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ABSTRACT
Columnar databases rely on specialized encoding schemes to reduce
storage requirements. These encodings also enable efficient in-situ
data processing. Nevertheless, many existing columnar databases
are encoding-oblivious. When storing the data, these systems rely
on a global understanding of the dataset or the data types to de-
rive simple rules for encoding selection. Such rule-based selection
leads to unsatisfactory performance. Specifically, when performing
queries, the systems always decode data into memory, ignoring
the possibility of optimizing access to encoded data. We develop
CodecDB, an encoding-aware columnar database, to demonstrate
the benefit of tightly-coupling the database design with the data en-
coding schemes. CodecDB chooses in a principled manner the most
efficient encoding for a given data column and relies on encoding-
aware query operators to optimize access to encoded data. Storage-
wise, CodecDB achieves on average 90% accuracy for selecting
the best encoding and improves the compression ratio by up to
40% compared to the state-of-the-art encoding selection solution.
Query-wise, CodecDB is on average one order of magnitude faster
than the latest open-source and commercial columnar databases
on the TPC-H benchmark, and on average 3x faster than a recent
research project on the Star-Schema Benchmark (SSB).
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1 INTRODUCTION
Over the past decade, columnar databases dominate the data ana-
lytics market due to their ability to minimize data reading, maxi-
mize cache-line efficiency, and perform effective data compression.
These advantages lead to orders of magnitude improvement for
scan-intensive queries compared to row stores [27, 63]. As a result,
academic research [1, 2, 28, 52], open-source communities [7, 8],
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Figure 1: Comparison of encoding schemes against an encod-
ing selector that exhaustively evaluates encodings. The ex-
haustive encoding selection compresses as good as GZip and
dictionary encoding is much faster than GZip and Snappy
for encoding and decoding data.

and large commercial database vendors, such as Microsoft, IBM,
and Oracle are embracing columnar architectures.

Columnar databases employ compression and encoding algo-
rithms to reduce the data size and improve bandwidth utilization.
Both are important for organizations storing data in public clouds.
For example, one S&P 500 employee we spoke with disclosed that
their monthly cloud costs for storing Parquet files are in the six-
figure range. Therefore, encoding data to reduce the storage size
makes significant practical sense. Popular encoding schemes in-
clude dictionary encoding, run-length encoding, delta encoding,
bit-packed encoding, and hybrids. These methods feature a reason-
able compression ratio with fast encoding and decoding steps.

Many database systems support the LZ77-based byte-oriented
compression algorithms [61], such as Snappy [23] and GZip [22].
Although the decompression step in these algorithms is slow and
hinders query performance, people often believe they feature a
better compression ratio over encoding schemes. However, this is
not always the case. GZip and Snappy are one-size-fits-all compres-
sion algorithms, having no preference for the dataset. Encoding
schemes are designed for datasets with particular characteristics.
For example, dictionary encoding works best on datasets with low
cardinalities, and delta encoding works best on sorted datasets. The
nature of encoding schemes requires us to choose the encoding
scheme correctly for a given dataset, which is not trivial.

To illustrate this point, in Figure 1a, we compress a large cor-
pus of real-world datasets (see Section 6.1 for details) using GZip,
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Snappy, two popular open-source columnar datastores Apache Par-
quet [8] and Apache ORC [7], and one encoding selection algorithm
from previous work [2] implemented on Parquet. We then compress
the dataset with all available encoding schemes and choose the one
with smallest size (Exhaustive). We see that although GZip yields a
better result than Parquet and ORC, the exhaustive encoding selec-
tion achieves a similar compression ratio as GZip. In Figure 1b, we
compare the throughput of dictionary encoding, Snappy, and GZip
on a synthetic IPv6 dataset, and observe that this encoding scheme
is 3x-4x faster than GZip in both encoding and decoding. This result
implies that a good encoding selector allows us to benefit from both
good compression ratios1 and high query performance.

Despite the prevalence of columnar databases and the impor-
tance of encoding selection, limited work exists on selecting encod-
ings for a given dataset. Seminal work by Abadi et al. [2] proposes
a rule-based encoding selection approach that relies on the global
knowledge of the dataset (e.g., is the dataset sorted) to derive a
decision tree for the selection. Open-source columnar stores such
as Parquet, ORC and Carbondata [5], and commercial columnar so-
lutions such as Vertica [41] choose to hard-code encoding selection
based on the column data type. Unfortunately, these approaches all
have significant limitations. Abadi’s rule-based algorithm achieves
a sub-optimal compression ratio and requires multiple passes on
the original dataset, which becomes prohibitively expensive when
dataset size increases. Hard-coded encoding selection, as we show
in Figure 1a, leads to sub-optimal results in practice.

Besides compression, the encoding schemes also facilitate ef-
ficient query processing. Most encoding schemes compress each
data record individually, allowing a carefully designed iterator to
locate and decode only the raw bytes corresponding to the target
records, skipping the records in between [1, 2]. An advanced algo-
rithm makes comparisons on the bit-pack encoded records without
decoding any byte [30], making the query even faster. A dictionary-
encoded column contains a list of distinct values. Operators, such
as aggregation, can use this information to speed up execution.

Nevertheless, many open-source columnar databases [4, 19]
have encoding-oblivious query engines. These systems separate the
query engine and the encoded data file with a decoding layer. When
the query engine reads an encoded column, the decoding layer first
decodes the column into in-memory data structures, then passes
the decoded data to the query engine. The query engine is blind
to the encoding scheme used and has no direct access to the en-
coded data. This design prohibits the query engine from performing
optimization towards encoded columns.

Based on these observations, we design CodecDB, a holistic
encoding-aware columnar database. CodecDB demonstrates that
by tightly coupling the data encoding selection in the database
design, we can significantly improve the end-to-end system perfor-
mance. The contribution of CodecDB is twofold. First, CodecDB
provides a data-driven encoding selector to choose encoding with
the best compression ratio for a given dataset. CodecDB identifies
features that impact datasets’ encoding performance and utilizes
machine learning techniques to train a series of models to predict
compression and query performance. This approach is beneficial
because it requires no prior knowledge from end-users of candidate

1We define the compression ratio as compressed size
uncompressedsize [61].

encodings, domain knowledge, or understanding details of the en-
coding implementation – all of which are inferred from the dataset.
Our experiments show that CodecDB only needs to access a small
portion of the dataset when making encoding decisions, without
requiring global knowledge of the whole dataset.

Second, the query engine in CodecDB leverages advanced open-
source SIMD libraries, parallel hash structures, and encoding-aware
query operators to optimize access to encoded data. CodecDB
achieves a significant improvement in the end-to-end performance
evaluation of queries over encoded data in comparison to open-
source, research, and commercial competitors. Specifically, CodecDB
evaluation includes query operator micro-benchmarks, TPC-H and
SSB benchmarks, and a cost breakdown analysis for a better un-
derstanding of the improved performance. This result justifies the
design of a tight coupling between the query engine and the data
encoding schemes. It also quantifies the benefit such a design could
bring to the query performance, which is otherwise lost. We believe
that this result can have significant implications considering that
several recent large-scale analytic frameworks (e.g., Presto [19])
avoid this coupling to provide a simple execution engine.

We build our prototype of CodecDB with Apache Parquet colum-
nar format [8] for its popularity, extensibility for encodings, and
open-source nature. Experiments show that CodecDB’s data-driven
encoding selection is accurate in selecting the columnar encoding
with the best compression ratio and is fast in performing the se-
lection. Specifically, we achieve over 96% accuracy in choosing the
best encoding for string types and 87% for integer types in terms
of compression ratio. The time overhead of encoding selection is
sub-second regardless of dataset size. We evaluate the query perfor-
mance of CodecDB against the open-source database Presto [19]
and a commercial columnar solution, DBMS-X, using the TPC-H
benchmark. We also compare against a recent research project
MorphStore [15], Presto and DBMS-X using the SSB benchmark.
CodecDB is on average an order of magnitude faster than the com-
petitors on TPC-H, and on average 3x faster than the competitors
on SSB. CodecDB also has a lower memory footprint in all cases.

