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Abstract—With the Internet of Things (IoT), a vast number of
connected devices generate significant data, necessitating efficient
compression techniques to manage storage costs and enhance
query performance. However, “one-size-fits-all” approach to data
compression is ineffective due to diverse applications, which vary
in data characteristics, workloads, and hardware limitations. This
paper introduces AdaEdge, a dynamic, hardware-conscious com-
pression selection framework tailored for resource-constrained
devices. AdaEdge is a best-effort compression selection frame-
work designed to preserve application-critical information as
much as possible within system constraints. It enhances the use
of limited system resources through a dynamic data compres-
sion policy that considers the staleness and the significance of
the data. AdaEdge applies a multi-armed bandit algorithm to
assist compression selection, optimizing workload targets such as
compression ratio, compression throughput, workload accuracy,
or their weighted combinations. It supports both lossy and
lossless compression selection, adapting to hardware constraints.
It operates in both online and offline modes, addressing network
constraints for edge nodes and evolving data policies to preserve
workload-specific information. AdaEdge improves machine learn-
ing task accuracy by up to 30% over baseline within the same
storage budget and by up to 20% in scenarios where lossless
methods fall short due to low compression ratios. AdaEdge also
shows robustness against data shifts and hardware variability.

I. INTRODUCTION

The Internet of Things (IoT) encompasses billions of de-

vices globally, connected to the internet and sharing vast data

amounts. For instance, an oil platform with 80,000 sensors

can generate up to 2 TB of data daily. However, the high

cost and unreliability of satellite communications for offshore

operations make transmitting this data to centralized locations

impractical. [3], [20]. This issue is mirrored in Renewable

Energy Systems (RES) such as wind turbines, which, with

their multitude of high-frequency sensors, produce data vol-

umes that far exceed the limited bandwidth available for cloud

transfer [25]. This challenge is further compounded in the

realms of deep-sea and deep-space exploration [53], where

unstable networks, severe data transfer, and storage limitations

demand highly efficient data management strategies.

Given the high costs of storage, limited storage capacity, and

query performance benefits, compression plays an important

role in IoT systems [26], [29], [42], [43]. Data systems

typically employ different compression approaches to reduce

the storage cost and improve bandwidth utilization on the

cloud [5], [27], [36], [38], [44], [45] where the compression

happens after data is centralized. Close to the IoT sensors,

edge devices are usually the entry points for collecting and

preprocessing the IoT data, which is a critical component of

an IoT system. As edge devices gain more computational

power and popularity, supporting compression, query, and

analytics on the edge side is a good option to reduce the cost

of IoT systems. By implementing compression closer to the

data source, the volume of data requiring transfer is reduced,

conserving network bandwidth and sparing edge or cloud

storage resources, often leading to enhanced query perfor-

mance. Nonetheless, edge devices are typically more resource-

constrained than cloud servers in terms of network bandwidth,

storage, and computational power, presenting novel challenges

and constraints for compression design and selection. While

edge deployments can vary in terms of resource capacity,

many edge applications are built on static allocations and lack

elastic-resources, which we consider as resource-constrained.

Modern data systems support a variety of lossless and lossy

compression approaches to store and query data. Due to well-

known problems of distribution drift in data streams, a single

compression solution may fail to encode data of a given

signal effectively. Compression approaches differ in terms of

compressed size and query performance. Significantly, task ac-

curacy is also affected in the case of lossy methods. Because of

dynamic data features and various workloads across extended

IoT applications, providing a one-size-fits-all compression so-

lution for all kinds of data and tasks is impossible. Therefore,

an adaptive lossless and lossy compression selection strategy is

necessary to select the optimal compression for the incoming

IoT data based on the data statistics, query workloads, and

limited resources available on the host.

Compression selection is an optimization task account-

ing for the features of the data, hardware, and workload.

Compression selection can optimize for different performance

targets, including space usage, compression throughput, and

query performance. Prior work presents lossless compression

selection solutions based on a decision tree [6], regression

model prediction [15], [16], or neural network models [27].

Open-source columnar formats [37] like Apache Parquet [11],

ORC [10] and Arrow Feather [9], along with commercial

systems like Vertica [40] and MySQL [18] choose to hard-

coded compression selection based on the column data type.

Traditional compression selection solutions rely mainly on

lossless compression approaches and optimize for either stor-

age or SQL query performance with assumptions of adequate
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space for the compressed data and sufficient computation

power for compression tasks and workload. Such assumptions

are not always valid in real-world applications as the storage,

bandwidth, and computation resources can be expensive.

Many devices lack sufficient hardware resources. Edge

devices, in particular, often face stringent constraints and

limitations stemming from their hardware and system envi-

ronment, including restricted storage capacity, limited band-

width, and reduced computational power. Traditional lossless

compression comes with a compression limitation defined by

the entropy of the data [48]. So it is impossible to always

keep 100% accurate data representation with limited system

storage resources. In contrast, many time-series databases

widely use lossy compression to control storage consumption.

