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Abstract
Interpreting decisions made by machine learning models helps
build trust in their predictions, ultimately facilitating their prac-
tical application. Shapley values have emerged as a popular and
theoretically robust method for interpreting models by quantifying
the contribution of each feature toward individual predictions. The
inherent complexity associated with the computation of Shapley
values as an NP-hard problem has driven the development of nu-
merous approximation techniques, leading to a plethora of options
in literature. This abundance of choices has created a substantial
gap in determining the most appropriate approach for practical
applications. To address this gap, we propose ShapX, a web engine
that comprehensively evaluates 17 approximation methods across
diverse regression and classification tasks. ShapX facilitates an in-
teractive exploration of the strengths and limitations of various
Shapley value approximations by guiding users through the suit-
able selections of replacement and tractable estimation strategies.
Ultimately, our study reveals that strategies competent at captur-
ing all the feature interactions leading to accurate estimations of
Shapley values. ShapX also allows users to effortlessly upload their
own dataset along with the corresponding machine learning model,
enabling them to obtain detailed individualized explanations. A de-
tailed walkthrough video of the demonstration is available online1.

CCS Concepts
• General and reference → Empirical studies; Surveys and
overviews; • Computing methodologies → Feature selection; •
Information systems→ Data model extensions.
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1 Introduction
Machine learning (ML) and artificial intelligence (AI) have wit-
nessed significant advances in recent decades. The deployment of
1Video link: https://youtu.be/5uPocjPUAA8

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGMOD-Companion ’25, Berlin, Germany
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1564-8/2025/06
https://doi.org/10.1145/3722212.3725135

Shapley value explanations

ShapX EngineInput

Dataset

Individual
instance

ML
model

+8 Replacement
Strategies

6 Estimation
Strategies

17 Approximations

Evaluation metrics

Explanation Error

Compute Time

Exploration

Generate explanation
on custom dataset and

model

Output
Shapley value explanations

Statistical tests, Boxplots
Dimensionality trends

Accuracy-Time tradeoff

Figure 1: Overview of the Shapley explanation demo system.

ML models to solve real-world problems has increased due to their
ability to outperform humans in terms of efficiency. The application
of ML models also extends to various life-critical domains, includ-
ing healthcare [16] and criminal justice [10], where decisions must
be accurate, fair, and transparent. A viable strategy for building
confidence in ML models is interpretability, which refers to under-
standing and explaining their decision-making processes. However,
as increasingly complex architectures like neural networks [19]
gain prominence in pursuit of higher accuracy, the challenge of
interpretability grows. Thus, understanding which features con-
tribute most to a model’s predictions helps prioritize relevant data,
simplifying dataset selection and improving training efficiency and
accuracy. To satisfy this need, Shapley values [21, 27] have emerged
as a leading feature explanation technique for identifying the im-
pact of individual features in a model’s decision-making process.

The concept of Shapley values [27], originally developed in coop-
erative game theory, was later adopted to explain machine learning
models by modeling the prediction task as a cooperative game,
where each feature functions as a player contributing to the pre-
diction. Shapley values estimate a feature’s contribution across all
possible subsets, capturing nuanced interactions and dependencies
to enhance interpretability. Despite its intuitive appeal, Shapley
values present two key challenges. The first challenge involves
handling missing features when considering subsets of the feature
set, as proper treatment is crucial for fair model explanations. Var-
ious replacement strategies [12, 17, 20, 21, 29, 31] address this by
imputing missing values or using surrogate models to approximate
the absent features’ behavior. The second challenge stems from the
exponential computational complexity of Shapley values, making
their exact computation infeasible for high-dimensional data. To
mitigate this, numerous estimation strategies [3, 21, 25, 28] have
been developed to approximate Shapley values efficiently in poly-
nomial time, balancing computational feasibility with accuracy.

The abundance of approximations highlights the credibility of
Shapley values as a reliable technique in model explanations. How-
ever, despite significant progress over many years, there is a notable
absence of a comprehensive evaluation of these methods in existing
literature. To address this gap, we propose ShapX, a novel web
engine to facilitate the exploration of model explanations through
Shapley values. ShapX is based on the first comprehensive evalua-
tion [14] of the various Shapley value approximations. Specifically,
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Figure 2: Replacement strategies such as Predetermined Baseline and Distributional Baseline address the absence of features,
eliminating the necessity to train an exponential number of models and mitigating computational complexity.

we view Shapley value approximations as a blend of two facets: re-
placement strategies and tractable estimation strategies, followed by
a thorough evaluation of each facet. The ShapX engine enables users
to compare these individual facets, facilitating informed strategy
selection. Furthermore, ShapX offers the choice to receive person-
alized explanations for their models based on the most compelling
explanation technique identified through statistical analysis. Figure
1 highlights the overview of the ShapX Engine.

2 PRELIMINARIES
Through this section, we lay the foundation for the subsequent
content of the paper. We first introduce Shapley value estimation
and approximate solutions addressing each facet of Shapley value
estimation (Section 2.1), followed by a detailed overview of the
evaluation framework (Section 2.2).

