of the
Shapley values. Thus, we can represent the model’s prediction as a summation of the average
model output and the Shapley values associated with each feature. Hence, in this specific scenario,
determining the Shapley values can be perceived as an optimization problem, wherein the objective
is to solve the below expression using a Weighted Least Squares (WLS) [22, 132] approach.

min
Φ𝑖 ,∀1≤𝑖≤ |𝐷 |

∑︁
𝑆⊆𝐷

𝑊 (𝑆)
[
(Φ0 +

∑︁
𝑖∈𝑆

Φ𝑖 ) − 𝑣 (𝑆)
]

(5)

Weighting Kernel:𝑊 (𝑆) = |𝐷 | − 1( |𝐷 |
|𝑆 |
)
|𝑆 | ( |𝐷 | − |𝑆 |)

In the above expression,𝑊 (𝑆) is the weighting kernel, and Φ0 is the average model prediction.
When 𝑆 = 𝐷 , the sum of the average model prediction and the Shapley values is equivalent to
the actual model prediction of the instance. Thus, when 𝑆 = 𝐷 , the inner expression ultimately
reduces to zero. KernelSHAP [32, 81] aims to approximate this weighted least squares problem
by sampling a subset of coalitions. This sampling is done according to weighting kernel𝑊 (𝑆).
SGD-Shapley [52] is an alternative method that extends the principles of KernelSHAP. However,
it employs projected gradient descent to solve the least squares problem approximately. FastSHAP
[31, 62] is a novel technique that uses the least squares approximation. Unlike other methods,
FastSHAP trains a surrogate model to estimate the Shapley values in a single forward pass by
amortizing the training process over the training samples.

3.2 Model-specific approximations
Model-specific approximations are curated using a removal strategy and a sampling technique
that leverages the model’s inherent structure, enabling a significantly faster estimation of Shapley
values. The scientific community has proposed approaches for three different model categories:
linear, tree, and deep learning. In the following subsections, we briefly discuss each model type and
the corresponding approximation techniques suggested for them.

3.2.1 Linear models: Linear models are self-interpretable. As discussed in Section 2.2, a linear
relationship between the input features and the model prediction allows the weight coefficients
to effectively explain the impact of individual features on the model’s prediction. Thus, Shapley
values are integrated to work for linear models by leveraging the concept of weight coefficients.
LinearSHAP [81, 142] and Correlated LinearSHAP [24] are the two approximation techniques
designed for linear models. The vanilla version of LinearSHAP incorporates a marginal feature
removal approach, whereas the correlated version computes conditional Shapley values (refer
Section 2.4.1). The Correlated LinearSHAP method assumes that the data distribution conforms to
a multivariate Gaussian distribution, thereby introducing the possibility of producing inaccurate
Shapley value estimates when the data does not align with the distribution.

3.2.2 Tree-based models: Tree-based models include decision trees [48], ensemble learning like
random forests [17], and gradient boosting models like XGBoost [28]. These non-linear models are
affected by the interdependencies among the input features. Interventional TreeSHAP [80] and
Path-dependent TreeSHAP [80] are able to approximate Shapley values accurately by leveraging
the tree structure. We can depict a tree structure by breaking it down into individual outputs for
every leaf within the tree. As a result, the impact of each leaf on the Shapley value of a particular
feature can be determined at the leaf level, viewing it as a coalitional game where the players are the
features found along the path from the root to the current leaf. A dynamic programming approach
helps to generate explanations for the Shapley values of all features simultaneously as it traverses
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through the nodes in the tree. The Interventional TreeSHAP method assumes that the features are
independent and employs the empirical marginal feature removal approach (see Section 2.4.1). In
contrast, the Path-dependent TreeSHAP method adopts a conditional feature removal approach
derived from the Shapley Cohort refinement approximation [88].