We start with a thorough review of the relevant background
(Section 2) and present our main contributions as follows:
• We present CodecDB, an encoding-aware columnar database that
achieves both storage and query efficiency (Section 3).

• We propose a data-driven method for encoding selection on a
given dataset to minimize storage space with high accuracy and
efficiency (Section 4).

• We implement an encoding-aware query engine to greatly im-
prove query efficiency on encoded columns (Section 5).

• We extensively evaluate our ideas (Section 6).
Finally, we conclude with a discussion of related work (Section 7)
and the implications of our work (Section 8).

2 BACKGROUND
We review the prevalent encoding schemes mentioned in the paper.
The purpose of data encoding is to transform the original data into
a compact format to reduce storage requirements, improve transfer-
ring speed, and potentially improve computation on the encoded
data. Typical encoding schemes include lightweight encoding meth-
ods, such as bit-packed and run-length encoding, and byte-level



compression methods, such as GZip and Snappy. These approaches
achieve different compression ratios and encoding speeds.
Bit-Packed Encoding: The goal of this scheme is to store num-
bers using as few bits as possible. Given a list of non-negative
numbers, [𝑎0, 𝑎1, . . . , 𝑎𝑛], bit-packed encoding finds a𝑤 satisfying
𝑎𝑖 < 2𝑤 and represents each number using 𝑤-bit losslessly. The
bits are then concatenated in sequence as the encoding output. Null
suppression [2] shares the same idea but uses two bits to indicate
the byte length for the encoded values and, therefore, it encodes
values by using only as many bytes necessary to represent the data.
Bit-packing requires knowledge of the observed max value.
Delta Encoding: Delta encoding stores the deltas between con-
secutive values. Given a list of values, [𝑎0, 𝑎1, . . . , 𝑎𝑛], delta encod-
ing constructs 𝑏𝑖 deltas as follows: 𝑏0 = 𝑎0, 𝑏1 = 𝑎1 − 𝑎0, 𝑏2 =

𝑎2 − 𝑎1, . . . , 𝑏𝑛 = 𝑎𝑛 − 𝑎𝑛−1. The result can then be bit-packed. As
the deltas between numbers are generally smaller than the numbers
themselves, bit-packing the deltas generally allows a better com-
pression ratio than bit-packing the original data. FOR and PFOR [39]
share a similar idea, but store all values as offsets from a reference
value (referred as “fixed" in Table 1) rather than the previous value
(referred as “prior” in Table 1). Parquet supports DeltaLength en-
coding for string type, which stores the binary string consecutively
as-is, and encode the string length using delta encoding.
Run-length Encoding (RLE): This scheme encodes a consecu-
tive run of repeating numbers as a pair (num, run-length). The list
[𝑎0, 𝑎0, 𝑎1, 𝑎2, 𝑎2, 𝑎2, 𝑎3, 𝑎3, 𝑎3, 𝑎3] becomes [𝑎0, 2, 𝑎1, 1, 𝑎2, 3, 𝑎3, 4].
The result may be then bit packed. The hybrid of bit-packing and
RLE is used by default in Parquet’s RLE implementation.
Dictionary Encoding: This scheme uses a bijective mapping (a
dictionary) to map input values of variable length to compact inte-
ger codes. The dictionary used in the encoding process is prefixed
or attached to the encoded data. Dictionary allows conversion from
data of arbitrary types to integer codes, enabling more efficient
encoding through hybrid schemes, such as RLE. Dictionaries may
either be global (e.g., one dictionary per column) or local (e.g., page
or block-level dictionary), which is the case in Parquet.
Bit Vector Encoding: This scheme stores values using bit vectors.
Each distinct value corresponds to one bit vector showing its dis-
tribution over all positions. Bit Vector Encoding is useful when
the data cardinality is very low. The list shown in the RLE exam-
ple would be encoded as four bit vectors: 𝑎0 : [1100000000], 𝑎1 :
[0010000000], 𝑎2 : [0001110000], 𝑎3 : [00000001111].
Byte-Level Compression: Popular byte-level compression tech-
niques, such as GZip and Snappy, originate from the LZ77 algo-
rithm [61], which looks for repetitive string occurrences within a
sliding window on the input stream. When a repetition is found
starting at location 𝑖 , LZ77 outputs a tuple (prev_location,msg_length,
next_char), where prev_location points to the nearest previous oc-
currence, msg_ length indicates the length of the repetition, and
next_char is the first character after the repetition. The search for
repetition then restarts at location 𝑖 +𝑚𝑠𝑔_𝑙𝑒𝑛𝑔𝑡ℎ + 1. For better
compression, GZip further encodes the tuples using Huffman en-
coding, while Snappy outputs the tuples directly for encoding speed
consideration. On decoding, LZ77 maintains an in-memory buffer
for decoded content, reads the tuple sequence and appends the
characters to the buffer. If a tuple refers to a previous occurrence,
the algorithm looks back in the buffer to find it.

Table 1 shows the encodings schemes supported by state-of-
the-art columnar databases and storage formats. We merge similar
encodings and omit encodings rarely supported or only used in a
specialized context. Parquet [8] is an open-source column-oriented
storage format. A Parquet file consists of several row groups (i.e.,
horizontal partitions). Each row group contains several column
chunks (i.e., columnar data for the row group), and each column
chunk consists of data pages that serve as a unit of encoding/-
compression. Queries can locate and access each row group and
column chunk independently, facilitating parallel processing. Data
within the same column chunk are physically adjacent on disk for
compression and query I/O. Parquet supports a wide variety of en-
codings and has an open design to support new encoding schemes.
It is supported by a variety of engines like Hive [53], Impala [37],
Pig [43], and Spark [58]. For these reasons and due to its popularity
and open-source nature, we build CodecDB on top of Parquet.

3 SYSTEM OVERVIEW
CodecDB consists of a storage engine and a query engine. We
demonstrate the system architecture in Figure 2.

The storage engine trains a machine learning model for the en-
coding selection task. When CodecDB runs for the first time, the
pre-processing module executes the following tasks. First, a data
collection task reads the training dataset prepared by the end-user
or a default provided dataset, splits each table into columns, de-
termines the column data type, and encodes each column using
all available encoding schemes. The feature extraction task then
extracts features from both the raw data columns and the corre-
sponding encoded files. The extracted features are then used to
learn how to rank encodings based on the compression ratio. We
describe our encoding selection process in more detail in Section 4.

When the pre-processing tasks complete, CodecDB gets the run-
time module of the storage engine online and is ready to encode
input datasets. When the user loads a new data table, the runtime
module samples each column, computes features using the samples,
runs encoding selection with the features, and encodes the column.
It also records encoding-related metadata such as the column’s dic-
tionary and bit-width of the encoded records. CodecDB persists the
metadata on disk as a plain text file and maintains it in memory as a
hashmap. The query engine uses the metadata to optimize access to
encoded data. We scan the entire data column in the pre-processing
step when extracting features for better accuracy. In the runtime
phase, we sample from the column for performance consideration.
We discuss more on sampling in Section 6.2.2.

The query engine consists of two major components: an execu-
tion engine and a thread pool manager. The execution engine is the
core component responsible for executing queries. The execution
engine reads a query plan and builds an optimized acyclic directed
graph of query operators. The query engine associates one worker
task with each operator and sends the task group to the thread pool
manager for execution. The execution engine returns the results to
the end-user when the task group finishes execution. In Section 5,
we demonstrate more features of the query engine, including lazy
evaluation, data skipping, and batch execution.