To handle the limited storage, many prior works either remove

the old data periodically [2], [51] or keep a different level

of data summary depending on the workload and accuracy

requirement [7], [8], [23]. Systems such as ModelarDB and

SummaryStore allow user-defined compression methods to be

added by implementing an interface. What is often over-

looked is a comprehensive adaptive selection strategy that

encompasses a wide range of both general lossy and lossless

compression techniques. Furthermore, previous works mainly

focused on the lossy impacts on the accuracy of dashboard

queries and some SQL operations. However, machine learning

tasks are poorly studied as an optimization target.

Different lossy compression methods vary in accuracy and

efficiency for various tasks, and no single method fits all

needs in IoT systems with varying data statistics, workloads,

and hardware constraints. A lightweight compression selection

framework supporting both lossy and lossless compression

approaches and multiple optimization targets has been over-

looked. This paper formulates the compression selection in

IoT systems as a multi-armed bandit problem and proposes

AdaEdge as a hardware-conscious encoding selection frame-

work for resource-constrained devices. In addition to the

conventional lossless compression selection support, AdaEdge

provides a trade-off between space and workload accuracy

through its auto-recoding component. AdaEdge distinguishes

itself as a robust, best-effort compression selection framework,

offering the following key contributions:

• Multi-armed bandit-assisted lossy and lossless compression

selection based on system constraints and workload target.

• Online and offline compression solutions for resource-

limited devices, preserving mission-critical information.

• Multiple optimization targets supported, including compres-

sion ratio, throughput, aggregation queries, and machine

learning task accuracy.

• Compression policy to selectively compress data according

to its importance.

AdaEdge adaptively selects the optimal compression solution

for edge signals, considering network, storage, signal features,

and workloads. Our experiments show AdaEdge achieves

10% − 20% higher accuracy in ML tasks than baselines for

online cases needing low compression ratios (e.g., 0.1) where

lossless compression is not viable, and up to 30% accuracy

gains within the same storage constraints posted to the system.

For the rest of the paper, we review related work in Section

II. We then formulate the compression problem in Section

III and introduce the AdaEdge framework in Section IV. We

evaluate AdaEdge in Section V and conclude in Section VI.

II. RELATED WORK

Compression selection has been studied for decades. To get

an accurate data representation, many data systems use lossless

compression selection optimizing for compressed size or query

performance. For example, Abadi’s decision tree [6] is one

of the first projects to explore compression selection for in-

situ query execution on compressed data. Such an approach

introduces a rule-based encoding selection approach that relies

on the global knowledge of the dataset features. LEA [16]

is a compression selection framework that builds difference

regression models to predict the compression and query per-

formance, then selects the optimal compression according to

the optimization target. CodecDB [27] builds a neural network

model to predict optimal compression based on the data

features. It also provides specialized operators operating on

encoded columns directly. Hyrise [15] uses separate models

to predict compressed size and query operator performance,

then uses linear programming or greedy heuristics to get the

best encoding for each data chunk. BtrBlocks [30] offers

a sample-based compression selection solution to achieve a

better compression ratio and throughput. In addition, many

open-source data formats and some commercial data systems

choose hard-coded compression strategies for each data type.

All those conventional compression selection solutions as-

sume adequate storage space capable of compressing the file

by the optimal lossless compression approach. However, such

an assumption on the system resources does not always hold.

Lossy compression is necessary for systems with limited

storage resources. Some systems directly remove data ingested

earlier than a given time or exceeding a storage threshold.

RRDtool [51] and InfluxDB [2] remove old data exceeding a

certain period to take back space for new data. ModelarDB

[24] trades query accuracy for storage space by selecting the

best linear model to approximate the data with user-defined

error bounds according to the storage budget. SummaryStore

[7] reclaims the storage space by replacing the data with aggre-

gate summaries with a specific compression ratio. TVStore [8]

uses a time-varying compression framework to bound storage.

These projects mainly rely on a single lossy compression

approach to compress the data according to the storage budget.

To the best of our knowledge, AdaEdge is the first frame-

work providing both best-efforts lossless and lossy compres-

sion selection with multiple optimization goals supported.

III. PROBLEM STATEMENT

In this section, we introduce several compression ap-

proaches. We then formulate the compression selection prob-

lem in the IoT system setting and frame it as a multi-armed
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bandit problem. Finally, we introduce the multi-armed bandit

Problem, its variations, and its applications as a solution.

A. Lossless and Lossy Compression

Compression falls into two categories: lossless, where the

original data can be completely restored from the compressed

file, and lossy, where some data is permanently lost and cannot

be fully recovered.