3.2.3 Deep learning models: Deep neural networks [71] are gaining popularity due to better
hardware, more data, and more innovative techniques. They are widely used across industries
for their ability to solve complex problems effectively. The structures consist of multiple layers
that increase opacity levels, resulting in models that are extremely difficult to interpret. One of
the initial approaches to explain deep models, known as DeepLIFT, was developed to allocate
attributions throughout a deep network for a single explicand and baseline [25, 138]. The method
examines the impact of alterations in input data on the network’s activations across different layers.
Nonetheless, the utilization of certain simplifications and approximations may occasionally produce
biased Shapley value estimates. Subsequently, Lundberg & Lee [81] introduced an extension of
DeepLIFT [127] called the DeepSHAP to produce biased estimates of marginal Shapley values.
Despite its bias, DeepSHAP is a valuable approach because its computational complexity is

proportional to the size of the model and the number of baselines. Deep Approximate Shapley
Propagation (DASP) [4] is another technique to approximate baseline Shapley values for deep
models. It uses uncertainty propagation, modeling input distributions as standard random variables.
It has a lower bias than DeepLIFT but is computationally costly.

4 Experimental Settings
In the subsequent sections, we discuss the implementation details of our evaluation.
Platform: We run our experiments on a high-performance computing server with the following
configuration: 2xAMD EPYC 7713 64-Core processors and 1TB RAM. The server is equipped with
two Nvidia A100 GPUs and functions on a 64-bit Ubuntu 22.04.3 LTS Linux Operating System.
Implementation: To ensure fair implementation of all the approximation techniques, we use
the official GitHub repositories. In instances of code unavailability, we implement the methods
based on our comprehension of the paper. The implementations are in Python(3.10), C++, and R
with the following dependencies: Pytorch(1.11) [122], TensorFlow(2.6.0) [2], scikit-learn(0.22.1)
[123]. We execute every Shapley value estimation technique on a single core to guarantee accurate
assessments of runtime. For experiment reproducibility, we open-source the codebase [53].
Datasets: We focus on tabular datasets curated for regression and classification problems. We
utilize 200 publicly available datasets from the UCI Machine Learning Repository [87]. Within the
datasets, there are as many as 60 input features, and the number of instances ranges from 100 to 1
million. Figure 4 highlights the dimensions and scale of these datasets. Each dataset is split into
training and testing sets for model training and computing Shapley value estimations. Since the
Shapley values are a local feature attribution technique, the number of instances in the dataset has a
very insignificant impact on the Shapley value estimates; however, data dimensionality significantly
affects the estimation, as discussed in Section 2.4. To conduct a qualitative evaluation of the
approximations, we also create a synthetic dataset designed to serve as a controlled benchmark. The
dataset includes randomly generated features to ensure variability and independence. A predefined
target function is used to assign specific weights to each feature, representing their contributions
to the outcome. These weights act as the ground truth Shapley values.
ML Models: We utilize the supervised machine learning framework used to tackle regression

and classification tasks. We use the following model architectures - Linear models [48, 68], Ensemble
Learning [17], Gradient Boosting [28], Neural Networks [56], Nearest neighbors [35], Naive Bayes
classifiers [149], and Support Vector Machines [34]. To conduct a thorough evaluation, we integrate
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Fig. 4. (a) represents the dimensionality distribution and (b) represents the scalability distribution across 200
regression and binary/mutliclass classification datasets from the UCI ML repository [87].

models representing each category. Shapley values intend to explain a black boxmodel by leveraging
the model itself, negating the significance of its fit quality. Consequently, this allows us to use
vanilla versions of each model with default hyperparameters.

4.1 Evaluation measures
We divide our analysis into two parts: the first evaluates various replacement strategies while the
second assesses different Shapley value approximations. Since Shapley values are highly dependent
on the model and dataset, feature importance varies across different contexts, with models assigning
different importance to the same features. This variability stems from the unique behavior of each
model, preventing the creation of a universal standard. As a result, an exhaustive estimation of
Shapley values with models trained on an exponential number of feature subsets cannot be relied
upon to produce ground truth values, making it essential to evaluate their accuracy as part of
the process. Even in controlled synthetic settings with known ground-truth Shapley values, we
hypothesize that Shapley value approximations preserve the relative feature rankings, though
their absolute magnitudes might be scaled down. This scaling bias arises from inherent sampling
limitations and computational constraints. To address this, our evaluation emphasizes metrics that
focus on reconstructing model predictions rather than direct value-to-value comparisons.
We conduct quantitative and qualitative evaluations using statistical methods, including the

Wilcoxon test [151] for pairwise dataset comparisons, and the Friedman test [46] with a posthoc
Nemenyi test [98] to rank strategies across datasets. Below, we detail the evaluation measures.