CodecDB provides support to common operators, including filter
(selection), join, aggregation, and sort. We optimize these operators



Table 1: Popular encodings supported by non-commercial columnar database systems

RLE Dict Delta/ BitVector BitPacked/ Dict-RLE/BP
FOR/PFOR Null Suppression

C-Store ✓ ✓ (global) ✓ (prior) ✓ ✓ ✗

Parquet ✓ ✓ (local) ✓ (fixed) ✗ ✓ ✓

Carbondata ✓ ✓ ✓ (fixed) ✗ ✓ ✗

ORC ✓ ✓ (local) ✗ ✗ ✗ ✗

MonetDB ✗ ✓ (global) ✓ (fixed) ✗ ✗ ✗

Kudu ✓ ✓ ✗ ✗ ✗ ✗

CodecDB ✓ ✓ (global) ✓ (prior) ✓ ✓ ✓

Figure 2: CodecDB System Architecture
to access encoded data, which is the main reason for CodecDB’s
performance improvement. We demonstrate the design of these
operators in Sections 5.3, 5.4, and 5.5. The current prototype of
CodecDB focuses on the execution optimization to encoded data.
It does not include a query optimizer and relies on an external
component to provide a feasible query plan.

4 LEARNING TO SELECT ENCODINGS
Lightweight encodings are each designed to accompany datasets
with specific characteristics. Encoding selection is thus crucial to
system performance, and hard-coded encoding selection often fails
to achieve a desirable result. In this section, we introduce our data-
driven encoding selection solution for optimizing compression ra-
tios in CodecDB. We model the encoding selection as a learning-to-
rank problem, identify a series of features affecting the compression
ratio of encoding schemes, collect a large amount of data columns
from real-world applications, and train a model to estimate the
compression ratio of a given encoding scheme on a dataset.

4.1 Learning a Ranking Model
To train a ranking model, we consider a set of data columns 𝐶 =

{𝑐1, 𝑐2, ..., 𝑐𝑚}, and a set of encoding schemes 𝐸 = {𝑒1, . . . , 𝑒𝑛}. Each
data column 𝑐𝑖 is associated with a list of compression scores 𝑆𝑖 =
{𝑠𝑖1, 𝑠𝑖2, ..., 𝑠𝑖𝑛}, where 𝑠𝑖 𝑗 corresponds to the relevance of encoding
scheme 𝑒 𝑗 to column 𝑐𝑖 . In CodecDB, we let 𝑠𝑖 𝑗 be the compression
ratio of 𝑒 𝑗 on 𝑐𝑖 . We then create a feature vector 𝑓𝑖 𝑗 = 𝐹 (𝑐𝑖 , 𝑒 𝑗 ) for

each encoding-column pair (𝑐𝑖 , 𝑒 𝑗 ). The pair of feature vector and
score (𝑓𝑖 𝑗 , 𝑠𝑖 𝑗 ) then form an instance in the training set.

The objective is to learn a scoring function 𝑠𝑐𝑜𝑟𝑒 : (𝐶, 𝐸) → R,
which takes an input of data column and encoding, and output a
score, that minimizes the total loss with respect to the training set:

𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑙𝑜𝑠𝑠 (𝑠𝑐𝑜𝑟𝑒 (𝑐𝑖 , 𝑒 𝑗 ), 𝑠𝑖 𝑗 ) (1)

Algorithms based on neural networks have shown great promise in
learning such functions for various applications [11, 12, 32, 54]. We
exploit a simple neural network that takes the column-encoding
pair (𝑐𝑖 , 𝑒 𝑗 ) as input and learns score 𝑠 indicating the compression
ratio 𝑒 𝑗 can achieve on 𝑐𝑖 . We describe our network configuration
in Section 6.2. An intuitive explanation to this model is that if a new
column-encoding instance presents a similar feature set to some
known instances, it should also yield a similar compression ratio.

4.2 Feature Extraction
The features reflect a given dataset’s characteristics that affect its
compression ratio under the encoding schemes we study. We expect
our method to make encoding selection by only accessing the first
several blocks of the file rather than scanning and parsing the entire
file. Therefore, these features must be computed on a subset of the
records in the column. In this section, we describe the features we
develop in CodecDB to assist encoding selection, where we use𝑁 to
denote the number of values in a target column, and [𝑎1, 𝑎2, . . . , 𝑎𝑛]
to represent the values in the column.
Value Length:We compute each value’s length in the target col-
umn as the number of characters in its plain string representation
and compute statistical information including mean, variance, max,
and min. The compression ratio of bit-packed encoding is closely
related to the length distribution of data records. Shorter records
compress better.
Cardinality Ratio: Cardinality ratio is the ratio of number of
distinct values vs. the number of values in the dataset:

𝑓𝑐𝑟 =
𝐶𝑁

|𝑁 |

Where 𝐶𝑁 is the cardinality of 𝑁 . To process datasets with large
cardinalities, we adopt a linear probabilistic counting algorithm
proposed by Whang et al. [55]. We maintain a bitmap 𝐵, compute a
hash value for each record and insert a bit into the corresponding
location of the bitmap. Let 𝑜 be the number of occupied bits in the



bitmap, the cardinality then can be estimated as follows:

𝐶𝑁 ≈ −|𝐵 | log
(
1 − 𝑜

|𝐵 |

)
Cardinality ratio has a direct relationship with dictionary encoding.
A dataset with high cardinality ratio is unlikely to be compressed
well by dictionary encoding as there are too many distinct entries.
Sparsity Ratio: Sparsity ratio is the number of non-empty records
vs. total number of records:

𝑓𝑛𝑒 =
|{𝑖 |𝑎𝑖 is not empty}|

|𝑁 |
A high sparsity ratio means there are many empty entries in the
dataset, and implies a better compression ratio with schemes that
looks for repetitions in the dataset, such as dictionary encoding
and byte-compression.
Entropy We treat the dataset as a byte stream, and compute its
Shannon’s entropy:

𝑓𝑒 =
∑
𝑐 𝑗 ∈𝐶

−𝑝 (𝑐 𝑗 ) log𝑝 (𝑐 𝑗 )

where 𝐶 = {𝑐𝑘 |∃𝑖, 𝑐𝑘 ∈ 𝑎𝑖 } is the collection of characters in the
string, and 𝑝 (𝑐 𝑗 ) =

∑
𝑖,𝑘 I(𝑎𝑖 [𝑘 ]=𝑐 𝑗 )∑

𝑖 |𝑎𝑖 |
is the frequence of character 𝑐 𝑗 .

We also compute Shannon’s entropy separately for each value in
the column, then collect the statistical information, including mean,
variance, max, and min of the entropy values. Shannon’s Entropy
provides a lower bound for the theoretical best compression ratio
that can be achieved by any encoding / compression schemes. In
general, a lower entropy value means less information is included in
the dataset, which implies a better compression ratio for dictionary
encoding, bit-packed encoding, and byte-compression.
Repetitive Words: As described in Section 2, most popular byte-
compression algorithms that belong to the LZ77 family work by
encoding repetitive occurrences of strings as tuple (prev_location,
msg_length, next_char), which basically refer to the nearest previous
occurrence of the string. The compression ratio of the LZ77 family
can be computed as 𝑟𝑎𝑡𝑖𝑜 =

𝐿𝑐
𝐿𝑠

∑𝑀
𝑚=1 𝐾𝑚 where 𝐿𝑠 is the input data

length, 𝐿𝑐 is the tuple length, 𝑀 is the maximal message length,
and 𝐾𝑚 is the number of messages of length𝑚. As 𝐿𝑐 , 𝐿𝑠 , and 𝑀
are all constants, we can explore the efficiency of the compression
algorithms by making an approximation on 𝐾𝑚 , the number of
distinct repetitive words in the dataset.