1) Lossless compression: Popular lossless compression ap-

proaches include byte-compression techniques, such as Gzip,

Snappy and Zlib, and lightweight encodings, such as dictio-

nary encoding [13], [31], [38], Gorilla [45] (and its optimized

variation CHIMP [33]), Sprintz [14], and BUFF [36] (along

with the subsequent variation Elf [32]). Lossless compression

is widely used in data systems to persist historical data, yet

its effectiveness is hard-bounded by the entropy of the input

data. The entropy defines the minimal bits required to represent

the corresponding information losslessly. This implies a lower

bound for a 100% accurate representation. When storage

is insufficient, all the existing data compression selection

frameworks fail to get an encoding solution. However, such

scenarios are common in IoT systems, where dynamic resource

and hardware limitations often demand highly aggressive

compression to meet system constraints. In this case, further

data size reduction necessitates accepting partial information

loss, with the aim to minimize its impact on task accuracy.

2) Lossy compression: AdaEdge incorporates basic lossy

compression to address these scenarios, which offers signif-

icantly higher compression ratios than lossless methods by

sacrificing some information. To better serve our use case, all

lossy compression methods in AdaEdge are customizable to

reach the desired compression ratio. Given the storage budget,

AdaEdge chooses suitable lossy compressions for tasks with

minimal accuracy loss. They are designed for easy recoding,

minimizing the time typically required for decompression

and re-compression with new settings. Currently, AdaEdge

supports various lossy compression techniques.

BUFF [36] is a lossless compression method for float types,

using a byte-oriented layout and a defined precision, but it

can act as lossy compression by reducing float precision.

In AdaEdge, we use a lossy version of BUFF to aggres-

sively compress by discarding insignificant bits. BUFF-lossy

minimally alters input values, benefiting tree-based machine

learning tasks sensitive to changes in feature values.

Piecewise Linear Approximation (PLA) [49] is a linear

generalization method that enables linear approximation in

each data segment, with the number of segments defined by

the resource budget. Largest Triangle Three Buckets (LTTB),

a variant of the Visvalingam-Whyatt (VW) algorithm [52],

is a line generalization method used in TVStore [8] and

TimeScaleDB [4]. LTTB excels in maintaining visual signal

integrity, making it ideal for dashboard queries.

Piecewise Aggregate Approximation (PAA) [28], [54]

reduces time series dimensionality by segmenting them into

mean values, serving as a form of lossy compression. By

adjusting the window size, PAA can vary the level of approx-

imation. PAA is effective in maintaining the accuracy of Sum

and Avg queries due to its focus on mean values.

Fast Fourier Transform (FFT) [21], based on the Fourier

transform, converts signals between their original and fre-

quency domains. This conversion facilitates compression with

minimal distortion by eliminating less significant frequencies,

particularly high-frequency components. FFT is advantageous

for measuring distances in high-dimensional data.

RRD-sample. We include a random sampling method to

simulate the RRDTool compression logic which bounds stor-

age by deleting data when the storage quota is reached. Instead

of deleting old data, AdaEdge saves one random value from

it for future queries and replicates this value across a segment

as needed for specific workloads.

We acknowledge that IoT protocols [46], like MQTT and

OPC-UA are key for messaging in industrial IoT devices

but lack built-in data compression. These protocols aim to

minimize device code footprint and network bandwidth, not

compress data. In contrast, AdaEdge focuses on data compres-

sion at storage and processing levels, offering lossy compres-

sion options for edge computing constraints. This approach

complements the messaging protocols in the IoT ecosystem.

B. Compression Selection

Data compression is essential for conserving network and

storage resources, especially in resource-limited devices and

systems. It must balance resource constraints with task accu-

racy, using lossless compression when possible to allow full

data recovery. In cases of severe storage limitations, aggressive

lossy compression becomes necessary to save resources with

minimal task accuracy loss. The lossless compression selection

will mainly focus on the compressed data size and compres-

sion throughput, while the lossy compression selection will

focus more on the accuracy loss of the workload.

Resource constraints stem from aspects of the system,

including data ingested rate, limited memory, storage and

network bandwidth. The constraints can also come from the

requirements of the downstream application and workload: the

compression should help speed up the workload and diminish

the workload accuracy loss. These constraints impose re-

quirements on the compression ratio, compression throughput,

query throughput, and task accuracy.

We formulate compression selection as an optimization

problem for the resource-constrained system. The constraints

are denoted as Ibgt for a given signal ingestion rate (assuming

no control on the signal generating rate), Bbgt for network

bandwidth, and Sbgt for local storage capacity. The data

sequence is organized in segments with a fixed number of

consecutive data points (original size denoted as U ). Only one

compression scheme is selected for each segment. vij = {0, 1}
indicates whether compression cj is selected for segment xi,

then we have
∑k

j=1 vij = 1 for any given segment i assuming

k compression approaches in the compression candidate set

C. In terms of the compression performance, we also use rij
to indicate the estimated compression ratio of compression
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cj on segment xi. tij indicates the estimated compression

throughput of compression cj on segment xi. eij indicates

the estimated query error of lossy compression cj on segment

xi. For n segments, we can get the total compressed size:

S = U ×
n∑

i

k∑

j

(rij ∗ vij)
And we set the average egress rate as follows:

B =
Ibgt
n
×

n∑

i

k∑

j

(rij ∗ vij)
So when we optimize for the given network bandwidth Bbgt,

we formulate the lossless compression selection as

argmin
V

S(V ) s.t. Icomp(V ) ≥ Ibgt and B(V ) ≤ Bbgt

where V is the compression assignment for each segment

comprised by vij and Icomp(V ) indicates the compression

throughput with given V . The lossless compression selection

should handle the signals and generate compressed data with

an egress rate under the network capacity. If no feasible

solutions, a lossy compression selection is needed to meet the

harsh constraints. To optimize for the given network bandwidth

Bbgt, we formulate the lossy compression selection as

argmin
V

ET (V ) s.t. Icomp(V ) ≥ Ibgt and B(V ) ≤ Bbgt

where ET (V ) represents the accuracy loss for task T under

compression V . The objective is to minimize this loss while

adhering to system constraints.