4.1.1 Explanation Error: The absence of ground-truth Shapley values presents a clear obstacle
in the evaluation. Consequently, we employ an alternative evaluation metric to assess the accuracy
of the approaches, such as the explanation error [81]. The motivation for explanation error stems
from the additive nature of the Shapley values, as shown in Figure 3. Shapley values indicate the
individual contributions of input features towards shifting the model output from the average model
prediction to the actual prediction value. Explanation error is analogous to the fidelity score metric
[158], as both evaluate the alignment between the model’s predictions and the reconstructed value
using the Shapley values. The terms can be used interchangeably, and the choice of terminology
in this study is motivated by its historical usage in similar contexts [81]. Precisely, when given a
black-box model 𝑓 and an explicand 𝑥𝑒 , the prediction for the 𝑥𝑒 can be articulated as follows:

𝑓 (𝑥𝑒 ) = Φ0 +
|𝐷 |∑︁
𝑖=1

Φ𝑖 (6)
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Table 3. A consolidated list of replacement strategies that are a part of our extensive evaluation. Approach
refers to the primary replacement strategy, and variant refers to the methodology of implementing the
primary approach.

Approach Variant Strategy

Predetermined
Occlusion All-zeros [124, 133, 159]
Default Mean [36, 128]

Distributional

Marginal
Empirical[60]
Uniform distribution [60]

Conditional

Empirical [88, 143]
Separate models
Parametric: Gaussian [47]
Parametric: Copula [47]

In the above equation, Φ0 symbolizes the average model prediction, while Φ𝑖s refer to the Shapley
values assigned to each input feature. The objective of any Shapley value estimation technique is
to approximate Φ𝑖s. We can evaluate the accuracy of any approximation by comparing the model’s
actual prediction to the combined value of the average prediction and the estimated Shapley values.
A smaller error between the two values indicates a higher precision in the approximation.

We use the 𝑅2 test [101] to analyze this error. The 𝑅2 test [101] is a statistical test designed for
regression analysis to assess the quality of fit. 𝑅2 values, spanning from 0 to 1, are often converted
into percentages to represent the accuracy of any regression model. For computing the 𝑅2 value,
we treat 𝑓 (𝑥𝑒 ) as the ground truth and Φ0 +

∑ |𝐷 |
𝑖=1 Φ𝑖 as the predicted value. A strategy with an 𝑅2

value approaching 1 indicates that it can approximate the Shapley values accurately.

4.1.2 Compute time: Since Shapley values are a local feature attribution technique, we compare
the instance-wise computational efficiency of different approaches. As indicated in Section 4, the
evaluation encompasses datasets that contain up to 45 features. Using the per-instance runtime
comparison, we anticipate the trend of the runtime results as the dimensionality increases. We
determine which methods are most suitable for handling high-dimensional data by analyzing the
runtime results of different approaches.

5 Experimental Results
As mentioned earlier, we divide our analysis into two sections: Section 5.1 deals with the evalua-
tion of replacement strategies. Section 5.2 focuses on assessing the approximations, which are a
combination of the replacement strategies and the estimation strategies as mentioned in Table 2.

5.1 Analysis of Replacement Strategies
We conduct a comprehensive evaluation of various replacement strategies (Section 2.4.1) by com-
paring them against exhaustive Shapley value estimations, covering all possible feature coalitions.
Through this evaluation, our goal is to understand which replacement strategy provides accurate
and efficient Shapley value estimates. We measure accuracy using the Explanation Error metric
(Section 4.1.1) and efficiency with the Computation Time metric (Section 4.1.2). By implementing
an exhaustive estimation technique, we ascertain that the replacement strategy is the sole factor
responsible for impacting the precision of the Shapley value estimates. We explicitly evaluate the
performance of the replacement strategies mentioned in Table 3.

5.1.1 Accuracy: The regression analysis in Figure 5 reveals an exciting trend: the Separate
models and Gaussian replacement strategies consistently outperform the others, delivering
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notably higher accuracy across all six evaluated models. Their boxplots are clustered tightly in the
upper accuracy range, highlighting their impressive ability to preserve data integrity. Conversely, the
All-Zeros andUniform replacement strategies struggle themost, particularly with complexmodels
like Neural Networks and XGBoost. Their increased variability and lower accuracy make them
stand out for their instability, while the critical diagram vividly highlights their poor performance,
making them highly unreliable for providing consistent Shapley value estimates.
In contrast, for classification, the performance of the Gaussian and Conditional strategies is

notably reduced, showing increased variability and less stability. Meanwhile, the Separate models
technique continues to deliver the highest accuracy in the classification tasks as well. The Copula
strategy comes next, trailing the Gaussian and Conditional methods but still offering moderate
accuracy. TheMarginal,Mean, Uniform, and Zero strategies show a clear drop in accuracy, with
Uniform and Zero performing the worst. These two strategies have the widest variability and the
lowest median values, highlighting their poor performance in maintaining classification accuracy.