We use a block-based analysis algorithm similar to what is used
in LZ77. We treat the input dataset as a byte stream and read a
block of size 𝑆 from it. Starting from the beginning of the block,
we scan the content and record the substring 𝑠 (𝑖, 𝑗) we met so far,
where 𝑖 is the start point of current scan, and j is the current read
position. If ∃ 𝑘 < 𝑖, 𝑠 (𝑘, 𝑘 + 𝑗 − 𝑖) = 𝑠 (𝑖, 𝑗) (i.e., 𝑠 (𝑖, 𝑗) occurred
before) we restart the scan starting from 𝑗 + 1. When reaching
the end of the block, we record the total number of new messages
discovered, as well as their length distribution. For efficiency, we
represent a string with its Karp-Rabin fingerprint [33]. Given a
string 𝑎 = 𝑎0𝑎1𝑎2 . . . 𝑎𝑛 , a large prime number 𝑝 and a random
𝑟 < 𝑝 , the Karp-Rabin fingerprint 𝑘𝑟 𝑓 (𝑎) is defined to be

𝑘𝑟 𝑓 (𝑎) = (
𝑛∑
𝑖=0

𝑎𝑖𝑟
𝑖 ) mod 𝑝

This representation also allows easy substring concatenations as
𝑘𝑟 𝑓 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑎, 𝑏)) = 𝑘𝑟 𝑓 (𝑎) + 𝑟 |𝑎 |𝑘𝑟 𝑓 (𝑏). Converting a string to its
fingerprint allows our algorithm to make faster string comparisons
and requires less space for intermediate result. The probability that
two different substrings have the same fingerprint is very low [33]
and we ignore such cases.
Sortedness: The sortedness of a dataset evaluates how “in order”
a dataset is. Many encodings schemes can achieve better a com-
pression ratio from a well-sorted dataset. For example, run-length
encoding can generate longer runs on a sorted dataset than the
same dataset with records randomly organized. Delta-bitpacked
hybrid encoding can also benefit from the sorted dataset as the delta
values between sorted entries tend to be smaller and thus can yield
to shorter bit-packed entries. A previous method [2] use a boolean
value to represent whether a dataset is sorted or not. However, we
observed that a continuous variable more robustly captures the
sortedness property of a dataset, as in practice, many datasets can
be “partially” sorted and these partially sorted datasets still benefit
from certain encodings. For example, a dataset is 90% sorted will
have longer runs than a non-sorted dataset.

We adopt threemethods of evaluating the sortedness of a column,
𝑓𝑠 , and include all of them in feature sets. Kendall’s 𝜏 [34] and
Spearman’s 𝜌 [16] are two classical measures of rank correlation.
For our purpose of evaluating the sortedness of a given dataset,
Kendall’s 𝜏 is computed as

𝜏 = 1 −
2
��{(𝑎𝑖 , 𝑎 𝑗 ) |𝑖 < 𝑗, 𝑎𝑖 > 𝑎 𝑗 }

��
𝑛(𝑛 − 1)/2

and Spearman’s 𝜌 is computed as

𝜌 = 1 −
6
∑𝑛
𝑖=1 (𝑠𝑖 − 𝑖)2

𝑛(𝑛2 − 1)
Bothmethods generate a real number in [−1, 1]. 1 means the dataset
is fully sorted, and -1 means the dataset is fully inverted sorted.
However, most lightweight encodings will work just as well on a
fully inverted sorted dataset if it works well on a fully sorted one.
Observing this, we define a variant, called absolute Kendall’s 𝜏 .

𝜏𝑎𝑏𝑠 = 1 − |1 − 2𝜏 |
and 𝜏𝑎𝑏𝑠 has a value range of [0, 1], and approaches 0 when the
dataset is close to either fully sorted or fully reverse sorted.

Computing the sortness features on the entire column have a
time complexity of 𝑂 (𝑛2), which is prohibitively time-consuming.
Therefore, we adopt a sliding windowmethod.We slide a window of
size𝑊 over the dataset and with probability 𝑝 perform computation
on pairs within that window. There are in total 𝑛 −𝑊 + 1 such
windows, and for each window, the time complexity is𝑂 (𝑊 2). The
time complexity will be 𝑝 · (𝑛 −𝑊 + 1) · 𝑂 (𝑊 2). By setting 𝑝 to
Θ( 1

𝑊 2 ), we can perform the computation in 𝑂 (𝑛).

4.3 Dataset Collection
We derive our training set from various structured data collections,
including open city data portals, scientific computation cluster
logs, machine learning datasets, traffic routes, and data challenge
competitions. We describe the dataset in detail in Section 6.1. We
develop a data collection framework consisting of a file reader, a
feature extractor, and a data store. The file reader uses file extensions



to determine the format and invokes a corresponding parser, which
supports common tabular file formats, including CSV, TSV, JSON,
andMicrosoft Excel formats. The file reader splits a file into columns
and infers each column type, then extracts features on the generated
columns. The framework stores the generated columns as separate
files in the file system and metadata and extracted features in a
DBMS.

We use the encoding algorithms shipped with Apache Parquet.
We apply all viable encodings to each column to find the encoding
compressing the column with minimal size. The encoding scheme
having the smallest compression ratio is chosen as the “ground-
truth” in the training phase. We train the model using data sources
with extensive coverage and expect users can use it in various
scenarios. However, including new encoding types would require
re-training of the model.

5 ENCODING-AWARE QUERY ENGINE
We build an encoding-aware columnar query engine in CodecDB.
With it, we demonstrate that a holistic system design with a tight
coupling between encoded columns and database operators sig-
nificantly improves the end-to-end query performance. The query
engine maintains the encoding information of data columns and
applies operators optimized for the corresponding encodings. These
operators rely on recent algorithms that provide higher throughput,
consume less CPU time, and less memory footprint than previous
similar solutions. The query engine also provides features targeting
big data analysis, such as lazy evaluation and batch execution. Next,
we introduce the operators and these features of the query engine.

5.1 In-Memory Data Structures
CodecDB keeps the execution results of operators in in-memory
data structures, also known as mem tables. When the operator per-
forms a selection on one input table, we store the result in a bitmap,
with each bit marks each row’s validity. Our bitmap provides SIMD-
based logical operations of bitmaps and a fast iterator allowing
users to access all marked positions. As the input tables can be
arbitrarily large, CodecDB provides a sectional bitmap consisting of
multiple small bitmaps, with each section corresponding to a data
block. Individual sections can be cached to an external storage, or
be compressed individually to reduce memory footprint. CodecDB
supports compressing the bitmap using run-length encoding.

CodecDB provides row-based and columnar mem tables, which
can be used to store results from aggregation, join and sort oper-
ators. The mem tables support common primitive types, includ-
ing int32, int64, float and double, and variable-length binary type.
CodecDB uses a ‘zero-copy’ strategy for binary data. Each binary
field in mem table is a struct binary {uint8_t* ptr, uint64_t
len}, where ptr is a pointer to the start of the binary record, and
len the length of the record. When loading a binary column from
external data files, CodecDB decodes the binary records into the
internal buffer and returns a reference to that record. Subsequent
operations that move binary records between mem tables only
involve copying the pointer, not moving the data.

Figure 3: Lazy Evaluation groups operators to pipeline
stages

5.2 Operator Evaluation
CodecDB evaluates all operators in an operator graph in parallel
to utilize multi-core platforms. The parallelism happens on two
levels, operator level and data block level. When executing a query,
CodecDB treats each operator as a task and submits the task group
to an operator thread pool. Each task is blocked until all its ancestors
finish. Operators not related (e.g., two filters on different columns)
can thus run in parallel. Operators also access their input data in
parallel by splitting the input as multiple data blocks and use a data
processing thread pool to process the blocks. All operators share
the same data processing thread pool, and we configure the thread
pool size to limit the memory footprint used by each query.