For systems without a constant network for data egress,

the focus shifts to continuously ingesting new data while

minimizing accuracy loss during data shedding. We define the

compression selection problem as

argmin
V

ET (V ) s.t. Icomp(V ) ≥ Ibgt and S(V ) ≤ Sbgt

we keep evolving the data to meet storage budget while

ensuring the chosen compression can handle the given signal.

The input signals in AdaEdge are organized into fixed-

size segments. The compression thread keeps compressing the

ingested segments to meet the system constraints. The system

refines its estimations by observing how each approach com-

presses, leading to improved compression recommendations.

The compression selection module autonomously chooses the

best method by considering changing workloads, data inflow

rates, and system limitations. When faced with shifts in data

distribution or resource constraints, our solution is poised to

unearth the most advantageous strategy rather than defaulting

to a simplistic, greedy algorithm that merely leverages his-

torical data patterns. This process necessitates a lightweight

framework to summarize past compression outcomes and

make recommendations based on recent system feedback.

Thus, we cast the challenge of selecting IoT data compression

within the framework of a multi-armed bandit problem.

C. Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem (MAB), also called K-

armed bandit problem [39], [50], involves an agent choosing

from a set number of options or actions, each offering a reward

based on different, unknown probability distributions. The goal

is to maximize the total expected reward over a certain period.

Assuming a bandit with k arms, each arm has an expected

reward q(a) when action a is chosen. The arm chosen at time

t is At, with its reward being Rt. If action a is chosen at time

t, the expected reward is

q(a) = E[Rt|At = a]

Without knowing the reward for each action in advance, we

require an accurate estimate, denoted as Qt(a) for action a at

time t. The more Qt(a) aligns with the true reward q(a), the

better the decision. Ideally, if Qt(a) is perfectly accurate, we’d

always choose the action with the highest value to maximize

return. The action selection at time t can be described as:

At = argmax
a

Qt(a)

A greedy action involves the agent choosing the arm with

the highest estimated reward, thereby exploiting its current

understanding of the bandit system. However, relying solely

on exploitation can limit learning to previously acquired

knowledge, making it necessary to explore non-greedy actions

to refine reward estimations. While exploitation maximizes

immediate rewards, exploration can lead to greater overall

rewards over time.

There are many sophisticated variations for balancing ex-

ploration and exploitation for particular mathematical formu-

lations of the MAB problem. ε-greedy is a basic solution

of balance exploration and exploitation for the MAB prob-

lem, with ε possibility to choose the non-greedy action. The

Optimistic ε-Greedy Algorithm is a simple modification by

setting the initial action estimates to high values in a regular

greedy algorithm to push it to explore the whole candidate

action, searching for optimal action. Rather than performing

exploration by simply selecting an arbitrary non-greedy action,

chosen with a probability ε that remains constant, the Upper

Confidence Bound (UCB) algorithm shifts from prioritizing

exploration of less-tried actions to focusing on exploitation,

choosing actions with the highest rewards, as it learns more

about the environment. Other bandit algorithm variations, such

as Gradient Bandit [22] and Contextual Bandits [17], are not

the focus of this work.

MAB is efficient in both computation and space (O(K))
with K arms. In AdaEdge, we associate each arm of MAB

with a specific compression, and we return the optimization

target as its reward. Sections IV-C and IV-D detail how we

map the compression selection to the MAB problem.

IV. ADAEDGE OVERVIEW

AdaEdge is an adaptive hardware-conscious compression

selection framework. AdaEdge selects the optimal compres-

sion according to system resource limitations, data statistics,

and query workload. Figure 1 shows the overview of AdaEdge.

A. AdaEdge Framework Constraints

We first introduce the basic constraints in AdaEdge.
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Fig. 1: AdaEdge operates in both online and offline modes.

1) Signal rate: Signal generation rate from various sensors

can range from zero to millions of data points per second. In

AdaEdge, we assume no control to back-pressure the sensors

regarding the data generation rate, so the ingestion rate is

a hard constraint for our framework. AdaEdge should ingest

all incoming data and process it with proper compression, or

downsampling when necessary. In our compression selection

step, all selected compression must be able to handle the given

ingestion rate from the sensors.

2) Network bandwidth: While broadband networks are

common, low bandwidth networks are still popular and play

critical roles in the modern IoT ecosystem. The network band-

width varies depending on the network connection technology.