5.1.2 Computational Efficiency: Figure 6 offers an extensive evaluation of the computational
requirements for various replacement strategies across regression-based datasets. In panel (a),
the compute times for individual instances are evaluated across a range of machine learning
models. The findings reveal that the Separate models strategy consistently results in the highest
computational costs across all models, significantly surpassing the compute times of alternative
strategies. In contrast, the All-Zeros strategy exhibits the lowest computational requirements,
rendering it an attractive option for scenarios where efficiency is paramount. Panel (b) delves into
the correlation between feature dimensionality and compute time, indicating that all strategies
face increased computation times as the number of features rises; however, the Separate models
strategy shows a particularly steep increase, highlighting its inefficiency in high-dimensional
settings. Panel (c) contrasts accuracy with compute time, showcasing a distinct tradeoff; strategies
such as Conditional, Gaussian, and Copula manage to achieve a balance between accuracy and
computational efficiency, while the Separate models strategy, despite its high accuracy, imposes a
substantial computational burden.

Figure 7 extends this analysis to classification-based datasets, revealing similarities and differences
in the computational performance of the replacement strategies. In panel (a), the instance-wise
compute times are compared across different model architectures. The Separate models strategy
again emerges as the most computationally expensive, particularly in Decision Trees and Logistic
Regressionmodels. Simpler strategies likeZero andMeanmaintain lower compute times, indicating
their effectiveness in classification tasks. Panel (b) examines the impact of feature dimensionality
on compute time, showing that as the number of features increases, all strategies see a rise in
computation time, with the Separate models strategy experiencing the most significant increase.
However, strategies like Conditional and Gaussian show a more gradual rise, suggesting better
scalability for classification tasks. Finally, panel (c) illustrates the tradeoff between accuracy and
compute time, with the Conditional, Copula, and Gaussian strategies offering a favorable
balance, whereas the Separate models strategy, despite its high accuracy, remains computationally
intensive, especially with increasing dimensionality.

5.2 Analysis of approximations
In this section, we analyze the performance of Shapley value approximations, highlighting the
trade-offs between model-agnostic and model-specific techniques, including their generalizability,
implementation complexity, and performance across different architectures. For a detailed break-
down of these approaches refer to Table 2. We divide the evaluation into two subsections: Section
5.2.1 delves into the quantitative analysis, while Section 5.2.2 explores the qualitative aspects.
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(a) Decision Trees (b) Linear Regression

(d) Neural Network(c) Random Forest

(f) XGBoost(e) Support Vector Machine

Regression

(a) Decision Trees (b) K-Nearest Neighbors

(c) Logistic Regression

(e) Support Vector Machine (f) Naive Bayes

(d) Neural Network

Classification

Fig. 5. Explanation error of different replacement strategies. The accuracy of each replacement strategy is
computed using the 𝑅2 test. The critical diagram shows model-agnostic and model-specific rankings, while
boxplots illustrate ranking variance across 200 regression and classification datasets.

Notably, we exclude FastSHAP from the quantitative evaluation due to its reliance on the quality of
the surrogate model. Curating 200 surrogate models per dataset is impractical, making its inclusion
infeasible. As FastSHAP’s performance heavily depends on the accuracy of the surrogate model, a
fair assessment of its effectiveness is beyond the scope of this study.