CodecDB utilizes pipelined evaluation of operators and late ma-
terialization to reduce memory footprint of temporary relations.
To group query operators into pipelines, we implement lazy evalu-
ation of operators. Lazy evaluation does not execute an operator
immediately when it is invoked. Instead, it maintains a record of
operators that have been called, and executes them all together
with a pipeline when reaching a blocking operator, such as sort and
aggregation. With lazy execution, we convert the operator graph
into a directed acyclic graph of pipeline stages. Each of these stages
contains multiple non-blocking operators and one blocking oper-
ator. Evaluating a blocking operator executes the corresponding
pipeline stage. We show an example of this process in Figure 3. The
blocking operators separate the operators into four pipeline stages.
The first two stages have no dependencies and execute in paral-
lel, and other stages start execution when their ancestors finish
execution.

CodecDB categorizes an operator as non-blocking if it can ex-
ecute locally on a single data block, without global information
from the entire data file. Filtering and probing a hash table are
examples of non-blocking operators. An operator is blocking if it
reads multiple data blocks. Building a hash table, aggregation, and
sorting are examples of blocking operators.

To execute pipeline stages, CodecDB designs a data stream frame-
work and implements a demand-driven pipeline based on it. A
stream of type T, represented by Stream<T>, provides two func-
tions: map(function<S(T)>) and foreach(function <void(T)>). Users
create a pipeline by obtaining a data stream, calling map to add op-
erations to the pipeline, and calling foreach to execute the pipeline.
For example, we show how to build a pipeline to count the pos-
itive values in an integer column. We first get a stream of data



Figure 4: SBoost in-situ Scan for Bit-packed Data

blocks Stream<Block> from the column, and call map with a func-
tion<Bitmap>(Block)>). This function scans a block and returns a
bitmap marking positions of all positive numbers. We then call
foreach with a function<int(Bitmap)>, which counts the size of each
bitmap and sum them up to get the result. The call to foreach triggers
the pipeline execution and returns the results.

CodecDB supports batch executions of operators accessing the
same data column to reduce disk read and improve cache locality.
It searches in the execution graph for operators reading the same
data column and groups them. When the first operator in the batch
group executes, the engine reads disk files, feed it to all operators
in the group, and caches the result. When subsequent operators
run, the engine directly fetches results from the cache.

After filtering a data column and obtaining a bitmap, CodecDB
uses the bitmap to retrieve data from other columns, known as late
materialization [52]. We optimize data retrieval by implementing
data skipping in all column readers. Data skipping allows readers
to jump to the next valid record marked by the bitmap, skipping
all records in the middle without reading them. Data skipping save
both disk IO and CPU cost. Without data skipping, column readers
need to read all records, decode them, and discard those not required.
CodecDB implements data skipping on three levels:
• Data Block Level. When the corresponding bitmap section is
empty, CodecDB skips the entire data block. Skipping a data
block saves disk I/O.

• Data Page Level. Parquet splits each data block into multiple data
pages and compresses each page independently. CodecDB will
skip the whole page without decompressing it if the next row
to read surpass the boundary of an unread page. Skipping data
pages saves decompression effort.

• Row Level. CodecDB computes the number of bytes correspond-
ing to the number of rows to skip, reads those bytes from the
input, and discards them. Skipping rows saves decoding effort.

5.3 Filter Operator
CodecDB provides two families of filter operators optimized for dic-
tionary encoding and delta encoding, based on SBoost [30]. SBoost
is an open-source library containing fast decoding and in-place
search algorithms for lightweight encodings utilizing SIMD instruc-
tions. We briefly review how it works here.

One core algorithm in SBoost is in-place scanning of a bit-packed
data stream, as is shown in Figure 4. The algorithm loads multiple

bit-packed data entries into a SIMD register and compares all entries
in parallel. It then fetches the most significant bits from each entry
as a bitmap, representing the comparison result. SBoost supports
all relational operators, including equal, less, greater, and their
combinations. The advantage of this algorithm is two-fold: first,
the algorithm performs comparison directly on the encoded data
and does not decode the data. Skipping the decoding saves a huge
computation effort. Second, the algorithm uses SIMD to perform
comparisons on multiple data entries in parallel. For example, when
scanning a bit-packed stream of size 10 (each entry takes 10 bits),
SBoost uses only 8 instructions on average to process 50 entries,
achieving over 20x throughput compared to the scalar algorithm
that first decodes each entry then performs the comparison.

As we mentioned in Section 2, dictionary encoding maps data
entries to integer keys, and bit-pack the keys. CodecDB provides
a single column filter operator on dictionary encoding. The op-
erator uses the data column’s dictionary to translate the query
value to an integer key, then invokes SBoost to perform an in-
place search on the bit-packed keys to find the target. This filter
operator also supports greater, less, and range comparisons, if the
dictionary is order-preserving. In an order-preserving dictionary,
for any two entries 𝑘𝑒𝑦1 = 𝑣𝑎𝑙𝑢𝑒1, and 𝑘𝑒𝑦2 = 𝑣𝑎𝑙𝑢𝑒2, we have
𝑣𝑎𝑙𝑢𝑒1 > 𝑣𝑎𝑙𝑢𝑒2 ⇐⇒ 𝑘𝑒𝑦1 > 𝑘𝑒𝑦2. With an order-preserving
dictionary, we can rewrite any comparison on the encoded values
to comparisons on the keys and invoke SBoost to execute the query.

This single column filter operator does not only support compar-
ison predicate but also LIKE and wildcard operations. Examples are
p_type like ‘%BRASS’ in TPC-H query 2 and l_shipmode in (‘MAIL’,
‘SHIP’) in query 12. The operator translates these queries as a logical
disjunction of multiple equality operators. For example, to execute
p_type like ‘%BRASS’, the operator scans the dictionary entries and
finds all entries ending with ‘%BRASS’, performs equality predi-
cate for each entry as we described in the previous paragraph, and
makes a logical OR on the result bitmaps to obtain the final result.

We use a similar idea to build a filter operator to compare multi-
ple data columns using the same order-preserving dictionary. One
example is comparing two DATE columns,e.g., o_commitdate <
o_receivedate. Giving the two columns sharing the same order-
preserving dictionary, the value of o_commitdate is less than o_rec
eivedate if and only if the corresponding key of commit date is
smaller than that of receive date. We extend the SBoost algorithm
to support the comparison between two bit-packed data streams
and use the result bitmap as the filter output.

Lastly, CodecDB provides a filter operator optimized for delta en-
coding. Due to the nature of delta encoding, we need to decode the
entire data column before making a comparison. SBoost provides a
SIMD algorithm to compute the cumulative sum of 8 integers fast,
which we use to speed up the decoding process. CodecDB’s delta
filter loads a list of delta values into memory, invokes SBoost to com-
pute their cumulative sum, and uses SIMD comparison instruction
to compare them against the target value.

5.4 Aggregation Operator
CodecDB provides an aggregation operator optimized for data
columns with dictionary encoding for the aggregation key. The
operator starts by creating an array of aggregation results with the



same size as the dictionary. It then reads each row to be aggregated,
fetches the integer key from the group by column, and uses it as an
index into the array to update the aggregation result. This approach
works because the integer key is always a value between 0 and
dictionary size. We call this operator array aggregation, for it uses
an array to keep the aggregation results.

Compared to the widely used hash aggregation, array aggre-
gation has several advantages. First, hash aggregation needs to
compute a hash value from the key. Array aggregation directly uses
the stored integer key and does not require additional computa-
tion. Second, hash keys can collide, and hash aggregation needs
to employ a collision resolution such as open addressing, at a per-
formance cost. Array aggregation has no collisions. Finally, when
performing aggregation using multi threads, we first aggregate
multiple data blocks in parallel and merge the result. Merging two
hash tables is far less efficient than merging two arrays.

Array aggregation executes efficiently for small key spaces, and
is only applicable to dictionary encoding. When the key space is
large or the column is not dictionary encoded, CodecDB provides
a stripe hash aggregation operator, a variation of hash-based ag-
gregation. The operator first splits each data block into stripes by
aggregation key. This step guarantees that the same key will always
go to stripes with the same index, and tries to spread keys evenly to
each stripe. In the current implementation, we compute the stripe
index as the key modulo the number of stripes. Next, it performs
hash aggregation independently on each stripe in parallel. Finally,
it merges stripes with the same index from different blocks together.
The major advantage of stripe hash aggregation versus the vanilla
version is that it splits a big key space into multiple small ones, and
uses several small hashtables instead of a single big one in aggrega-
tion. Smaller hashtables facilitate better cache locality, and using
several small hash tables allows updates and merges in parallel.
These advantages enable stripe hash aggregation to provide better
performance than vanilla hash aggregation.