2.1 Shapley value estimation
A fundamental supervised machine learning framework involves
training a black-box model 𝑓 on a dataset consisting of features
𝑥1, . . . 𝑥𝑑 , where 𝑓 makes predictions for unknown instances. The
most accurate understanding of any black-box ML model is pro-
vided by employing the model itself. However, complex models
make model interpretation challenging. Shapley values provide
a promising solution to this challenge by treating the prediction
task as a coalition game and attributing contributions to each input
feature towards the prediction. This approach comprehensively ex-
plains individual predictions, inducing trust in the model’s decision-
making process. Formally, given an explicand 𝑥𝑒 , feature set 𝐷 , and
a coalition of the feature set 𝑆 ⊆ 𝐷 , then the Shapley value of input
feature 𝑖 can be expressed as follows:

Φ𝑖 =
∑︁

𝑆⊆𝐷\{𝑖}

|𝑆 |!( |𝐷 | − |𝑆 | − 1)!
|𝐷 |! [ 𝑓 (𝑥𝑒

𝑆∪{𝑖} ) − 𝑓 (𝑥𝑒𝑆 ) ] (1)

The total contribution of feature 𝑖 is the average marginal con-
tribution of feature 𝑖 over all possible feature coalitions 𝑆 ⊆ 𝐷 .
However, accurately estimating Shapley values requires knowing
the model prediction for every subset 𝑆 ⊆ 𝐷 , which poses a chal-
lenge as the original model is trained on 𝐷 and does not provide
predictions for an arbitrary 𝑆 . Consequently, there arises a need to
train an exponential number of models, which is computationally
infeasible for high-dimensional data. To address the identified issue,
as depicted in Figure 2, there exist several replacement strategies
tailored to manage the absence of features 𝑖 ∈ 𝐷 \ 𝑆 .

Despite adopting replacement strategies, Shapley values still
necessitate addressing an exponential number of feature subsets.

Table 1: A detailed list of approximations, classified based on
estimation and replacement strategies. The approximations
form an essential component of our evaluation. "M" denotes
replacement via Marginal distribution, while "C" represents
Conditional distribution. The "Language" column signifies
the implementation language of each approximation.

Approaches Estimation Replacement Language

M
od

el
-a
gn

os
ti
c

Exhaustive sampling Exact Separate models Python

IME [28] RO Empirical (M) Python

CES [29] RO Empirical (C) Python

Cohort [23] RO Empirical (C) Python

MLE [25] MLE Empirical (M) Python

Kernel [7] WLS Empirical (M) Python

SGD-Shapley [13] WLS Mean Python

Parametric [12] WLS Gaussian/Copula Python/R

Non-Parametric [12] WLS Empirical (C) Python/R

M
od

el
-s
pe

ci
fi
c

Linear [4] Linear Empirical (M) Python

Correlated Linear [4] Linear Gaussian Python

Tree interventional [20] Tree Empirical (M) Python

Tree path-dependent [20] Tree Empirical (C) Python/C++

DeepLIFT [26] Deep All-zeros Python

DeepSHAP [5] Deep Empirical (M) Python

DASP [1] Deep Mean Python

Various tractable estimation strategies offer a pragmatic solution by
approximating Shapley values in polynomial time. These tractable
estimation strategies, along with the replacement strategies, form
a foundation for the various Shapley value approximations. These
approximations can be broadly classified into model-agnostic and
model-specific approximations. Model-agnostic approximations
can be applied to any model regardless of their type. Model-specific
approximations are designed to provide an edge by utilizing that
specific model’s properties. We offer a comprehensive list of the
approaches falling under each category in Table 1.

2.2 Evaluation Framework
Datasets: We focus on tabular datasets curated for regression and
classification problems. We utilize 200 publicly available datasets
from theUCIMachine Learning Repository [22].Within the datasets,
there are as many as 60 input features, and the number of instances
ranges from 100 to 1 million.
ML Models: We utilize the supervised machine learning frame-
work used to tackle regression and classification tasks. We use
the following model architectures - Linear models [18], Ensemble
Learning [2], Gradient Boosting [6], Neural Networks [15], Nearest
neighbors [9], Naive Bayes classifiers [30], and Support Vector Ma-
chines [8]. To conduct a thorough evaluation, we integrate models
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representing each category. Shapley values intend to explain a black
box model by leveraging the model itself, negating the significance
of its fit quality. Consequently, this allows us to use vanilla versions
of each model with default hyperparameters.
Evaluation metrics: To comprehensively assess algorithm per-
formance across diverse dimensions, we establish performance
rankings by the Friedman test [11], followed by the posthoc Ne-
menyi test [24]. We employ the metric Explanation Error [21] to
evaluate the accuracy of Shapley value estimates obtained by alter-
ing the replacement and estimation strategies. This metric assesses
accuracy based on the additive nature of Shapley values.

Since Shapley values are a local feature attribution technique,
we compare the instance-wise computational efficiency of different
approaches. We anticipate the trend of the compute time results
as the dimensionality increases. This comparison is useful in de-
termining which replacement and estimation strategies are most
suitable for handling high-dimensional data.