5.2.1 Quantitative evaluation: We comprehensively evaluate all approximation techniques
across the 200 regression and classification tabular datasets as outlined in Section 4. This includes the
time-intensive but highly accurate Exhaustive Sampling approach, which considers every possible
feature coalition. Despite its computational burden, when paired with Separate Models, Exhaustive
Sampling consistently produces Shapley value estimates that are as close to the ground truth as
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Fig. 6. (a) Compares instance-wise compute time of replacement strategies across Regression datasets. Every
bar corresponds to a unique replacement strategy. (b) Demonstrates the impact of dimensionality on the
estimation time of Shapley values. (c) Highlights the tradeoff between accuracy and computation time.

possible, as discussed in Section 5.1. Table 4 ranks the accuracy of each technique across four
scenarios: Model-agnostic, Linear, Tree-based, and Neural networks.
The Exhaustive Sampling method, with its O(2𝑑 ) time complexity, consistently outperforms

other approaches in terms of accuracy across all scenarios. This aligns with its theoretical guarantee
of producing exact Shapley values. However, as shown in Figure 8 it is computationally impractical
for high-dimensional datasets, highlighting the need for efficient approximations. Among model-
agnostic methods, KernelSHAP and its variants (Parametric and Non-parametric) demonstrate
superior performance despite their O(𝑚𝑑2) time complexity. This suggests that the weighted
least squares approach effectively balances accuracy and efficiency, particularly for datasets with
moderate dimensionality. IME, with its O(𝑚𝑑) time complexity, shows poor performance compared
to other methods. This indicates that while random sampling offers computational efficiency, it
may not capture complex feature interactions adequately, especially in high-dimensional spaces.
In the model-specific setting, IME emerges as the clear underperformer, while the methods

tailored for specific models consistently rank among the top performers, just behind the gold-
standard Exhaustive Sampling approach. The Linear (independent) approach demonstrates robust
performance, providing accurate estimates across various datasets. In contrast, the Linear (correlated)
approach struggles, likely due to its flawed assumption that every dataset follows a multivariate
Gaussian distribution. On the other hand, both the Tree (interventional) and Tree (path-dependent)
methods with O(𝐿𝐷) complexity (where 𝐿 is the number of leaves and 𝐷 is the maximum tree
depth) stand out, delivering performance nearly on par with Exhaustive Sampling.
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Fig. 7. (a) Compares instance-wise compute time of replacement strategies across Classification datasets.
Every bar corresponds to a unique replacement strategy. (b) Demonstrates the impact of dimensionality on
the estimation time of Shapley values. (c) Highlights the tradeoff between accuracy and computation time.

This suggests that exploiting the hierarchical structure of tree models allows for highly efficient
and accurate Shapley value estimation. For deep learning models, DeepSHAP with O(𝑛𝑟 ) complexity
(where 𝑛 is the number of neurons and 𝑟 is the number of reference samples) outperforms DeepLIFT
with O(𝑛) complexity. This indicates that the additional computational cost of DeepSHAP translates
to meaningful improvements in explanation quality for neural networks. While model-specific
methods demonstrate superior performance due to their alignment with the underlying model
structure, this specialization limits their applicability across diverse architectures and increases
implementation complexity.

As dataset dimensionality increases, methods with lower polynomial complexity in terms of the
number of features (𝑑) show better scalability. As depicted in Figure 10 Exhaustive sampling with
O(2𝑑 ) complexity becomes intractable for high-dimensional data. Sampling-based approaches like
IME with O(𝑚𝑑) complexity offer a favorable trade-off between accuracy and scalability. Model-
specific methods like Linear (independent) with O(𝑑) complexity and Tree-based methods with
O(𝐿𝐷) complexity (where 𝐿 is a number of leaves and 𝐷 is the maximum tree depth) scale well to
higher dimensions. As dimensionality grows, model-specific methods leveraging the underlying
structure of the models achieve a more favorable balance between accuracy and computational effi-
ciency compared to model-agnostic approaches (Refer Figure 11). In practice, choosing a technique
that achieves a balance between accuracy and scalability is crucial. We provide guidelines (Section
6) for careful selection of the approximation method based on usecase.
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Table 4. Summary of accuracy evaluation for all Shapley value estimation techniques divided into different
categories according to model type. The accuracy is computed using the 𝑅2 test. (red represents mean, and
blue represents median accuracy of each method over 200 datasets).