In practice, the bandwidth changes for a cellular network

from 0.01 Mbps to 200 Mbps. It also varies significantly

in cases of network congestion or edge device movement.

Network disconnection is typical for IoT edge devices in some

environments, such as the agriculture, aerospace exploration,

and mining industries. AdaEdge can handle all different net-

work connection cases and provide proper data ingestion and

compression solutions accordingly.

3) Storage space: An edge node has very limited storage

space. Thus, storage devices are carefully accessed on the edge

device. To extend device lifetime and minimize power con-

sumption, some industrial systems refrain from using storage

for routine operations, reserving it solely for offline use.

4) Power: Many edge devices are deployed in remote areas

without a sustainable power supply, so all tasks must account

for power consumption. AdaEdge mainly focuses on other

constraints and leaves power constraints as future work.

AdaEdge supports such constraints and prioritizes the re-

tention of critical information through effective compression

strategies rather than attempting to eliminate them entirely.

B. AdaEdge Working Modes

Based on those constraints, we classify the IoT use case

into two modes. In terms of network connection, we introduce

online and offline modes for AdaEdge.

1) Online mode: The edge node serves as a continually

connected data hub, aiming to maximize the signal data trans-

fer within given constraints, including signal rate and network

bandwidth. In online mode, AdaEdge keeps all data ingested

and compressed in memory before transmitting through net-

work protocol. The selected compression should be able to
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Fig. 3: The compressed file size should be within the network

transmission capacity. Bars show the compression egress rate

on a 4GHz signal with double type. Lines show the network

transmission capacity per second (MB/s).

handle the given signal generation rate, and the compressed

file size should be within the network transmission capacity.

Figure 2 shows an example with 4 million data points

generated per second, a data generation rate for a typical oil

well platform. The line shows the ingestion rate (the size of

data generated per second), and the bars are the ingestion rate

(the size of data compressed per second at full speed) for

different compression approaches. Most compression methods

are qualified to compress the signal example except for Gzip

and Kernel methods, which are usually slow in compressing

the data. In addition to the ingestion rate, we also investigate

the compressed egress performance. Figure 3 shows the egress

rate of the 4GHz signal without compression and with different

compression methods applied. A lower egress rate on the

same signal means better compression performance. Thus,

less network bandwidth is needed to transmit the compressed

data. Without compression before data transmission, it is

impossible to transfer the ingested data to the cloud with the

given network setting. Under a 4G network, many lossless

compression such as Sprintz, BUFF, dictionary encoding, and

lossy compression can send out the compressed data. However,

in a 3G network environment, none of the prevailing lossless

compression methods meet the requisite standards for effec-

tive data transmission. At this juncture, many conventional

compression selection solutions encounter failure. In contrast,

AdaEdge stands out by intelligently selecting the appropriate

lossy compression methods under a scarce bandwidth to mini-

mize the query error rate, considering the specific demands of

the query workload. This adaptive approach ensures optimal

performance under any network constraints.

For the online mode, we keep all data ingested and com-

pressed in memory before we send out those segments through

a network protocol. We omit saving data to the local storage
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to save storage space for future offline cases, save power and

prolong the lifespan of the storage device. We choose the

best lossless compression by default. In the particular case of

no qualified lossless compression, we chose lossy approaches

optimized for the target workload.

2) Offline mode: The edge node serves as a local compu-

tation and storage node for scenarios with poor network or

intermittent connection. The goal switches to keep ingested

data as much as possible for data offloading if a future net-

work connection is expected. If information loss is inevitable

because of a tight storage budget, it uses lossy compression

with the smallest negative impact on the workload. Essentially,

maintaining the accuracy of the data is crucial for making

informed decisions in the given task.

Figure 1 also shows the components related to the offline

module. Unlike the online mode, which consistently prioritizes

minimizing compressed size, the offline mode employs load

shedding when local storage capacity is exceeded. AdaEdge

dynamically manages ingested data within the allocated stor-

age budget for devices operating in offline mode. All in-

gested data is temporarily stored on the local disk. When

there is insufficient space, AdaEdge applies more aggressive

compression (even lossy compression) on less valuable or less

informative segments instead of removing them.

The informativeness can be measured by the query usage

of the segment, such as a query counter for each segment.

However, it should also reflect the contribution of each seg-

ment to the query. For example, a segment with 1% qualified

entries is less informative than one with 99%. The ratio of

qualified entries for a segment is defined by the number of

entries qualified for a given query divided by the total number

of entries in the segment. Since there are many definitions of

informativeness, AdaEdge builds a dedicated segment man-

agement component with standard GET and PUT APIs for

different policies. AdaEdge uses an LRU-based compression

policy by default, discussed in Section IV-F.