5.5 Other Operators
In this section, we briefly introduce other operators CodecDB pro-
vides, not optimized for encoded data.

CodecDB provides nested loop join, block nested loop join, and
hash join. For hash join, we adopt phase concurrent hashmap(PCH)
proposed by Shun et al. [50]. PCH uses a lock-free algorithm allow-
ing operations of the same type to run in parallel. Multiple threads
can perform insertion only, search only, or deletion only at the same
time with no data races. In CodecDB hash join has two phases. The
first one is building the hash table from one table, involving only
insertion operations. The second one is searching the hash table (in
a typical hash join) or removing entries from it (in hash-based exist
join). The two phases do not overlap as the second phase can only
start after the hash table is ready. This allows us to use PCH in all
hash-based join operators. CodecDB provides an in-memory sort
operator and an external merge sort operator. For top-n queries, it
offers an in-memory heap-based top-n operator.

6 EXPERIMENTS
In this section, we show the experimental results demonstrating
that CodecDBshows significant improvement in both storage and

Table 2: Datasets Statistics By Category

Category Table Count Column Count Data Size(GB)
Server Logs 166 3836 20.4
Government 256 5126 26.8
Mach. Learning 111 3113 12.5
Social Network 98 1593 23.9
Financial 91 1954 16.8
Traffic 50 2826 22.8
GIS 16 382 5.2
Other 8 428 1.6

query efficiency. Storage-wise, we show that CodecDB’s data-driven
encoding selection can accurately identify the encoding with a
good compression ratio for various datasets. We also provide an
in-depth analysis of the reason our approach excels competitors.
Query-wise, we demonstrate CodecDB’s query operators outper-
form their encoding-oblivious competitors. We also show the query
engine outperforms open-source query framework, commercial
columnar database, and a recent research project in two established
benchmarks, in both query time and memory footprint. We further
elaborate on how CodecDB achieve such improvement.

6.1 Environment Setup
The experiment platform has two Intel(R) Xeon(R) Gold 6126@
2.60GHz, 192G memory, and 250G SATA SSD. It runs Ubuntu 18.10
with kernel version 4.15.0-101. We build our CodecDB prototype
in Java (encoding selection) and C++ (storage engine and query
engine). The Java part runs with OpenJDK 1.8.0-252 and Scala 2.12.4.
The C++ part is compiled using GCC 7.5.0 with -O3.

The datasets we use for data-driven encoding selection come
from multiple public data sources, covering a wide variety of do-
mains and application scenarios. Table 2 shows the statistical overview
of datasets by their categories. These domains generate and store
massive amounts of data, facilitating many vital applications.

Columns of string and integer types dominate the dataset (over
76%). Columns of double type also occupy a considerable portion
(17%) in the datasets, most of which belong to GIS, machine learning,
and financial datasets. However, Parquet only supports Dictionary
encoding for double attributes, and double attributes usually have
high cardinality, making it unfit for Dictionary encoding.We choose
to focus on string and integer types in our experiment.

In query evaluation, we compare against Presto version 0.226 and
a commercial columnar solution DBMS-Xwith the latest version, on
the TPC-H benchmark. We also compare against MorphStore [15],
Presto and DBMS-X on SSB. All systems run on the same hardware
platform mentioned above.

6.2 Data-Driven Encoding Selection for
Compression

In this section, we evaluate the accuracy of our neural network
based data-driven encoding selection method for improving com-
pression ratios. We use a standard MLP neural network for both
the classification and the regression task. We construct a two-layer
neural network with 1000 neurons in the hidden layer, using tanh
as the activation function. We use sigmoid for output, and cross-
entropy as the loss function when performing ranking. We train
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Figure 5: Accuracy and Encoded File Size of CodecDB’s En-
coding Selection

the network with Adam [36] for stochastic gradient descent using
default hyper-parameters(𝛼 = 0.9, 𝛽 = 0.999). The step size is 0.01,
and decay is 0.99. We use 70% of data columns for training, 15% for
dev, and 15% for testing. No noticeable impact is observed when
we change the way of partitioning the dataset (e.g., 80/20 for train-
ing/testing). Feature Sortness has a hyperparameter𝑊 for sliding
window size. We choose window size to be 50, 100, and 200, and
include all results in the feature set.

We also compare the accuracy of our method to other candidate
approaches. Abadi et al. [2] propose an encoding selection method
based on a hand-crafted decision tree. They use features that are
similar to what we employ in this paper, including cardinality and
sortedness (although binary), and empirically setup selection rules.
We refer to this decision tree approach as Abadi in experiments.

Apache Parquet has a built-in encoding selection mechanism
which simply tries Dictionary encoding for all data types. When the
attempt fails, it falls back to a default encoding for each supported
data type. In practice, we notice that such a failure is primarily
caused by the dictionary size exceeding a preset threshold, which
means the dataset to be encoded has high cardinality. So this can
also be viewed as a simplified version of a decision tree. We refer
to this rule-based approach as Parquet in experiments.

In Figure 5a, we show selection accuracy of different approaches,
which is the percentage of samples the algorithm successfully
choose the encoding with minimal storage size after encoding. For
string columns, CodecDB achieves 96% accuracy, a significant im-
provement from Abadi’s decision tree with only 32% accuracy, and
Parquet’s encoding selection of 80%. For integer columns, CodecDB
achieve 87% accuracy, also a substantial gain from Abadi’s 40% and
Parquet’s 72%. Note that we evaluated alternative machine learning
models and settled on a neural network as it provides the highest ac-
curacy. Several other models had high accuracy, which also justifies
that our features engineering represents critical characteristics of
the dataset for encoding. In Figure 5b, we show how much storage
reduction each algorithm can bring to the entire dataset, where
“exhaustive" is the observed best encoding scheme after exhausively
testing all valid encoding schemes for an attribute. CodecDB’s en-
coding selection can bring∼30% size reduction compared to Parquet,
and delivers a compression ratio close to the exhaustive result. The
compression ratio is also competitive against commercial columnar
stores. On TPC-H dataset of scale 20, CodecDB compresses data

tables to 9.8G, 10% smaller than DBMS-X, which compresses tables
to 11G. Presto uses the same data tables as CodecDB.

Next, we evaluate whether some features play more important
roles than others. We iteratively remove each feature from the set
and retrain the networkwith the same parameters. The result shows
that removing any feature brings a drop in prediction accuracy of
18∼25%, with cardinality and length leading the drop. This result is
expected as most features are designed to map to specific encod-
ing schemes. For example, sortness is important to delta and RLE
encoding, cardinality is crucial to dictionary encoding and affects
bit-packed encoding. As a result, removing any of the features leads
to a misprediction on a subset of encoding schemes.

6.2.1 Case Study: Where previous methods fail. We have chosen
three typical cases to show where Abadi and Parquet’s methods
under-perform compared to our approach.
Case 1: Abadi Tree for High Cardinality Abadi’s approach has
the following selection path: if the number of distinct values is
greater than 50000, use either LZ compression or no compression
based on whether the data exhibits good locality. However, we
observe that when the number of distinct values is greater than
50000, there are still over 12% of attributes for which bit-packed
encoding achieves better compression than LZ. For these cases,
merely removing leading zeros result in better space savings than
removing repeating values.
Case 2: Abadi Tree for Run-Length Another selection path in
Abadi’s approach is that when average run-length is greater than
4, it uses run-length encoding. However, we found that there are
over 23% of columns having an average run-length greater than 4,
where dictionary encoding performs best. This difference can be
a factor of encoded key size compared with the value size, local
dictionaries that leverage partially sorted datasets to provide small
keys, and bit-packing or run-length dictionary hybrids.
Case 3: Parquet for Bit-Packed Parquet by default always tries
to use dictionary encoding. But our data shows that for integer
columns, there are only 72% of attributes have dictionary encoding
as the ideal encoding. A considerable amount of the remaining
integer columns can be compressed well by bit-packed encoding,
which Parquet fails to choose.