Approximation Rank Accuracy - 𝑅2 value
M
od

el
-a
gn

os
ti
c

CES 7
Cohort 6
Exhaustive Sampling 1
IME 9
KernelSHAP 4
MLE 8
Non-parametric 3
Parametric 2
SGD-Shapley 5

Li
ne

ar
m
od

el

CES 9
Cohort 8
Exhaustive Sampling 1
IME 11
KernelSHAP 5
MLE 10
Non-parametric 4
Parametric 3
SGD-Shapley 7
Linear(correlated) 6
Linear(independent) 2

T
re
e-
ba

se
d
m
od

el
s

CES 9
Cohort 8
Exhaustive Sampling 1
IME 11
KernelSHAP 5
MLE 10
Non-parametric 7
Parametric 6
SGD-Shapley 4
Tree (interventional) 3
Tree (path dependent) 2

N
eu

ra
lN

et
w
or
ks

CES 10
Cohort 9
Exhaustive Sampling 1
IME 7
KernelSHAP 4
MLE 11
Non-parametric 6
Parametric 5
SGD-Shapley 8
DeepLIFT 12
DeepSHAP 2
DASP 3

The empirical results suggest that model-specific approaches tend to offer more reliable approxi-
mations. This is likely due to their ability to capture model-specific structures and interactions,
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Fig. 8. Comparison of per instance computation time of different approximation strategies. The comparison
is divided into 1 model-agnostic setting and 3 model-specific settings.

leading to more consistent and accurate Shapley value estimates. In conclusion, the empirical
findings (Table 4) strongly align with the theoretical properties (Table 2), demonstrating a clear
connection between the approximation methods’ characteristics and their performance in practice.
Model-specific approximations demonstrate significantly faster computation times, leveraging
the inherent structure of the models. For model-agnostic scenarios, methods like KernelSHAP
that employ sophisticated estimation strategies outperform more straightforward sampling-based
approaches, especially as dataset complexity increases.

Additionally, the experiment in Figure 9 demonstrates the robustness of Shapley value approxi-
mation techniques under scenarios involving missing data. While all methods exhibit an expected
increase in explanation error as the percentage of sampled subsets decreases, some techniques,
such as IME and KernelSHAP, show greater resilience to missing data compared to others. This
robustness can be attributed to their systematic sampling strategies, which help maintain the
relative feature rankings even with reduced subsets. These findings highlight the importance of
selecting techniques that balance accuracy and robustness, particularly in real-world scenarios
where missing data is prevalent.
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Percentage of subsets sampled vs Explanation Error

Fig. 9. Comparison of explanation errors for Shapley values approximated using the sampling method across
an increasing percentage of subsets sampled.

Fig. 10. Impact of increasing dimensionality on the per-instance computation time. (a) compares tractable
estimation strategies, whereas (b) compares model-agnostic andmodel-specific Shapley value approximations.

5.2.2 Qualitative evaluation. We use the admission dataset [91] to compare different approxi-
mation strategies qualitatively. The admission dataset provides application details of individual
students, and the task is to predict the chances of the student receiving admission. We trained
all the mentioned model types using the dataset and then generated explanations using each
approximation technique. We have also included FastSHAP in the evaluation by training a surrogate
model that best suits FastSHAP’s explanation process. Figure 12 demonstrates the Spearman rank
correlation between different approximations across each model type.

The qualitative evaluation reveals a notable trend: approximationmethods that rely on conditional
distributions, including CES, Shapley cohort refinement, and Parametric/Non-parametric KernelSHAP,
as well as Exhaustive Sampling, demonstrate a high degree of correlation in the Shapley values they
produce. This finding implies that these methods are consistent in estimating the contributions
of features to model predictions. The strong correlation among Shapley values obtained through
these techniques suggests that they offer robust and reliable estimations of feature importance.
Moreover, it emphasizes the efficacy of utilizing conditional distributions as a replacement strategy
in Shapley value approximation.
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Cohort
CES

SGDShapley

DASP
DeepSHAP

DeepLIFT

IME
MLE

KernelSHAP
Non-parametric/ Parametric

Tree
Linear (I)

Linear (C) Exhaustive
Sampling

Fig. 11. Time-accuracy tradeoff comparison between distinct Shapley value estimation approaches.

Fig. 12. Spearman rank correlation heatmap of an instance, comparing the quality of different approximations.