C. AdaEdge Workflow

AdaEdge allows the collection and aggregation of data from

multiple device clients. It handles time series data collected

at uniform, regular intervals—a setup commonly defined by

sensor configurations. AdaEdge ingests data points generated

by remote sensor clients, caches them into fixed-size arrays,

assigns a timestamp to each segment, and then pushes it

into the uncompressed buffer. As the uncompressed buffer

is being filled, compression threads offload data from the

uncompressed buffer. The compression selection threads are

adaptively configured to use different compression approaches

based on storage capacity, network bandwidth, ingestion rate,

and specified analytical tasks. If the uncompressed buffer

exceeds its capacity, which may happen when the ingestion

rate exceeds the compression speed, the data is flushed to the

disk. The compression threads push the compressed data into

a compressed buffer pool, which can also flush to the disk.

AdaEdge can execute queries or analyses (e.g., aggregation

queries, clustering) over the compressed data or the raw time-

series segments in the uncompressed buffer. Each segment in

the framework is associated with metadata describing its com-

pression configurations, which can be used for the codec to

do further compress or decompress the downstream workload.

AdaEdge currently supports byte-compression techniques,

such as Gzip, Snappy and Zlib, and lightweight encodings,

such as dictionary encoding, Gorilla [45], Sprintz [14], and

BUFF [36] for numeric data. AdaEdge also supports spe-

cialized lossy time-series representation methods (i.e., lossy

compression), such as Piecewise Aggregate Approximation

(PAA) [28], [54], Fourier transform [21], Piecewise Linear

Approximation (PLA) [49], and BUFF-lossy [36]. These ap-

proaches differ in terms of compression ratio, throughput,

query efficiency, and workload accuracy. There is no one-

size-fits-all approach for any time series or task. With system

resource limitations defined by edge devices, AdaEdge can

adaptively switch the compression approach according to the

optimization target. AdaEdge currently supports optimization

targets, including space (data compression ratio), time (com-

pression runtime), and accuracy (machine learning model and

aggregation query accuracy).

The compression selection component in AdaEdge can

automatically select the compression approach, given the

workload, data arrival rates, and resource capacity. AdaEdge

compression selection requires a lightweight framework to

efficiently summarize the past compression performance and

provide compression suggestions based on the latest observa-

tion from the system. The compression selection component

of AdaEdge is built based on the MAB problem. As the

signal is ingested into the system, AdaEdge compresses the

uncompressed segments and puts them into the compressed

buffer. Once compression is finished for segments, AdaEdge

runs an evaluation process to monitor the compression ratio,

compression throughput, and target workload accuracy. This

information is used for the MAB component to estimate the

potential reward by applying each compression candidate. In

the MAB greedy algorithm logic, the compression selection

for AdaEdge is selecting the compression arm with the highest

estimated value of the optimization target. So the Qt(a) from

section III-C will be the optimization target estimation for

compression action a at time step t.
In AdaEdge, the compression selection may consist of

multiple MAB instances tailored to specific use cases.

1) Online selection: In the online mode of AdaEdge, sys-

tem constraints determine a target compression ratio. Consider

an edge device receiving a continuous signal composed of

double-precision floating-point numbers – taking up 8 bytes

for each value – at an ingestion rate of I points per second,

with a network bandwidth of B bits per second. To facilitate

the transmission of this signal via the given network infras-

tructure, we can calculate a provisional target compression

ratio, R = B/(64 × I), temporarily omit the bit overhead

from network packet headers across different network layers.

AdaEdge initially applies lossless compression to the data

segments as they are ingested. Should it become apparent

that the target compression ratio R is impossible with lossless
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Fig. 4: AdaEdge ingests the new data while applying different

levels of compression on earlier segments to free space for

incoming data. The red rectangle denotes an arbitrary segment,

with the rectangle length showing its current size.

methods, the framework seamlessly transitions to employing

lossy compression techniques.

For lossless encoding selection, task accuracy remains un-

affected, thus the focus for the MAB optimization is solely

on minimizing the compressed segment size. Upon successful

compression of a data segment, the MAB component is

updated with the new compressed size—this update refines

the reward estimation for MAB, enhancing the decision-

making process for subsequent compressions. Should lossless

compression prove inadequate for achieving the desired target

compression ratio R, a dedicated MAB instance is spawned to

oversee the lossy compression selection. Lossy compression

inherently implies an imperfect restoration of the original

data upon decompression, which can detrimentally influence

task accuracy. However, AdaEdge’s current suite of lossy

compression techniques can be finely tuned to meet any

specified target compression ratio, ensuring uniformly sized

compressed segments across varying methods. Consequently,

the compressed file size becomes secondary in importance for

lossy compression scenarios, shifting the primary optimization

objective to the maintenance of task accuracy, which becomes

the key reward criterion for MAB. AdaEdge regularly evalu-

ates task accuracy for segments compressed using lossy meth-

ods, updating the MAB with the most recent reward values to

enhance the quality of future compression recommendations.

The methodology for calculating the reward value in each

context is further elaborated in Section IV-D.

2) Offline selection: The offline mode for AdaEdge is more

complicated than the online mode, as there is no clear target

compression ratio derived from the system constraints. An

actual use case could be an offline edge device without any net-

work connection, so there is no way to egress the ingested data.