3 System Overview
We introduce the novel ShapX Engine,2 a modular web engine
crafted to enhance the exploration of the multifaceted Shapley value
estimation. As demonstrated in Figure 3, the engine comprises five
primary frames: (a) Description, (b) Benchmark Details, (c)
Accuracy Evaluation, (d) Compute Time, and (e) Interactive
Explanations. The Description frame provides a compelling ratio-
nale for the necessity of a web engine and presents a comprehensive
user guide to assist individuals in effectively navigating through
the engine. The Benchmark Details provide essential details like
the various approximations integrated into the engine, diverse eval-
uation metrics employed, and the datasets and models utilized to
demonstrate the evaluation.

Within the Accuracy Evaluation frame, the focus is on analyzing
the performance variability across different dimensions of Shap-
ley value estimation. This frame presents a boxplot and a critical
difference diagram for comparing relative accuracy rankings to
aid in visualization. Moreover, it supports the investigation of per-
formance variability through diverse replacement and tractable
estimation approaches, facilitating a more thorough exploration.
In the Compute Time frame, we display the computation time of
Shapley values per instance. We offer a selection of replacement
and estimation strategies for detailed comparison. The results are
presented through visualizations, including bar plot comparison,
line plots illustrating the impact of dimensionality, and bubble plots
demonstrating the tradeoff between accuracy and compute time.

The Interactive Explanations frame helps users understand their
dataset better and provides explanations for any model trained
on that dataset. Users are required to upload a CSV data file and
a pickle model file, followed by selecting the instance to be ex-
plained. The engine then generates Shapley values for the instance
using the most effective explanation technique and produces a plot
illustrating the Shapley values for each feature.

4 DEMONSTRATION SCENARIOS
This section encompasses four demonstration scenarios designed
to aid users in exploring the evaluation framework. The primary
2Available online: https://shapleyexplanations.streamlit.app/

objectives of this demo are: (i) summarizing existing research on
model explanations using Shapley value estimations (Scenario 1);
(ii) comparing the accuracy of different aspects of Shapley value
estimations using (Scenario 2); (iii) understanding the computa-
tion time of the multifaceted Shapley value approximations, the
influence of dimensionality on computation time, and the tradeoff
between accuracy and time (Scenario 3); and (iv) enabling users to
receive personalized explanations for custom datasets and models,
facilitating direct interaction with the framework (Scenario 4).
Scenario 1: An introductory gateway to Shapley value ex-
planations. As shown in Frame 3 (a), this scenario presents the
fundamental principles of Shapley values and emphasizes the signif-
icance of assessing these explanations from different perspectives.
More specifically, it examines the complexities of dealing with miss-
ing feature values and investigates the various approaches used to
estimate Shapley values effectively. Through establishing this foun-
dational knowledge, we aim to equip users with a comprehensive
understanding of Shapley values and the multifaceted criteria used
to evaluate their effectiveness.
Scenario 2: A meticulous evaluation of Shapley value approx-
imation methods in terms of accuracy. By employing boxplots
and statistical critical diagrams, we seek to facilitate an intricate ex-
amination of the performance exhibited by different approximation
techniques across a broad spectrum of datasets and model types.
Through visual representations like those presented in Frame 3 (b),
we empower users to discern trends and make informed decisions
regarding adopting the most suitable approximation for their spe-
cific application scenario.
Scenario 3: Computational aspects of the multifaceted Shap-
ley value estimation. As presented in Frame 3 (c), we thoroughly
assess compute time, offering per-instance comparisons and evalu-
ating the scalability of different approximationmethods.We analyze
the impact of dimensionality on computational performance. Addi-
tionally, we consider the tradeoff between computational efficacy
and accuracy. We aim to give users valuable insights into the practi-
cal implications of using Shapley value approximation techniques.
Scenario 4: An interactive exploration of custom datasets and
models. The Interactive Explorations Frame 3 (d) allows users to
upload their datasets and models, thereby facilitating personalized
explanations for individual instances. Leveraging the most effective
explanation technique identified through rigorous statistical anal-
ysis, we enable users to obtain tailored insights pertinent to their
specific data and models. The generated explanation plot illustrates
the contribution of individual features to the model prediction using
Shapley values. Features are arranged based on the magnitude of
their Shapley values, with colors indicating the sign of the values:
red signifies a positive impact on the model prediction, while blue
indicates a negative impact.

5 Conclusion
Through this paper, we present a web-based engine to aid the com-
prehensive evaluation of Shapley value explanations. The interac-
tive demonstration offers users the opportunity to explore various
facets of Shapley value estimation. We provide valuable insights
regarding the effectiveness and applicability of different approx-
imation techniques across diverse datasets and model structures.

https://shapleyexplanations.streamlit.app/
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Figure 3: Frames of the ShapX Engine. A detailed walkthrough of the demonstration can be found here: Video Link

Furthermore, users have the opportunity to receive personalized
explanations for their models utilizing the most compelling expla-
nation technique determined through our statistical analysis. We
hope that this interactive GUI provides users with valuable insights
and sparks more progress in the field.
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