The performance of FastSHAP appears to be subpar, indicating that it may yield less accurate or
reliable results compared to other Shapley value approximation methods. FastSHAP may require a
highly tuned model to serve effectively instead of a surrogate model. In other words, to achieve
satisfactory performance with FastSHAP, it may be necessary to meticulously optimize and fine-tune
the underlying machine learning model used for approximation. This observation stresses the
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Value-value comparison of Shapley values

Fig. 13. Magnitude comparison of Shapley values. "𝑋𝑖s" are the features in the synthetic dataset. Features
ranked by importance as 𝑋3 > 𝑋5 > 𝑋2 > 𝑋1 > 𝑋4

significance of careful model selection and tuning when employing FastSHAP for feature importance
analysis or interpretability tasks in machine learning applications.
To further evaluate the behavior of Shapley value approximations in a controlled setting, we

conducted a synthetic dataset experiment as outlined in Section 4. This experiment validates our
hypothesis in Section 4.1, demonstrating that while Shapley value approximations preserve relative
feature rankings, their absolute magnitudes are reduced due to biases introduced by limited subset
sampling and assumptions of feature independence. Among the methods evaluated, Exhaustive
Sampling closely aligns with the ground-truth Shapley values, while other approximation techniques
maintain consistent feature rankings despite differences in magnitude. As illustrated in Figure
13, features ranked by importance as 𝑋3 > 𝑋5 > 𝑋2 > 𝑋1 > 𝑋4 retain their order across all
approximations, even though their absolute Shapley values differ from the ground truth. This
phenomenon highlights the limitations of direct value-to-value comparisons, as scaling effects
obscure the true magnitude of feature contributions. Instead, focusing on relative feature rankings
or reconstruction metrics, such as explanation error, offers a more robust and reliable evaluation
framework by prioritizing consistent feature rankings and alignment with model predictions, which
are essential for interpretability.

6 GUIDELINES
Selecting the appropriate strategy for Shapley value computation depends on the characteristics of
the data and the specific use case. These guidelines help align your approach with the nature of
your dataset, model complexity, and available computational resources.

• General Case: In typical scenarios, the Marginal Distribution effectively handles missing
features. WLS balances accuracy and efficiency, while KernelSHAP offers robust model-
agnostic explanations but is resource-intensive for high-dimensional datasets.

• Complex Feature Interactions: When dealing with complex feature relationships, the
Conditional Distribution ensures accurate handling of missing features by capturing dependen-
cies. We recommend TreeSHAP and DeepSHAP, since they offer high accuracy with reduced
computational effort.
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• High Dimensional Data: For high-dimensional datasets, replacing missing features with
Predetermined Baselines is an efficient strategy to speed up computations. TreeSHAP and
DeepSHAP provide optimized approximations for high-dimensional feature spaces without
compromising on quality.

• Exploratory Analysis and Limited Resources: Future work should focus on model and
dataset-specific techniques, leveraging strategies like stratified and adaptive sampling to
enhance accuracy and efficiency. While preliminary findings indicate promising potential,
their broader applicability remains unclear, stressing the importance of understanding the
influence of dataset characteristics on the effectiveness of these approaches.

• Evaluating Newer Methodologies: Approximations should be evaluated using relative
feature rankings and reconstruction metrics rather than direct value comparisons. These
metrics offer a more reliable evaluation framework, as approximations typically preserve
feature importance rankings despite scaling biases.

7 Conclusion
Through this paper, we presented a comprehensive study of various Shapley value approxima-
tions in a tabular data setting, shedding light on their strengths, limitations, and implications
for interpretability in machine learning models. Our findings highlight that while Shapley value
approximations often align with ground-truth values in terms of relative feature rankings, in-
herent biases from sampling methods and computational constraints can make value-to-value
comparisons misleading. Instead, we emphasize the importance of alternate metrics, such as relative
feature rankings and reconstruction metrics like explanation error, as robust and reliable evaluation
methodologies. By using these metrics, we provide valuable insights into the effectiveness and
applicability of different techniques across diverse datasets and model structures. Moreover, the ob-
served correlation among specific approximation techniques highlights the potential of leveraging
conditional distributions as a robust replacement strategy. Future research should focus on combin-
ing dataset-specific sampling techniques like stratified and adaptive sampling with model-specific
approximations to enhance accuracy and computational efficiency. While our exploratory findings
suggest potential in such combinations, their generalizability remains unclear, emphasizing the
importance of analyzing dataset properties that influence the effectiveness of these approaches. This
work lays a foundation for advancing interpretability and feature importance analysis, fostering
innovation in developing robust and efficient techniques for machine learning models.
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