The data must keep evolving within the limited storage budget

the system gives. The goal of AdaEdge compression selection

in the offline mode is to keep mission-critical information

as much as possible to minimize the potential loss of task

accuracy under the given storage budget. The data evolving

here is achieved by applying more aggressive compression on

the data with less critical information. Figure 4 shows the

cascade compression for the offline mode. For a given segment

in the uncompressed buffer, AdaEdge applies lossless com-

pression by default to save space for future segments. When a

predefined threshold is reached, the recoding process is waked

up to further compress the segments in the compressed buffer.

As the system keeps ingesting more and more data points,

more space is needed; thus, more aggressive compression will

be applied to the old data segments. The compression sequence

of the segments depends on the cache maintenance policy,

which we discuss in Section IV-F.

AdaEdge creates multiple MAB instances for different

compression levels for offline mode. Each MAB instance

corresponds to a specific compression ratio range. This design

is based on the observation that the optimization target changes

significantly across different compression ratio ranges, and a

single MAB instance for lossy compression selection is hard to

reflect the compression ratio impact on the optimization target.

For a given uncompressed segment, the lossless compression

selection MAB instance suggests the optimal lossless compres-

sion and compresses the segment to save space. Consequently,

the size of the compressed segment becomes the optimization

target for this MAB instance, and the resulting compressed size

is fed back into the MAB for improved future estimations.

AdaEdge processes incoming data points until a predefined

storage threshold, denoted as (θ), is reached. When additional

space is required for new segments, AdaEdge initiates lossy

compression on the already compressed segments. By default,

the size is reduced to half of the original, from which a

target compression ratio for the current segment is derived.

The lossy compression selection mechanism then consults the

MAB instance that corresponds to the identified range of the

target compression ratio. The action recommended by this

instance is considered the optimal compression method for

achieving the desired optimization target within that specific

compression ratio range. Periodically, AdaEdge evaluates the

performance of each MAB instance against the target task,

focusing on the compressed segments that fall within its des-

ignated compression ratio range. This continuous process of

compression and recoding ensures that segments are managed

within the storage budget constraints until an option to egress

the data becomes available. Planning for bandwidth usage

during reconnection presents an intriguing area of exploration

that we intend to pursue in future iterations of AdaEdge.

D. Optimization Target

AdaEdge supports both single and complex optimization

targets to meet system requirements. AdaEdge provides users

with the flexibility to specify their optimization targets, which

can encompass a variety of objectives, such as the accuracy

of aggregation queries (including minimum, maximum, sum,

and average calculations), the precision of machine learning

tasks, or the efficiency of compression throughput. AdaEdge

offers flexibility to accommodate additional workload targets

readily, provided they can be assessed through a well-defined

quantitative metric.

1) Machine learning task accuracy: For tasks related to

classification or clustering within AdaEdge, we adopt accuracy

evaluation metrics from the domain of approximate inference,

as detailed in the work by [41]. The machine learning task
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accuracy evaluation on a lossy compressed segment is defined

as follows: with lossy compression, we can get its compressed

representation Rl. Before feeding it into the machine learning

task, we need to decompress it into Xl. Given the task T
and a pre-trained model M , we get the prediction results in

Yl = M(Xl). For the machine learning task evaluation on

lossy compressed data, we define the accuracy as the ratio of

matched prediction labels compared with predicted labels on

the original uncompressed data:

ACCml =
|{x|x ∈ X AND M(xl) = M(x)}|

|X|
Here, we assume the task model M is the pre-trained model

on the original dataset X and is provided to the compression

task as a given input model. AdaEdge incorporates a special-

ized module for serialization and deserialization to manage

instances of machine learning models. When a machine learn-

ing task is specified as the optimization target, AdaEdge is

equipped to load and deserialize the corresponding binary file,

converting it into a machine learning model instance ready

for performance evaluation. In other words, we operate under
the assumption that the model undergoes centralized training
on the raw data format, and we regard any output from the
model—be it a prediction or a cluster assignment—as the
ground truth. Note that while for some tasks, training and

inferring on a compressed representation can improve task

accuracy [19], we do not consider this here as we assume

model tuning and configuration are handled by downstream

tasks. By treating the provided model as the ground truth,

we enable local experimentation with various compression

techniques and parameters without altering the underlying

model. This approach aligns with the evolving landscape of

edge computing, where federated learning and the deployment

of pre-trained models on resource-constrained devices are

becoming increasingly prevalent [35].
2) Aggregation accuracy and throughput: In addition to

the machine learning tasks, AdaEdge defines relative loss for

aggregation queries as other work does for approximate query

processing evaluation [34]:

Accagg = 1− |Vtrue − Vlossy|
|Vtrue|

Where Vtrue is the real value we get from the aggregation op-

erator on the original data, while Vlossy is the estimated value

on the lossy decompressed data. The compression throughput

is defined as Cthr = So/Tc, where So is the original file

size and Tc corresponds to the compression runtime. A fast

compression usually means fewer instructions for the codec,

which consumes less power [12]. Therefore, fast compression

may correspond to a power-efficient compression approach,

which is very important for IoT applications.
3) complex optimization targets: Beyond catering to a

single optimization target, AdaEdge is equipped to han-

dle complex optimization targets that involve a hybrid of

weighted objectives. This functionality is particularly useful

for workloads encompassing multiple queries and machine-

learning tasks. Users are afforded the flexibility to assign

distinct weights to each task, allowing for the customization

of optimization targets to meet the specific needs of their

system. This feature ensures that AdaEdge can adapt to diverse

performance criteria, providing tailored support for various

workload scenarios. The complex target is defined as

targetc = w1 ×ACCagg + w2 ×ACCML + w3 × Cthr

where ACCs and Cthr are normalized, w1 + w2 + w3 = 1.

E. Recoding Optimization

AdaEdge is designed to perform recoding on the same

data segment multiple times if necessary. Unlike traditional

compression methods, which typically require complete de-

compression before recoding can occur, AdaEdge employs

a strategy akin to ”virtual decompression” [8] to minimize

unnecessary decoding steps. This approach allows for more

efficient recoding processes, as all lossy compression tech-

niques supported by AdaEdge can be reapplied for recoding

without the need for prior decompression. When more aggres-

sive compression is required, AdaEdge evaluates the original

and intended compression methods. If feasible, it performs

direct recoding on the already compressed data, bypassing the

decompression stage altogether.

AdaEdge currently supports ”virtual decompression” for

recoding tasks with identical source and destination compres-

sion approaches. For instance, to achieve a higher level of

compression, we can truncate data compressed with BUFF by

discarding the less significant bits. Similarly, we can apply

PAA compression to data already compressed with PAA to

obtain a larger window size, further compress the FFT-encoded

segments by removing additional high-frequency components,

and apply PLA compression to PLA-encoded segments to

reduce the number of key data points, thereby conserving

more space. Similar work can be done by enabling direct

transcoding between different compression approaches, which

need specific compression optimization for each compression

pair, so we keep it as future work.

F. LRU-Based Compression

The sequence in which compression and recoding are ap-

plied to data segments is crucial for minimizing adverse effects

on the target workload. For instance, newly ingested data is

often more valuable than older data [7]. Consequently, when

space constraints necessitate it, older data should be subjected

to more aggressive compression while preserving the most

recent data in a lossless format whenever feasible. Previous

systems, such as RRDTool [51] have employed a round-robin

approach to discard older data. Similarly, TVStore [8] and

SummaryStore [7] implement more aggressive compression

on segments with earlier timestamps.

AdaEdge adopts an LRU-based compression policy, priori-

tizing the compression of the least recently accessed segments.

This strategy ensures that segments frequently accessed for

queries are less likely to undergo lossy compression. The

segment management component within AdaEdge operates

on a list-based mechanism. It provides the compression or

recoding threads with the least recently used segments at the

forefront of the list, while newly compressed segments are
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Fig. 6: Random forest model accuracy on UCR

appended to the end. Additionally, any segments accessed by

active queries are relocated to the end of the list, reducing

their likelihood of being lossy compressed. The LRU-based

compression policy works well for AdaEdge, where ingesting

the signal and some aggregation queries are the main tasks.

The segment management component is designed to be flex-

ible, allowing for easy adaptation to alternative compression

sequencing policies. While further exploring different policies

could yield interesting insights, we have chosen to focus on

the LRU-based approach for simplicity in this work.

V. EVALUATION

We evaluate AdaEdge on aggregation and machine learn-

ing tasks with varying compression approaches. The MAB-

assisted component for selecting compression in AdaEdge

includes lossless compression options such as Gzip, Snappy,

Gorilla, Zlib, BUFF, and Sprintz, using default settings for

the first three and variable compression levels for Zlib. For

BUFF and Sprintz, precision is tailored to four digits for the

CBF dataset, five for UCR, and six for UCI, according to

dataset specifications. For lossy compression, options include

PAA, PLA, FFT, BUFF-lossy, and RRD-sample. AdaEdge

dynamically adjusts parameters like window size, data point

budget, frequency channels, and bit count to meet specific

compression ratio targets. We use CodecDB as a baseline,

adapted to support lossless compression for double data types,

originally designed for integers and strings. We also demon-

strate TVStore’s approach to lossy compression with PLA.

However, it’s important to note that neither CodecDB nor TV-

Store supports real-time selection of lossy compression based

on system constraints and its effect on workload accuracy.

We employ an optimistic ε-greedy strategy in our experi-

ments. Specifically, for offline mode, ε is set to 0.1, allowing

MAB to explore sub-optimal actions more thoroughly. Con-

versely, for online mode experiments, ε is adjusted to 0.01 to

enhance the exploitation of the optimal MAB action.

We conducted simulations to test system limitations on

servers equipped with dual Intel(R) Xeon(R) CPUs E5-2670

2.30GHz, 128GB RAM, and 250GB HDDs, running Ubuntu

18.04 and Rust 1.49.0. