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ABSTRACT
Modern data-intensive applications generate vast amounts of
floating-point data, essential for fields like databases and machine
learning. While many compression techniques focus on space effi-
ciency, there is a lack of benchmarks evaluating both compression
and query performance, especially in areas like in-situ query ex-
ecution on compressed data and machine learning tasks such as
distance measurement and k-nearest neighbors (k-NN) in Retrieval-
Augmented Generation (RAG) systems. This paper addresses this
gap by evaluating popular lossless floating-point compression meth-
ods on three key factors: compression efficiency, database opera-
tions performance, and machine learning query performance. We
implemented these techniques in Rust and integrated them into an
open-source library for use with columnar engines. Our compari-
son highlights trade-offs between compression efficiency and query
performance, showing that no single approach excels in all areas,
and some methods trade off compression for slower performance.
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1 INTRODUCTION
Database systems continue to be critical for large-scale operational
(OLTP), analytical (OLAP), Internet of Things (IoT), and machine
learning systems due to their ability to efficiently manage, compress,
and query large volumes of structured data. For systems that store
and query large amounts of data, compression is critical for man-
aging storage footprint and efficient query performance [8, 9, 43].
Although data systems support diverse data types, floating-point
values are increasingly critical, especially in machine-generated
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data and machine learning features. For example, sensor data from
IoT devices often generate large amounts of floating-point data
with precision determined by the sensor hardware, which is well
suited for efficient compression [13, 47, 53, 54, 60, 79]. Similarly, the
weights and embedding generated from machine learning models,
stored as floating-point values, continue to grow each year. IoT
devices alone are expected to generate approximately 90 zettabytes
of data, underscoring the escalating scale of data production and
the corresponding need for advanced compression methods [88].
Given the significant volume and growth of floating-point data, this
paper focuses on the compression of such data in columnar for-
mats, highlighting the need for advanced compression techniques
to handle the unique challenges presented by floating-point data.

Compression techniques are classified by how they handle data
loss. Lossy compression techniques can lose fidelity from the origi-
nal uncompressed data. We focus on lossless compression, which
does not lose any information after compression. However, within
the database community, there are conflicting views on the exact
use of the term. To reason about lossless data, you must think about
how the floating-point values are produced or provided. While most
processors handle real numbers using IEEE 754’s floating-point rep-
resentations [41], it tends to be just the best approximations to the
original real numbers as is shown in Figure 1. We can define lossless
either restoring IEEE 754’s floating-pint representations or restor-
ing the original real numbers with the given precision as shown
in Figure 1. In this paper, we define a lossless floating-point com-
pression technique as one that loses no information on a defined
precision given by the schema. In other words, we assume an at-
tribute defines the scale (min and max significant digits): how many
digits should be retained after the decimal point. A compression
scheme that never loses information at that fidelity is lossless.

Real Number:  
3.14

Binary (IEEE 754):  
01000000010010001111010111000011

3.1400001049041748046875 

Lossless?

Figure 1: There is not always an exact mapping between real
numbers and their binary encodings, even with the widely
used IEEE floating-point format.

In the past decade, there has been a notable increase in the
development of lossless floating-point compression methods for
data systems, with a significant surge in activity over the past
three years. Noteworthy examples include Gorilla [86], Buff [53],
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Figure 2: Timeline of lossless compressionmethods. Methods
with blue are general-purpose, green are XOR-based, and red
are quantization-based. Figure inspired by FCBench [23].

Chimp [52], Elf [50], and ALP [11], which are specialized meth-
ods for compressing floating-point time series data. In addition,
many systems employ general-purpose (byte-oriented) compres-
sion methods such as Gzip [28], Snappy [39], and Zlib [36], treating
floating point records as byte arrays. Figure 2 shows when these
methods (along with an adapted integer compression technique)
have been introduced and highlights the recent surge of database
papers focusing on float compression.

While a recent study [23] thoroughly examined the effective-
ness of floating point compression methods, we believe this study
was not exhaustive for data systems researchers for the following
reasons. First, this study has a high-performance computing (HPC)
perspective and as a result focused on compression ratios, com-
pression throughput, and decompression throughput, but did not
evaluate data specific operations—including SQL workloads (e.g.,
filtering, aggregation) and emerging machine learning tasks (e.g.,
embeddings, feature stores)—that the community has long been
optimizing [8, 9, 44, 56, 98]. Second, given the HPC orientation a
heavy emphasis was placed on GPU-based techniques. Our belief
is that GPUs are not widely exploited by database systems and are
always present on general purpose computing devices (i.e., com-
modity servers, IoT devices, and Edge computing). Third, the study
evaluated across various programming environments, including
CUDA C/C++, Go, Python, Java, and Rust, and did not fully opti-
mize some CPU methods. We unify methods into our framework
with Rust, which eliminates overheads such as garbage collectors
and leads to a fair comparisons.

A recent compression method [11] evaluates various lossless
floating point compression methods; however, their evaluation
primarily focuses on compression performance and does not ade-
quately consider integrated query execution. In contrast, our bench-
mark framework evaluates both compression efficiency and query
performance, including in-situ query execution.

Given the surge of database-centric float compression techniques,
we believe that the community would therefore benefit from a short
survey, comprehensive study, and benchmark with a unified frame-
work and an emphasis on common database (including in-situ op-
erations on compressed data [8]) and machine-learning operations.
Our study provides not only the benchmark result with the unified
setup, but also the library of experiments usable for future devel-
opments and research. Figure 3, which normalizes results where
higher is proportionally better, demonstrates that there are trade-
offs between the proposed approaches. To evaluate the efficiency
of floating-point compression techniques, we developed a library

written in Rust: EBI1. This library is designed for the evaluation
of floating-point compression and integration into existing data
systems.

Figure 3: Radar Chart for All Metrics.

This paper is organized as follows: we review the background
on floating-point representation, the columnar storage format and
prior studies (Section 2). In Section 3, we explore the compression
methods in detail. We then introduce the library developed for
this work (Section 4) and proceed to the benchmark setup (Section
5). The results of the benchmarking are presented in Section 6,
followed by a summary of the findings in Section 7.
The main contributions of this paper are:
• We provide an exact comparison of floating-point compression

methods using a unified code base and file format, ensuring
consistency across all experiments.

• A comprehensive study that evaluates both database query
workloads andmachine learning tasks—measuring performance
and compression efficiency for a variety of floating-point com-
pression techniques—applied to diverse datasets, including time-
series data and ML embeddings.

• A complete file format and floating-point compression library
that is provided as an open source2 to facilitate further research
or practical implementation.

2 BACKGROUND AND RELATEDWORK
In this section, we provide a brief overview of floating-point repre-
sentations and columnar formats. For more details on these topics,
we refer the reader to canonical publications [8, 9, 38].