We find that these methods typically suffer from the following
problems that CodecDB’s approach addresses:

• Unable to extend to new encoding schemes or encoding
scheme variations

• A single property (e.g., run-length, cardinality) cannot dis-
tinguish different groups

• Expert knowledge-based parameters can be inaccurate (and
expensive to obtain)

CodecDB does not hard-code the decision but relying on the data
characteristics to make the decision, allowing it to make a better
choice than previous methods.

6.2.2 Encoding Selection on a Partial Dataset. We have demon-
strated that a neural network-based data-driven encoding selec-
tion method outperforms the current state-of-art from academic
research and open-source implementations. However, most fea-
tures we employ require scanning the entire column, which is
time-consuming. To mitigate this problem, we read only the first 𝑁



bytes from the column, compute features, and make decisions as in
the original method. This approach eliminates the correlation be-
tween dataset size and time needed for encoding selection, making
it possible to make selection decisions in constant time.

To empirically estimate howmuch accuracy we can achieve with
only partial knowledge of the dataset, we vary 𝑁 to be 10𝐾, 100𝐾 ,
and 1𝑀 bytes. This experiment is conducted only on data columns
whose size are larger than 10MB to avoid oversampling. Not sur-
prisingly, the prediction accuracy decreases when a smaller 𝑀 is
used. However, we still manage to achieve reasonable accuracy.
Our result shows that when 𝑁 = 1𝑀 , we have 85% accuracy on
integer and 94% accuracy on string. With 𝑁 = 10𝐾 , we can get 83%
accuracy on integer dataset and 92% accuracy on string dataset.
which is still better than state-of-art.

Random sampling [26, 42] is another widely adopted sampling
method in previous works. We also compare the result of random
sampling with our approach of head sampling. When applying ran-
dom sampling, the accuracy of encoding selection drops drastically
to 65%, and we noticed that the misprediction primarily occurred on
data columns suitable for delta encoding and run-length encoding
requirements to data locality. Delta encoding measures the differ-
ence between adjacent values, and run-length encoding counts the
consecutive repetition of values. As the sampled data from random
sampling failed to preserve this locality, prediction using randomly
sampled data does not yield a satisfactory result.

6.2.3 Performance Overhead. In this section, we study the data-
driven method’s performance overhead, with time consumption
only involving feature extraction and model execution. The model
training process is conducted offline and not included. When we
set 𝑁 = 1𝑀 , the average time for calculating the features on a
data column is 57ms, and that for executing the model is 3ms. We
also compare the data-driven method running time against ex-
haustive encoding selection, which encodes a data column with all
encoding candidates and choose the one with the smallest size. Our
experiment includes four encoding types for integer data and three
encoding types for string data. As the encoding time is proportional
to input file size, we execute CodecDB’s feature extraction on the
entire data column to make a fair comparison. The result shows that
CodecDB is in average 2.5x faster compared to exhaustive encoding
when scanning the entire column. With our default setting of sam-
pling the first 1M bytes, CodecDB can be three orders of magnitude
faster than the exhaustive approach on a 1GB data column. When
the selection involves more encoding types, CodecDB will benefit
more compared to the exhaustive approach.

6.3 Encoding-Aware Query Execution
In this section, we explore CodecDB’s query engine performance.
We start by showing micro-benchmark results of CodecDB’s op-
erators. We then show that CodecDB outperforms competitors on
TPC-H and SSB. We also provide breakdown analysis that helps
explain how CodecDB achieves such improvement.

In Figure 6, we test CodecDB operators on various TPC-H scales
and show that CodecDB operators always outperform their encoding-
oblivious competitors. We also describe these competitors after
describing each operator. We first test filter operators on the dictio-
nary encoded column. The “Single Column Compare” in Figure 6
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Figure 6: CodecDB operators outperform encoding-
oblivious operators

corresponds to the predicate l_shipdate <= ‘1998-09-01’, “Two
Columns Compare” corresponds to l_commitdate < l_receiptd
ate, and “Single Column Like” corresponds to p_container LIKE
‘LG%’. The competitors in these cases are encoding-oblivious, who
decode records from columns and make comparisons. We see that
CodecDB’s operators bring 5-20x performance boost compared
to encoding-oblivious solutions, and has more advantage when
dealing with large datasets. While encoding-oblivious solutions’
time consumption almost doubles when moving from the TPC-H
scale 5 to 20, CodecDB’s time consumption only increases by 30%.
Next, we test the aggregation operators. In “Array Aggregation”,
we count lineitem group by l_receiptdate. CodecDB uses an
array of size 2560 to perform aggregation, and the competitor uses
the Google sparsehash [24] hash table. In “Stripe Aggregation”, we
count orders group by o_custkey. CodecDB splits the input into
32 stripes, and the competitor uses a sparsehash hash table that
does not split the input. In both cases, we see a 2-3x performance
improvement. The last experiment in the micro-benchmark is our
hash join operator based on phase-concurrent hashtable. The com-
petitor uses a sparsehash hash table.We join orderswith customer
on the foreign key, with condition c_mktsegment=‘HOUSEHOLD’.
The results show 10-15% improvement, primarily because we can
build a hash table using multiple threads.

Next, we compare CodecDB query engine against popular colum-
nar database solutions on TPC-H benchmarks of scale 20.We choose
two candidates, Presto [19] and DBMS-X. Presto is an open-source
distributed SQL query engine designed to query large data sets.
Presto supports the Parquet storage format and executes queries
in an encoding-oblivious way, making it a good candidate to show
the advantage of encoding-aware query execution. DBMS-X is a
commercial big data analytic system leveraging columnar storage.
We encode the tables in Parquet format with column chunk size
of 128M, and page size 1K. For all systems, we limit the number of
concurrent threads per query to 20.

We setup Presto to use a single node, with the maximal mem-
ory per query set to 20G. Presto reads the same Parquet tables as
CodecDB does. DBMS-X lacks support for many Parquet encodings,
prohibiting it from reading our Parquet tables. Instead, we use its
native table format with auto compression. For query efficiency, we
load data into DBMS-X’s Read-Only Storage, a highly optimized
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Figure 7: CodecDB outperforms encoding-oblivious columnar databases in TPC-H Benchmarks (Scale 20)
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read-oriented disk storage structure. As CodecDB is not equipped
with a query optimizer, we use Presto to generate a query plan for
each query, replace the operators with CodecDB’s corresponding
version, and manually code the query plan into CodecDB. We mea-
sure the time Presto and DBMS-X spend on generating query plans,
and deduct it from the execution time to ensure a fair comparison.

We run all TPC-H queries with CodecDB, Presto and DBMS-X
and show the result in Figure 7. We limit the bar graph’s height
and show the time consumption on the top of the bar. DBMS-X
on Query 5 and Presto on Query 21 do not finish after 1 hour, we
record these two outliers as “>3600” seconds, and ignore them in
subsequent analysis. In general, we see a substantial performance
improvement of CodecDB versus competitors. For all 22 queries,
CodecDB is, in average 11.43x faster than Presto and 9.81x faster
than DBMS-X, excluding the outliers mentioned above. The best
result versus Presto is on Query 17, where CodecDB is 46x faster.
The one for DBMS-X is Query 20, where CodecDB is 44x faster.