2.1 Floating Point Representation
To represent decimal values in processors, two popular representa-
tions are commonly used: fixed and floating-point representation.
1Ebi means “shrimp” in Japanese
2Available at https://github.com/lemolatoon/ebi
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2.1.1 Fixed Representation. Fixed representation consists of the
tuple ⟨𝑠𝑖𝑔𝑛, 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙, 𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙⟩. The sign bit indicates the sign, 0
for +, 1 for −. The integral bits represent the integral part of the
decimal value. The fractional bits represents the fractional part
of the decimal value. Thus, the decimal value 𝑉 is represented as
follows: 𝑉 = (−1)𝑠𝑖𝑔𝑛 × 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 .𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙

The integral and fractional parts must have specific bit lengths.
For example, when representing 3.14 with integral and fractional
bit lengths of 2 and 6, respectively, integral and fractional will be
11 and 001110 respectively. The length of the fractional part is also
referred to as precision in some contexts. A real-world example of
fixed representation can be found in databases such as PostgreSQL,
which provides the numeric data type [4]. This data type allows
users to specify the bit lengths for both integral and fractional parts
at the column level.

2.1.2 Floating-Point Representation. Floating-point representation
consists of the tuple ⟨𝑠𝑖𝑔𝑛, 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡, 𝑠𝑖𝑔𝑛𝑖 𝑓 𝑖𝑐𝑎𝑛𝑑⟩. The sign bit is
the same as in the fixed representation. In floating-point represen-
tation, a base must be chosen. The decimal value 𝑉 with the radix
𝑏 is represented as follows.

𝑉 = (−1)𝑠𝑖𝑔𝑛 × 𝑏𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 × 𝑠𝑖𝑔𝑛𝑖 𝑓 𝑖𝑐𝑎𝑛𝑑

The de facto standard floating-point representation is IEEE 754.
IEEE 754 defines multiple floating-point encodings for a given bit
length of a decimal value. In this paper, we focus on 64-bit floating-
point format, also known as Double. For Double or binary64, the
radix is 2. The 64-bits representation consists of 1 bit for sign, 0 for
+, 1 for −, 11 bits for the exponent, and 52 bits for significand. The
exponent is biased by 1023. The significand is normalized, meaning
it always starts with the bit 1, which is implicitly omitted in the bit
representation. The decimal value 𝑉 in IEEE 754 binary64 will be
represented as follows.

𝑉 = (−1)𝑠𝑖𝑔𝑛 × 𝑏𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡−1023 × 1.𝑠𝑖𝑔𝑛𝑖 𝑓 𝑖𝑐𝑎𝑛𝑑
A decimal value does not always have an exact floating-point

representation. For example, consider 3.14. Since the IEEE 754 uses
radix 2, it is not possible to represent 3.14 precisely in binary using
limited significand bit length of 53. Approximately, 3.14 is repre-
sented as follows. Note that the significand part is shown in binary.

3.14 = (−1)1 × 21024−1023×
1.1001000111101011100001010001111010111000010100011111

2.2 Column-Oriented Formats and the EBI
Abstraction

OLAP engines rely on column-oriented formats, such as Apache
Parquet, Apache ORC (on-disk), and Apache Arrow (in-memory) for
physical data layout [33–35, 55, 92]. Despite their different names,
the three formats share a common three-level hierarchy. A file (or
in-memory buffer) is divided into row batches, called row groups,
stripes, or record batches, respectively. Each batch contains one
contiguous column chunk per attribute, and every chunk is further
partitioned into pages. Lightweight encodings, such as dictionary,
RLE, delta, and bit-packing, are applied first. Parquet and ORC may
then compress each page or chunk with a general-purpose codec

Figure 4: Floating-Point Compression Visualization

(e.g., Snappy or GZip) to reduce I/O volume, whereas Arrow omits
this second stage to preserve fast zero-copy access semantics.

EBI preserves the familiar row-batch→ chunk→ page hierar-
chy and reuses the metadata fields expected by existing formats,
while discarding control information, such as nested-schema book-
keeping, Bloom filters, and encryption keys, that is orthogonal
to compression. An EBI file begins with a fixed-size header that
records the selected floating-point codec and the chunk-size policy,
continues with a sequence of independent chunks, and ends with a
footer that stores per-chunk logical and physical offsets together
with basic statistics. Each chunk is encoded by one floating-point
compressor; no second-stage general-purpose codec is applied and
no data cross-chunk boundaries, enabling true in-situ decompres-
sion. Because the chunk size can be specified as either a record
count or a byte budget, a chunk can be surfaced as a Parquet page,
an ORC stripe or chunk, or an Arrow buffer through a thin wrapper,
leaving the payload untouched. This lean yet faithful abstraction
lets us benchmark a wide spectrum of numerical compressors in a
setting that aligns directly with mainstream columnar workflows.

3 FLOATING-POINT COMPRESSION
As noted in Section 1, we limit our study to non-GPU-optimized,
lossless floating-point compression methods (shown in Figure 2).
In this section, we classify these methods on their characteristics,
and review each method in detail. Figure 4 illustrates examples of
each compression method.

3.1 XOR Family Methods
The first category is the XOR family. These methods extensively
exploit the XOR operation (⊕) on the bit representation of floating-
point values.

3.1.1 Gorilla. The pioneering method of the XOR family is Go-
rilla [86]. Gorilla is designed for storing time-series floating-point
values. Gorilla leverages two key observations: 1) consecutive records
in a time series tend to be similar, and 2) the XOR result of similar
floating-point values often contains many leading and trailing zeros.
This principle underlies all XOR-based compression methods. For
example, consider the values 24.3 and 23.3. Table 1 presents their
IEEE 754 double representations along with their XOR result.



Table 1: XOR result of 24.2 and 24.3 in binary

Number Binary Representation
24.2 0b0100000000111000001100110011001100110011001100110011001100110011
23.3 0b0100000000110111010011001100110011001100110011001100110011001101

24.2 ⊕ 23.3 0b0000000000001111011111111111111111111111111111111111111111111110

In this case, 24.2 ⊕ 23.3 has 12 leading zeros, and 1 trailing
zero. XOR family methods take advantage of these zeros. The bits
between the leading and trailing zeros are called meaningful bits.
24.2 ⊕ 23.3 consists of 51 meaningful bits.

Specifically, for each record, Gorilla computes XOR with the
previous record and encodes the XOR result. The detailed encoding
process for XOR results is as follows:
(1) The first value is stored uncompressed using 64 bits.
(2) If the XOR result is zero (i.e., the value is identical to the previ-

ous record), store ‘0’ in 1 bit.
(3) If the XOR result is non-zero, compute the number of leading

and trailing zeros, then store ‘1’ in 1 bit, followed by either (a)
or (b):
(a) If the meaningful bits fit within the length of the previ-

ously stored meaningful bits, store ‘0’ in 1 bit, followed by
meaningful bits, using the same encoding as the previous
value.

(b) Otherwise, store ‘1’ in 1 bit. Store the the number of leading
zeros in the next 5 bits, the length of meaningful bits in
the next 6 bits, and the meaningful bits.

3.1.2 Chimp. Chimp [52] is another XOR family floating-point
compression method inspired by Gorilla. Like Gorilla, Chimp uti-
lizes the XOR operation, but it encodes the XOR result differently.
Gorilla directly stores the number of leading and trailing zeros.
Whereas Chimp rounds the number of leading zeros. For example,
if the XOR result has fewer than 8 leading zeros, it is treated as
having 0 leading zeros. If the number of leading zeros falls between
8 and 11, it is treated as 8 leading zeros. This rounding technique
mitigates the fluctuations in the number of leading zeros.

With the rounding the number of leading zeros, Chimp also
encodes the XOR result differently:
(1) The first value is stored uncompressed using 64 bits.
(2) For subsequent values, encoding is determined based on the

trailing count, (a) or (b).
(a) If the trailing count is greater than 6, store ‘0’ in 1 bit,

followed by further two branches:
(i) If the XOR result is zero, store ‘0’ in the next 1 bit.
(ii) If the XOR result is non-zero, store ‘1’ in the 1 bit.

Store the leading count in the next 3 bits, and the
center count in the next 6 bits. Finally, store the
center bits.

(b) If the trailing count is less than or equal to 6, store ‘1’ in 1
bit, followed by further two branches:

(i) If the leading count is the same as in the previous
value, store ‘0’ in the next 1 bit, then store the non-
leading bits (meaningful bits and trailing 0s).

(ii) If the leading count is different from the previous
value, store ‘1’ in the next 1 bit. Then, store the
leading count in the next 3 bits, followed by the
non-leading bits.

Chimp has a variant called Chimp128. Unlike Chimp, Chimp128
computes the XOR not with the previous record, but with a record
from the last 128 records that produces the maximum number of
trailing zeros. Although performing a linear search over all 128
previous records to find the one with the most trailing zeros is
computationally expensive, Chimp128 optimizes this process using
a lookup table. This table maps the last 14 bits of a record to the
index of the most recent record with the same 14-bit trailing pattern.
Chimp128 adopts a record from the last 128 records if and only
if the candidate shares at least 13 trailing bits with the current
record. Otherwise, it defaults to using the previous record as the
XOR target, just like the original Chimp. Thus, the differences in
XOR result encoding are as follows:
(1) The threshold of the trailing count is 6 in Chimp, but 8 in

Chimp128, which affects the encoding process in (2a-b).
(2) If the trailing count is greater than or equal to 13, the XOR target

index is stored in 𝑙𝑜𝑔2128 bits after control bits, modifying the
behavior in (2-a-i) and (2-a-ii).

Patas [7] is a variant of Chimp introduced in a DuckDB [3] pull
request. Patas stores the significant bits in a byte-aligned manner,
enabling faster reading.

3.1.3 Elf. Elf [50] is another XOR family floating-point compres-
sion method that includes additional preprocessing steps. Elf intro-
duces a preprocessing technique that generates more trailing zeros
in each record by simply erasing the trailing bits. Elf employs a com-
plex algorithm for erasing and restoring bits, enabling it to perform
lossless compression. The Elf preprocessor works in conjunction
with the internal XOR compressor as follows:
(1) Let the decimal precision of the record be 𝑛, and replace the

trailing bits with zeros, effectively erasing them, as long as the
difference from the original value remains within 10−𝑛 .

(2) Encode and store the metadata 𝛼 and 𝛽 to restore the erased
bits during decompressing.

(3) Encode and store the modified floating-point record using the
internal XOR compressor.

Elf can potentially use the encoders from Chimp or Gorilla; how-
ever it also provides its own XOR result encoder. The Elf Encoder
adopts leading zeros rounding, similar Chimp. The Elf Encoder
encodes the XOR result as follows. Note that the trailing bits of
each value have already been erased during Elf’s preprocessing:
(1) The first value is stored uncompressed using 64 bits.
(2) If the XOR result is zero, store ‘01’ in the next 2 bits.
(3) Otherwise, compute the rounded leading count, the trailing

count and the center count, defined as 64 − lead − trail. The
process branches into three cases:
(a) If the leading count is the same as in the previous value

and the trailing count is ≥ to the previous trailing count,
store ‘00’ in the next 2 bits, and store the center bits using
the information of the previous trailing count.

(b) If the center count is ≤ 16, then store ‘10’ in the next 2
bits, then store the leading count in 3 bits and the trailing
count in 4 bits. Finally, store the center bits.

(c) Otherwise, store ‘11’ in the next 2 bits, then store the
leading count in 3 bits and the center count in 6 bits. Finally,
store the center bits.



While XOR based approaches carefully compress each record
individually, they face challenges in [de]compression throughput
due to the following reasons: 1) they involve complex control logic,
leading to many branching during [de]compression, and 2) each
record depends on the previous one for decompression, meaning
they do not support random access.

3.2 Quantization Family Methods
Quantization-based floating-point compression methods quantize
the floating-point values by multiplying them by an integer con-
stant, converting them into integers, and apply integer compres-
sion techniques. At first glance, these methods may not appear
lossless. However, under our definition of lossless in Section 1, the
scale factor is provided by the scheme, allowing quantized integers
to be reconstructed using only the scale information. We evalu-
ated three quantization-based floating-point compression meth-
ods: Sprintz [13], Buff [53], and ALP [11]. In particular, Sprintz
and Buff require a scale factor to quantize the dataset. Buff has a
variant called Buff with outliers, which handles outliers that have
excessively high precision to be quantized using the predefined
scale factor. While ALP is lossless in the IEEE 754 representation,
Sprintz and Buff are lossless in terms of decimal representations.
ALP achieves IEEE 754 losslessness by incorporating scale detection
through sampling and outlier handling. It is worth emphasizing
that different techniques employ distinct quantization methods:
Buff uses bitwise operations for quantization, while others apply
mathematical scaling to quantize values. Additionally, Buff and ALP
adopt SIMD-enabled decompression for improved performance.

First, we explain commonly used integer encodings, which serves
as the building blocks for each compression method.

Bit-Packing is an encoding technique that stores each integer us-
ing the minimum number of bits necessary, based on the maximum
value. When an unsigned integer is stored in 𝑛 bits, the encoded
value ranges from 0 to 2𝑛 − 1. Conversely, if the maximum integer
is less than 2𝑛 , all integers can be stored using 𝑛 bits per value. This
concept is known as bit-packing.

Zigzag maps signed integers to unsigned integers, ensuring that
small absolute values remain small after encoding. For example, it
maps 0 to 0, −1 to 1 and 1 to 2.

Delta reduces integer values relative to a reference value, making
them smaller and suitable for bit-packing as an additional compres-
sion step. Delta encoding computes the difference of a value against
some reference value, which can include fixed, per chunk, learned,
the prior value, and others. For example, if the integers’ value ranges
from 100,000 to 100,128 and 100,000 is used as the reference value,
the resulting differences will range from 0 and 128. If the same data
type used to store both the original and delta-encoded values, this
approach alone provides no compression. Therefore, delta encoding
is often combined with bit-packing or run-length encoding (i.e., 200
contiguous zeros can be represented as (0,200)).

Dictionary encoding, employs a bijective mapping to replace at-
tributes from a large domain, such as strings, integers, or floats,
with a finite code domain, typically integers. This method enhances
compression performance by converting large values into smaller
integers, which can then be further compressed using integer en-
coding. Dictionary encoding is particularly effective when the input
sequence has low cardinality relative to the number of records.

3.2.1 Sprintz. Sprintz [13] was originally designed as an integer
compression method but can be applied to floating-point data
through quantization. Sprintz utilizes a forecaster to predict the
value based on the previous value and encode the error between the
predicted value and the actual value. Note that Sprintz is compatible
with various prediction models, including FCM and DFCM [87].
However, since Sprintz has demonstrated superior performance so
we do not explicitly evaluate these older methods. This paper eval-
uates Sprintz with the Delta forecaster, which assumes that each
value is identical to the preceding one. We refer to this variant as
DeltaSprintz. The error sequence produced by the Delta forecaster
is equivalent to the difference sequence. Sprintz further encodes
the error sequence as follows: 1) apply zigzag encoding for each
error to map signed integers to unsigned integers, and 2) perform
bit-packing, determining the number of bits required based on the
maximum value on the error sequence. Sprintz is designed for low
memory usage and high decompression speed.

3.2.2 Buff. Buff [53] is a quantization-based floating-point com-
pression method. Unlike traditional quantization, Buff scales values
by 2𝑛 instead of 10𝑛 . Buff determines the number of bits required
to preserve the specified precision. Rather then multiplying 2𝑛 as
a floating-point value, Buff computes its quantized integer using
bit masking and bit shifting on the significant bits of the floating-
point representation. Bitwise operations are more efficient than
multiplication for this process.

If the value is 3.14 and the precision is 2, the number of bits
required for the fractional part is 8, as determined by the paper [53].
In the IEEE 754 double format, the exponent bits for 3.14 are 1024,
which corresponds to an exponent of 1 since the exponent in double
is biased by 1023. During Buff’s quantization process, the first
mantissa bits are extracted, with a length equal to the exponent
value plus the number of bits required for precision. The hidden
bit is then added to the left, as illustrated in Table 2. This resulting
quantized value can now be treated as an integer.

Table 2: Representations of 3.14

Exponent 10000000000 (1024 in decimal)
Mantissa (including hidden 1) 1.10010001111010111000010100...

Extracted Mantissa Bits (‘1’ + first 1+8 bits)
Bits extracted from mantissa 11 00100011 (binary)
Integer from extracted bits 803 (decimal)

Buff applies additional integer encodings to the sequence of the
quantized values. First, it performs delta encoding by subtracting
the minimum value from all quantized results. Then Buff applies bit-
packing to minimize the number of bits required for storage. Buff
adopts a similar approach to BitWeaving [51] and ByteSlice [32],
organizing bit-packed records in a byte-aligned format. Specifically,
Buff splits each record into byte-sized segments. For example, if a
record requires 17 bits, Buff splits it into 8 + 8 + 1 bits. Buff then
stores records byte by byte, a method referred to as subcolumns.
In the case of 17-bit bit-packing with 𝑛 records: 1) Buff first stores
the 8-bit subcolumns for records 1 to 𝑛. 2) It stores the next 8-bit
subcolumns for records 1 to 𝑛. 3) Buff stores the remaining 1-bit
subcolumns for the record 1 to 𝑛.



Buff enables in-situ query execution through its unique storage
format. During decompression, it is possible to read only the first
𝑘 bits to achieve the required precision. This allows for material-
ization with varying precision and provides significant speedups.
By leveraging the base value from delta encoding, Buff enables
faster sum calculations using integer arithmetic. Additionally, for
maximum or filter queries, Buff improves efficiency by skipping un-
necessary comparisons on already disqualified records. It achieves
this by effectively managing qualified records after each subcolumn
evaluation. SIMD instructions are also supported for materializa-
tion, aggregation, and filter operations.

Buff introduced the concept of just-enough precision for floating-
point compression with in-situ query execution. It also proposed a
variation of Gorilla, called gorillabd, which applies bounded preci-
sion to floating-point values before using Gorilla compression. This
approach increseas the number of trailing zeros in the Gorilla XOR
results, a technique later adopted in Chimp and Elf. Additionally,
Buff employs sparse coding to handle outliers, though this feature
is not evaluated in this work for the sake of simplicity.

3.2.3 ALP. ALP [11] leverages FastLanes [10] to achive significant
performance benefits from SIMD instructions. ALP dynamically
switches between the compression methods using adaptive sam-
pling, where a subset of data is sampled to determine the most
suitable method. The default ALP encoding consists of two steps:
1) ALP determines the scale factor for quantization based on sam-
pling. 2) It uses FastLanes’s FFOR to perform delta encoding and
bit-packing in a fused, vectorizedmanner, processing data in chunks
of 1024 records (equal to the vector width). ALP’s quantization pro-
cess is achieved by two-step scaling as follows where 𝑛 represents
the original floating-point value, 𝑒 is the scale factor for the first
step and 𝑓 is the scale factor for the second step. The quantization
process is defined as: ALP𝑒𝑛𝑐 = round(𝑛 × 10𝑒 × 10−𝑓 ).

The dequantization process follows a similar approach, where 𝑑
is the quantized integer: ALP𝑑𝑒𝑐 = 𝑑 × 10𝑓 × 10−𝑒 .

Due to the excessively high precision of 𝑛, it is sometimes pos-
sible that ALP𝑑𝑒𝑐 [𝑑 := ALP𝑒𝑛𝑐 ] ≠ 𝑛. ALP handles these cases as
exceptions, storing them separately, similar to Buff with outliers.

When adaptive sampling determines that the default ALP com-
pression is not ideal for the dataset, ALP falls back to ALP𝑟𝑑 , a
compression method designed for real doubles. ALP𝑟𝑑 exploits the
front bits similarity on double. First, it determines 𝑝 , the position to
split the double into two parts, as a result of the adaptive sampling.
Then, it applies dictionary encoding and bit-packing to the left part,
while applying only bit-packing to the right part.

3.3 Other Float Compression Methods
Additional floating-point compression techniques we do not evalu-
ate in this paper. While we focus on CPU-based compression tech-
niques, numerous GPU-based compression approaches have also
been proposed [23, 89]. In 2023, FastLanes [10] was introduced as a
building block for SIMD accelerated integer encodings, including
Dict, FOR, Delta, and RLE. BtrBlocks [48] is another compression
approach, which adaptively selects a compression scheme and en-
code values multiple times. BtrBlocks introduces PseudoDecimal as
a floating-point encoding method that determines the scale factor
for quantization on a per-record basis. Additionally, MOST [97] is

a recent example of model-based lossy compression method for
floating-point values.

3.4 General-Purpose Methods
General-purpose compression methods are designed for arbitrary
byte arrays or encodings, not just floating-point data. In this pa-
per, we evaluate Gzip [27], Snappy [39], and Zstd [24]. All three
methods belong to the LZ77 family, encoding bytes using a sliding
window over the input byte stream as their dictionary. Bytes are
compressed by representing them as sequence information, which
consists of: 1) position and length in the sliding window, and 2) a
literal indicating the next bytes. The method used to encode this
sequence information varies among Gzip, Snappy, and Zstd. Gzip
encodes sequence information using Huffman encoding. Snappy
does not apply further encoding; it directly stores the sequence
information to prioritize high throughput. Zstd employs Huffman
encoding for literal data, while using finite state entropy encoding
for the remaining sequence information. This approach enables
faster [de]compression throughput than Gzip. Note that these tech-
niques are traditionally referred to as dictionary coders. However,
we avoid this term to distinguish them from dictionary encoding
used in columnar databases [9].

4 EBI FILE FORMAT AND LIBRARY
Our library EBI includes a corresponding columnar file format de-
signed to integrate into existing data systems. It compresses data
into chunks, as described in Section 2.2. The library provides low-
level and high-level APIs, supporting benchmarking and integration
into existing data processing frameworks. Released under the MIT
license, EBI can be used freely for activities such as benchmarking,
development, and further research. Three key motivations under-
pin the development of our new column-oriented file format and
library: 1) existing file formats lack support for new floating-point
compression techniques, 2) current file format libraries generally
require users to decompress entire chunks before performing any
operations [55], and 3) irrelevant metadata and complex control
logic hinder the evaluation of compression performance. Our EBI
file format and library aim to provide a simple yet complete file
format for evaluating floating-point compression techniques. Ad-
ditionally, the library is designed to be flexible enough to support
in-situ query executions while offering high-level APIs.

4.1 EBI Library API
The EBI library provides a low-level API for manipulating chunks
and a high-level API for interacting with the entire file. The low-
level API is responsible for writing and reading individual chunks
of encoded data. Since the chunk format depends on the chosen
compression method, the low-level API maintains a consistent
interface, while each compression method has a unique imple-
mentation. For compressing floating-point values, EBI provides
a Compressor interface, with each evaluated compression method
having its own Compressor implementation. Similarly, for decom-
pression, EBI provides a Reader interface, where each method has
a corresponding implementation that allows access to the data
chunk in either compressed bytes or decompressed values. Certain



methods, such as BuffReader and SprintzReader, have special-
ized implementations because they support in-situ query execution
directly on quantized values. Additionally, BuffReader is designed
to efficiently interact with the subcolumns, ensuring proper query
execution as described in section 3.2.2.

The EBI low-level API operates independently of the EBI high-
level API and any specific EBI file format, making it suitable for
development efforts that require the implementation of pure com-
pression, decompression, and query execution.

The high-level API is responsible for handling the header, chunks,
and the footer, managing Write and Read interface in Rust. Before
performing actual compression or decompression, the high-level
API interacts with the low-level API to convert an uncompressed
buffer into a compressed buffer or vice versa, and writes the result at
the appropriate position based on the format specification. The end-
user interface of High-level API consists of Encoder and Decoder.

4.2 Evaluation Operators on EBI
Our evaluation framework leverages both the low-level and high-
level APIs to perform unified evaluations and optimize in-situ
queries when possible.

The framework is implemented using the QueryExecutor inter-
face, with tailored implementations for each compression method.
While the QueryExecutor interface provides a default method built
on top of the Reader interface, it can be replaced with a special-
ized implementation for a specific compression method using the
EBI low-level API. Note bm_filter is used for the bitmap filter.
QueryExecutor has 6 methods:

(1) filter(bitmap_filter, predicate): bitmap
(2) filter_materialize(bm_filter, predicate): float[]
(3) sum(bitmap_filter): float
(4) max(bitmap_filter): float
(5) min(bitmap_filter): float
(6) l2_norm(offset, target_vector): float

With the lower-level query interface, the query logic is embedded
within the chunk. The evaluation framework utilizes the Decoder
to provide a high-level query interface. EBI provides the same high-
level interface as its low-level counterpart, while also introducing
additional functionalities.

(1) materialize(bitmap_filter): float[]
(2) knn(target_vector, k): index[]
(3) matmul_cuda(target_matrix, shape): matrix

Aggregations such as sum, which are available in the low-level
interface, are executed on a per-chunk basis in the high-level inter-
face. The materialize operation merges the decompressed results of
each chunk. The knn function performs k-nearest neighbor search,
which is implemented using the l2_norm primitive available in
the low-level query API. The matmul_cuda function performs ma-
trix multiplication by directly interfacing with the low-level API
and leveraging cuBLAS for accelerated computation. Notably, the
EBI design implicitly supports parallelization at the chunk level;
however all evaluations in this work are conducted using a single
thread.

5 BENCHMARK SETUP
The objective of this paper is to present a comprehensive benchmark
of floating-point compression in data systems, with a focus on
compression performance and efficiency, general database query
performance, and performance in machine learning data.

Experiments are conducted on the two hardware setups. The
GPU server is equipped with Intel(R) Xeon(R) Gold 6216 CPU, 192
GB RAM, 240 GB SSD, and Quadro RTX 6000. The other server is
Intel(R) Xeon(R) Gold 6242 CPU, 192 GB RAM, 240 GB SSD.

All benchmark and compression techniques are natively imple-
mented in Rust, with one exception. ALP [11] is the only compres-
sion method that uses a foreign function interface (FFI) between
Rust and C++, as its implementation is highly optimized through
the C++ compiler’s auto-vectorization. We utilize autocxx [2], a
wrapper library that automatically bridges the FFI between Rust
and C++. In our case, the FFI overhead is minimal because C++
function calls are infrequent, being called only once per chunk
containing 16,777,216 double values in our default setting. Addi-
tionally, the C++ function simply writes data to a buffer passed
from Rust, keeping the interaction lightweight. Since both C++ and
Rust are compiled to LLVM intermediate representation (IR) and
subsequently optimized by the LLVM backend, their performance is
directly comparable under equivalent compilation settings. We also
believe that having one FFI-based implementation provides a flexi-
ble foundation for integrating future methods without requiring a
full rewrite to Rust.

We use Rust 1.87 with the —-release flag. ALP’s C++ integration
is via FFI and clang++ 18.0 is used internally. We utilized cuBLAS [1]
with CUDA 12.6. We compiled the code for both AVX2 and AVX512
instruction sets by configuring the target CPU accordingly. Buff
leverages hand-optimized functions tailored for AVX2, while ALP
benefits from SIMD instructions auto-vectorized by LLVM.

We evaluated six operations on general floating-point datasets:
compress, decompress, filter, filter-materialize, max, and sum. We
also evaluated compression performance on several embedding
datasets. Tomeasure queryworkload performance, we executed two
TPC-H queries, Q1 and Q6, with a focus on floating-point columns.
We also used the UCR Time Series Classification Archive [26] to
perform a 1-nearest neighbor (1-NN). A matrix multiplication oper-
ation was also evaluated on a GPU server using randomly generated
floating-point data. For each configuration, we report the mean of
five runs. Unless otherwise stated, all experiments were performed
in memory with compiler optimizations targeting AVX2.

5.1 Evaluation Metrics
5.1.1 Compression Metrics. The compression metrics are used to
evaluate a fundamental compression performance for each com-
pression method. Compression ratio (CR) is a key metric for assess-
ing the efficiency of a compression technique. A lower compres-
sion ratio indicates greater space savings. We use [de]compression
throughput to quantify the speed at which a compression method
compresses or decompresses a large set of values. Throughput rep-
resents the normalized elapsed time relative to the dataset size. A
higher throughput indicates faster compression or decompression.

CR. =
Comp. Size
Orig. Size

Thrpt. =
Orig. Size

[De]Comp. Time



5.1.2 General DatabaseQueryMetrics. We use database operations
filter, filter-materialize, max, and sum. Other operations, including
min and average, can be derived from these primary operations, and
are expected to have comparable computational costs; thus, they are
not separately assessed. All queries are executed with EBI over com-
pressed chunks. To evaluate late materialization [9], the filter takes
a predicate as input and generates a RoaringBitmap [49], which is a
space-efficient compressed bitmap. Filter-materialize first executes
the filter operation and then materializes the records that satisfy
the filter predicate. Max computes the maximum value across all
the records, while sum aggregates the total sum of all record values.
We adopt three filter predicates for evaluation: greater than the
tenth percentile, greater than the ninetieth percentile, and equal to
the median. The varying percentiles are intended to simulate differ-
ent levels of selective queries. We conducted operator experiments
under two orthogonal configurations: (1) SIMD target, comparing
256-bit AVX2 with 512-bit AVX512 and (2) I/O substrate, comparing
on-disk execution with in-memory execution. For on-disk execu-
tion, the [un]compressed file is read from the filesystem after the
cache is flushed prior to each operator evaluation.

We additionally include real-world queries derived from TPC-H
Q1 and Q6, along with a simplified variant of Q1. The simplified Q1
query eliminates arithmetic expressions involving floating-point
columns in order to evaluate in-situ query performance in a pratical
setting. Each query is decomposed into two components: a non-
floating-point part and a floating-point part. The non-floating-point
component is executed using DuckDB [3], while the floating-point
component is executed by EBI, which synthesizes the required
computation from primitive operations.

For database queries, we evaluate only throughput. We measure
both the end-to-end elapsed time and the breakdown of execution
times. While the end-to-end execution time is directly measured
by the benchmark, the segmented execution times are extracted
through the instrumentation of our library.

To aggregate the elapsed time measurements across datasets, we
compute query throughput as follows:

Query Throughput [GB/s] = Original Size
Query Elapsed Time

5.1.3 Machine Learning Query Metrics. Machine Learning (ML)
tasks typically involve datasets with high precision and high en-
tropy, which present significant challenges for compression. In this
evaluation, we aim to assess the performance of state-of-the-art
compression techniques on ML datasets. We examine the need for
high precision for task performance by analyzing the impact of
reduced precision on both compression efficiency and accuracy.

For evaluating compression on ML datasets, we used 2 embed-
dings generated using OpenAI’s “text-embedding-3-small” [69].
For the ML query evaluation, we perform a 1-nearest neighbor
(1-NN) classification task using the UCR Time Series Classification
Archive [26]. 1-NN is a nearest-neighbor classification [25] that
assigns an unlabeled data point the label of the closest previously
classified data point. Given a set of train vectors with labels and an
unlabeled target vector, where each vector represents a data point,
the 1-NN classification proceeds as follows. First, it computes the
distance between the target vector and each labeled training vector,
then assigns the target vector the label of its nearest training vector.

The UCRTime Series ClassificationArchive contains 128 datasets
from various domains, each containing train vectors and test vec-
tors. Each test vector is intended to be classified into one of the
labels assigned to train vectors. In this study, we store all train
vectors in a single EBI file format. To evaluate performance, we
measure the elapsed time for a single 1-NN operation using a single
test vector. Since there are multiple test vectors, we obtain as many
elapsed time measurements as there are test vectors. This elapsed
time is then converted into throughput by dividing the original
data size. In other words: 1-NN Throughput [GB/s] = (Original
Size)/ (Elapsed Time for a single 1-NN Search)

We also evaluate the performance of matrix multiplication op-
eration on a GPU using CUDA and cuBLAS. In our experimental
setup, the EBI format contains 40 matrices sized 4096 x 4096, each
of which is multiplied with a target matrix of the same dimensions.
This results in 40 matrix multiplications being performed against
the target matrix.

5.2 Datasets
Table 3 presents all datasets evaluated in this paper classified with
its type. For the general compression and database operator ex-
periments, we use 13 time-series datasets and 17 non-time-series
datasets spanning various domains. These datasets are sourced
from the same data sources and domains as those used in the ALP
paper [11], and include all datasets evaluated in the Chimp, Elf,
and BtrBlock papers [48, 50, 52]. Due to high precision, Buff failed
to compress on CMS/25, NYC/29, POI-lat, and POI-lon. Similarly,
DeltaSprintz failed to compress on CMS/25, POI-lat, and POI-lon. In
cases where a method fails to compress a dataset, we exclude that
dataset from the evaluation for that method. We excluded these
datasets whenever computing averages. For ML tasks, we primarily
use the UCR Time Series Classification Archive [26]. To ensure the
quantization is successfully done, datasets with precision higher
than 9, we round each floating-point at the decimal point 10 to
ensure their precision is at most 9. For the embedding datasets, we
use AirBnB’s property dataset [62] and arXiv [63], both embedded
using OpenAI’s “text-embedding-3-small”.

Table 3: Datasets Evaluated. Top 2 rows are from ALP.

Type Datasets
Time Se-
ries

Air-Pressure [64], Basel-temp [61], Basel-wind [61], Bird-
migration [42], Bitcoin-price [46], City-Temp [91], Dew-Point-
Temp [67], IR-bio-temp [66], PM10-dust [65], Stocks-DE [90],
Stocks-UK [90], Stocks-USA [90], Wind-dir [68]

Non-
Time
Series

Arade/4 [5], Blockchain-tr [14], CMS/1 [5], CMS/25 [5],
CMS/9 [5], Food-prices [95], Gov/10 [5], Gov/26 [5], Gov/30 [5],
Gov/31 [5], Gov/40 [5], Medicare/1 [5], Medicare/9 [5],
NYC/29 [5], POI-lat [40], POI-lon [40], SD-bench [94]

2D Time
Series

UCRArchive2018’s 128 Datasets [26]

Embed. Arxiv-Embed [63], Airbnb-Embed [62]
TPC-H Generated with DuckDB v1.2.2 TPC-H Extension [6]

6 BENCHMARK RESULTS
We analyze benchmark results from four perspectives: compression
performance, general database query performance, and machine
learning query performance.



6.1 Compression Performance
We evaluate performance using three key metrics: compression
ratio, compression throughput, and decompression throughput.

First, Figures 5 to 7 present the compression ratio, compression,
and decompression throughput for all non-ML datasets. The box-
plots in this paper use whiskers extending to 1.5 times the interquar-
tile range (IQR). Dashed lines represent the mean values, while solid
lines represent the median values. Figures 14 and 15 present the
compression performance differences between time-series and non-
time-series data. Decompression throughput is omitted due to its
smaller difference and space constraints. These figures are results
in-memory with an 256-bit AVX2 SIMD configuration.

These figures illustrate the trade-off between compression ratio
and compression throughput. The top methods in terms of com-
pression ratio are Gzip, Zstd, ALP, and Elf, in that order. ALP also
achieves the highest compression and decompression throughput.
While ALP provides the best balance between compression ratio and
throughput, it is important to note that its high throughput is due
to the use of efficient SIMD instructions. Although Zstd achieves
relatively high compression and decompression throughput, Elf
exhibits significantly lower throughput.

The XOR family compression methods exhibit relatively low
throughput, including Elf, despite one of the best compression
ratios. During decompression, these methods require access to the
previous value to decode each record, which reduces throughput
and eliminates random access.

While XOR family methods exhibit very low throughput, the
byte-level general-purpose methods Snappy and Zstd achieve ac-
ceptable throughput. In terms of compression ratio, Snappy per-
forms slightly worse, partly due to its algorithm’s intentional limi-
tation on the search window. However, particularly on non-time-
series datasets, both Snappy and Zstd perform the second fastest.
Buff, a quantization-based method, performs particularly well on
time-series datasets while maintaining acceptable compression and
decompression throughput.

Figures 11 and 12 show AVX2, on-disk throughput and Figure 13
show AVX512 in-memory throughput. On-disk decompression per-
formance is influenced by read time, making compression ratio a
critical factor. Particularly, Snappy is no longer faster than Zstd
and Gzip due to poor compression ratio. On AVX512 experiments,
only ALP increases throughput, attributed to its auto-vectorization-
oriented design; however, the impact remains minimal due to the
relatively high cost of I/O read operation.

From the perspective of compression performance, ALP is the
best choice when SIMD instructions are enabled, as it achieves both
high compression ratios and efficient compression and decompres-
sion throughput. Among other well-balanced methods, Zstd is a
strong contender, offering a good balance between compression
ratios and throughput, particularly for non-time-series data. For
time-series data, Buff is a good choice, as it not only performs well
in compression but also offers advantages in query execution, as
discussed later. If compression ratio is the primary concern and
throughput is less critical, Elf is a viable option, as it achieves one
of the highest compression ratios.

Note that Gorilla was originally designed to store and analyze
time-series data from system monitoring. As a result, this approach

and its XOR derivatives are highly optimized for datasets that will
result in many trailing zeros. This primarily occurs when repeating
numbers are powers of two, including fractional data (i.e., 1/2, 1/4).
To demonstrate how these methods work, we construct a synthetic
dataset that uniformly generates runs up to 5 values long uniformly
chosen a domain of [24, 23, 22,21, 1,2−1, 2−2, . . . , 2−6]. The synthe-
sized dataset has 41.0 trailing zeros on average. Figure 18 shows
the compression ratios on the synthetic dataset. Here, XOR-based
methods and general-purpose compression methods, which exploit
long repeated byte patterns, perform well, though they are not the
best. While decimal values might be close to each other numerically,
their actual binary representations can differ a lot, making such
power-of-two-friendly datasets relatively uncommon in real-world
scenarios. Notably, our non-ML datasets have 22.6 trailing zeros on
average, much lower than this synthetic dataset.

6.2 Database Operator Performance
As this study focuses on floating-point compression for data sys-
tems, we evaluate query operator on compressed data. The opera-
tors assessed in this study include filter, max, and sum. For filter, we
evaluate equality and greater than comparisons using each dataset’s
10th, 50th, and 90th percentile values. Figures 8 to 10 show these
results. Due to similar trends, results for the equality, 10th, and 50th
percentiles are omitted; figures show throughput for max, sum,
and selected filter queries. Figures 16 and 17 compare the query
performance differences between time-series and non-time-series
data. Filter throughput is omitted due to its consistent characteristic
as Figures 16 and 17 and space constraints.

Buff features a specialized implementation for in-situ operator
executions, allowing it to compute results without fully decom-
pressing the data. Similarly, Sprintz can execute queries without
requiring dequantization; however, it still needs to decode delta
and zigzag encodings. Figures 8 and 9 show that Buff achieves sig-
nificantly high throughput for filter greater than and max queries.
This performance is particularly notable on time-series datasets,
reflecting the same characteristics observed in its compression per-
formance. Buff benefits from 256-bit AVX2 SIMD instructions and
can efficiently skip unnecessary data due to its specialized format.
For the sum operator, ALP achieves the highest throughput, fol-
lowed by Buff. In contrast, XOR family methods also struggle with
the sum operator due to their slow decompression.

With the exception of Buff, query throughput is generally pro-
portional to decompression performances. For instance, decompres-
sion and sum throughput are highly correlated. ALP maintains high
throughput, despite needing to fully decompress the data before
computing the filter result. Sprintz achieves slightly better query
performance, given its moderate decompression throughput. This
advantage arises because Sprintz can perform filter comparisons
directly on quantized values, reducing the overhead.

Figure 20 shows the execution time of the TPC-H Q1 query on
the EBI side. While performance generally correlates with decom-
pression throughput, Buff’s performance varies depending on the
query. As TPC-H Q6 exhibited similar relative performance, its
results are omitted. The dotted line in Figure 20 represents a simpli-
fied version of Q1, which involves aggregation on a single column
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Figure 8: Filter > 90th %ile Throughput Figure 9: Max Operator Throughput Figure 10: Sum Operator Throughput

Figure 11: On Disk: Comp. Throughput Figure 12: On Disk: Decomp. Throughput Figure 13: AVX512: Decomp. Throughput

Figure 14: Compression Ratio Figure 15: Compression Throughput

Figure 16: Max Operator Throughput Figure 17: SumOperator Throughput

Figure 18: Mean Comp. Ratio on ML Datasets.

Figure 19: 1-NN with one target vector

without projection transformations. This enables Buff to perform
in-situ query execution, making it the fastest in this case.

To summarize compression and database query performance
results, Buff’s optimizations for query operator led to a significant

performance improvement, including in-situ executions of real-
world TPC-H queries. In contrast, quantization-based and general-
purpose methods generally outperform XOR methods, primarily
due to the computational overhead of XOR and bitwise operations,
which we further examine in the following section. For general com-
pression performance, ALP achieves significantly superior results,



Figure 20: TPC-H Q1 Execution Times with Q1 Simplified
Results with Horizontal Dotted Lines.

largely due to its effective use of SIMD instructions and a SIMD-
optimized layout. Additionally, lightweight general-purpose com-
pression methods such as Snappy and Zstd perform well, ranking
just behind ALP in both compression and decompression through-
put. Notably, Among non-time-series datasets, Zstd achieves the
best compression ratio, second only to Gzip.

6.3 Profiling Methods
To analyze performance differences under our unified framework,
we instrument EBI to record time spent on key tasks. Since not all
algorithms align perfectly with their designated steps, or because
we sometimes rely on external components or system calls, any
other computational work is categorized under “Other Processing“.

Figures 21 to 23 show the compression and decompression ex-
ecution with times segmented by operation. The execution times
are first normalized by dividing by the dataset size, and then the
average is taken for each segment, presenting a runtime cost per
bit unit. The I/O time across methods is consistent, except for de-
compression where the more effective methods read less data. XOR
family methods use most of their time to calculate xors and perform
bit-packing, which is a significant factor in their poor performance.
These results also highlight that recent XOR methods improve their
compression ratio at the expense of more costly bitwise operations.
For a filter operation, the XOR family methods still suffer frommost
of their time on xor and bit operations. The reduced I/O and opera-
tions from Buff are in large part due to its ability to skip significant
parts of the data. Except for Buff and Sprintz, all other compression
methods exhibit the same time span for performing the compare
operation. This consistency explains why the query performance
is predominantly constrained by the decompression process.

6.4 Machine Learning Tasks Performance
Considering that nearest neighbor search is a fundamental building
block for machine learning tasks [70], including clustering [12, 37,
75, 76, 82, 83, 85], classification [30, 74], similarity search [29, 31,
73, 78, 80, 81, 84, 96], and anomaly detection [15–22, 57–59, 71, 72,
77, 93], we explore a 1-NN task as a representative vector operation.
We use the text embedding dataset for compression performance
and the UCR Time Series Classification Archive for 1-NN. Our
evaluation framework includes support for CUDA-optimized matrix
multiplication operators. Given the foundational role of matrix
multiplication in machine learning, we consider operations such
as vector search for filtering and comparison, floating-point data
compression (e.g., normalization of feature sets or embeddings), and

matrix multiplication itself to be representative of typical database
operations in machine learning workloads.

6.4.1 Compression Performance. In the UCR2018 dataset, the de-
compression throughput exhibited a trend similar to that observed
in non-ML datasets. Additionally, Buff’s lower-precision material-
ization improved throughput. This improvement was not due to an
increase in the peak throughput but rather a rise in the minimum
throughput, which led to a more consistent performance overall.

Figure 18 shows the compression ratio on the embedding dataset,
which is increasingly popular for RAG tasks. Embedding data typi-
cally features high precision and high entropy, presenting signifi-
cant challenges for compression. These compression ratios are in-
ferior compared to those for general data. In particular, XOR-based
methods struggle with its high entropy. Because the embedding
has a precision of 10, the quantization-based family still compress
the embedding data well.

For the compression ratio, there are no significant winners. Buff,
DeltaSprintz, and ALP all have acceptable compression ratios of
around 0.5 as the median value. For the compression throughput,
Snappy is the fastest, but it struggles to achieve good compres-
sion due to its algorithmic design. As ALP remains the fastest,
we confirmed Buff’s lower-precision materialization improves its
decompression performance.

6.4.2 1-Nearest Neighbor Performance on the UCR Archive. Fig-
ure 19 shows the throughput for classifying a single target vector.
These results are similar to Figure 7 since 1-NN decompresses prior
to the calculation. The reason why the throughput for 1-NN is
higher than that of the decompression is while the decompression
needs all the records to be stored in the vector, 1-NN needs only
the current chunk to be stored as a decompressed form. Note that
while the reduced precision of Buff improves performance, task
accuracy is minimally impacted (less than 1% accuracy loss on av-
erage) – which aligns with research on low precision learning [99].
Overall, in 1-NN, since the decompression speed is a bottleneck,
the decompression throughput is the most important factor for
the 1-NN throughput. Supporting lower precision operations can
significantly improve performance here.

6.4.3 Matrix Multiplication Performance on GPU. We conducted
runtime profiling for this operator, as shown in Figure 24. The
observed performance is proportional to decompression through-
put. While the slower XOR-based methods suffer from expensive
XOR operations, matrix multiplication operations account for a
substantial portion of execution time in the other methods. These
results highlight how the overall performance is influenced by both
decompression and the subsequent operation. In general, when
the subsequent operation is more computationally intensive than
matrix multiplication, it dominates the runtime, resulting in similar
overall throughput across methods.

7 CONCLUSION AND SUMMARY
In this study, we propose a comprehensive benchmark to evaluate
floating-point compressionmethods with an ‘apples-to-apples’ com-
parison. Given the rising interest in systems support for floating-
point data and compression, our open-source benchmark provides



Figure 21: Compression Runtime Pro-
filing, except Gzip which was too slow.

Figure 22: Decompression Runtime Profil-
ing

Figure 23: Filter Greater than 90th Per-
centile Runtime Profiling

Figure 24: GPU Matmul Profiling

Figure 25: Decision Tree for Existing Compression Methods

a critical foundation for understanding trade-offs and enabling con-
sistent comparisons across future work. Our results show that no
single method dominates across all scenarios, as summarized in
Figure 25 with a decision tree. We highlight the following findings.
XOR compression offers strong ratios but low throughput.
While XOR-based methods such as Elf achieve top compression
ratios, they suffer from slow decompression and lack in-situ query
support. Recent gains in space efficiency often come at the cost of
speed. Optimizing bit-level operations and integrating SIMD could
improve performance in this family.
Decompression remains the main query bottleneck. Most
methods (except Buff and Sprintz) require full decompression be-
fore query execution, making their performance proportional to

decompression speed. Buff stands out with in-situ support and data
skipping, offering significantly faster query execution. Extending
such capabilities to other methods is a promising direction.
General-purpose methods perform well on non-time-series
data. For non-time-series datasets, general-purpose compressors
like Zstd and ALP show strong results. Zstd balances high com-
pression ratio and throughput, while ALP leads in performance.
These findings suggest general-purpose methods are viable when
floating-point specificity is not critical.
SIMD and layout drive performance gains. ALP and Buff bene-
fit from layout optimizations and SIMD instructions, enabling high
[de]compression throughput. Future designs should explore com-
bining layout-aware techniques with SIMD to boost both efficiency
and flexibility, especially for XOR-style encoding.
Compression support for ML workloads remains limited.
ML workloads are influenced by decompression speed and com-
pute intensity, with embeddings often being high-entropy and hard
to compress. Current methods lack efficient support for lossless
ML data compression. Promising directions include ML-specific
methods and tightly integrated in-situ decompression-computation
models for lightweight inference.
Heterogeneous deployment scenarios demand broader eval-
uation. Applications span dashboard queries, ML tasks, and an-
alytics, across cloud, edge, and hybrid environments. Hardware
diversity—ranging from SIMD-less CPUs to GPU-accelerated sys-
tems—adds further complexity. Evaluating methods across these
dimensions would require major codebase refactoring and infras-
tructure changes, which are beyond the scope of this paper. We
leave such comprehensive exploration for future work, but believe
that the results here demonstrate where trade-offs exist.
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