On queries with at least one predicate on the dictionary en-
coded column, CodecDB performs extremely well. We see that
most queries satisfy this situation in practice. 17 out of 22 TPC-
H queries (exceptions are Q9, Q11, Q13, Q18, and Q22) contains
at least one such predicate. In these queries, we see at least 10x
performance improvement compared to competitors.

In Figure 8, we make a time consumption breakdown of the first
four TPC-H queries to understand better how CodecDB improves
query performance. We see that all four queries are CPU-bound.
CodecDB’s encoding-aware query execution significantly reduces
the CPU execution time. Besides, data skipping helps CodecDB to
reduces the IO cost. Both contribute to efficient query execution.
In Figure 9, we compare the memory footprint of the four queries,
collected using /proc/<pid>/stat. We see that CodecDB saves up
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Figure 10: CodecDB is faster than MorphStore on SSB, and
consumes less memory on Intermediate Results

to 80% memory footprint compared to DBMS-X. CodecDB can exe-
cute directly on encoded data without decoding them into memory,
and skip data records not accessed by the query. Both contribute
to the improvement. The two experiments demonstrate the benefit
that a query engine tightly coupled with encoded columns brings.

Finally, we compare CodecDB query enginewithMorphStore [15]
on the Star-Schema Benchmark(SSB) with scale 10. MorphStore
is a columnar database that compresses intermediate results with
lightweight encodings to reduce memory footprint and uses SIMD
to speed up query on compressed data. It shares many similar de-
sign concepts with CodecDB. We use SSB as MorphStore does not
support TPC-H benchmark. We compare the two systems on query
execution speed and memory footprint of intermediate results. We
also execute SSB with DBMS-X and Presto, and include their re-
sults for reference. For MorphStore, we obtain the query execution
time from its running artifacts and compute the intermediate result
memory footprint using the minimal compressed size. For Presto
and DBMS-X, we only include the query time, as the systems are
not instrumented to measure the size of intermediate results.

We show the result in Figure 10. CodecDB is again faster on most
queries than all competitors. It runs SSB queries up to 5x and in
average 3x faster than MorphStore and consumes less memory on
intermediate results. The reason is three-fold. First, CodecDB uses
a late materialization execution strategy and generates fewer inter-
mediate results than MorphStore. Second, CodecDB relies heavily
on bitmaps as intermediate results. Bitmaps are smaller in size and
facilitate faster intersection/union operations. Finally, late material-
ization allows CodecDB to push down most filtering operations to
SBoost, further speeds up the query execution. For example, in Q1.1,



to perform a predicate+interesction operation, CodecDB uses 55ms
and only generates a single bitmap of 7MB as an intermediate result.
MorphStore takes 500ms on the same operation and generates 12
intermediate results sum up to 94MB. These experiments demon-
strate that CodecDB is efficient in execution time and provides an
alternative solution to reducing query memory footprint.

7 RELATED WORK
Encoding in Databases. Application of encoding techniques has
been studied for various components in databases, including data
table [14, 29, 38, 48], data column [44, 45, 52], index [9, 35], data
dictionary [42], hash tables [25], database duplication [57], and
search trees [59].

Selecting the proper encoding scheme for a database system
is a trade-off between size reduction and CPU overhead in the
encoding/decoding process. Classical byte-oriented encoding tech-
niques such as GZip and Snappy have been widely supported in
various DBMS systems [8, 13, 14, 29, 52]. However, studies [1, 62]
suggest that these schemes come with notable CPU overhead from
decompression and may significantly impact system performance.
Lightweight, attribute-level compression, such as run-length and
bit-packed encoding, can be beneficial to query-intensive systems.

Columnar databases, such as C-Store [52] and MonetDB [27],
physically consecutively persist attributes, and allow a higher per-
formance of lightweight encoding. Previous works [10, 31, 39] also
show that for specific data sets, lightweight encoding achieves a
comparable compression ratio with far lower CPU time than GZip.

Reasonable size reduction, significant low CPU overhead, and in-
situ query executionmake lightweight encoding algorithmsmore fa-
vorable than byte-oriented compression in columnar data stores [2].
Query Execution on Encoded Data. Compression-aware data-
base design is necessary for query execution on compressed data.
Chen et al. [14] design a cost-based optimizer for compressed data-
base tables, and Kimura et al. [35] propose an algorithm for selecting
compressed indices for a set of queries under a limited space budget.

Hardware acceleration also demonstrates high potential in speed-
ing up the decoding operation. Willhalm et al. [56] use SIMD in-
struction to speed up the decoding process for bit-packed data.
Jiang et al. [30] propose a SIMD-based algorithm for decoding delta-
encoded data. Rozenberg et al. develop Giddy [49], a library for
executing fast decoding algorithms using GPUs. Fang et al. [20, 21]
propose using a co-processor for data extraction and transformation
tasks in columnar encoding and compression to speed up queries.
Variations of encoding formats that are optimized for hardware exe-
cution, such as VarInt [17, 51], Horizontal Bit-Interleaving [40, 47],
and SIMD-Delta [39] are also proposed.

Lightweight encoding has an advantage over byte-oriented com-
pression algorithms in that they preserve attribute boundary during
encoding [1, 2], and allow algorithms [3, 30] to query on encoded
data without decoding, significantly reduce the CPU overhead and
enable more efficient query execution.
Cost Estimation and Encoding Selection. We can estimate an
encoding scheme’s efficiency from both space and time aspects, e.g.,
the compression ratio and encoding/decoding overhead. Popular
approaches for estimating compression ratio include mathematical
modeling [14, 42], regression on statistical features [9], and random

sampling [26, 35]. Kimura et al. [35] propose using a bipartite graph
between column and index to deduce compressed index size. For
encoding/decoding overhead, most previous work [14, 35] model it
as a weight in addition to normal access cost.

Encoding selection tackles a relevant problem of choosing an
efficient encoding scheme for a given a data table or column. Abadi
et al. [2] introduce a hand-crafted decision tree for encoding selec-
tion on a given dataset based on experience and global knowledge
of a dataset (i.e., cardinality and if a column is sorted). Lemire et
al. [39] focus on integer data and propose rules to choose between
PFOR and bit-packed encoding.

In practice, many implementations solve the problem by hard-
coding a “not too bad” default encoding per data type. Apache
Parquet [8] and CarbonData [5] uses dictionary encoding for all data
types and will fall back to some default encoding if the dictionary
size exceeds a preconfigured limit. Apache ORC [7] uses RLE for
integer and Dictionary-RLE for string types. Apache Kudu [6] uses
a dictionary for string type and bit shuffle for all other data types.

CodecDB proposes using a neural network-based learning ap-
proach to rank and select from various encoding schemes. Learning
to Rank is a widely adopted approach in data mining and informa-
tion retrieval, in which learning algorithms are applied to datasets
of labeled documents [11], document lists [12], and labeled fea-
tures [18], to learn a utility function evaluating the importance of
each target document. Neural network-based learning to rank ap-
proach [11, 60] has demonstrated great potential in various domain
applications such as e-commerce search [32], image annotation [54],
and behavior analysis [46].

8 CONCLUSION
We propose CodecDB, an encoding-aware columnar database that
exploits a design tightly coupled with encoding schemes. CodecDB
combines autonomous data-driven encoding selection and encoding-
aware query execution to improve both storage and query efficiency
on encoded columnar data. CodecDB’s storage engine analyzes data
column characteristics to choose the encoding scheme that best fits
a given data column, achieving a compression ratio comparable to
GZip. CodecDB’s query engine utilizes the encoding knowledge of
data columns to improve query efficiency on encoded data.

Extensive experimental results show that on both encoding selec-
tion and query execution, CodecDB brings substantial improvement
compared to prior research, widely-used open-source implemen-
tations, and commercial products. Overall, as a system, CodecDB
demonstrates the great potential of the system design philosophy of
encoding-awareness. In the future, we plan on expanding CodecDB
to support query-aware encoding selection, include new encoding
schemes, lossy compression, and further explore more encoding-
aware algorithms for other database operators, such as joins.
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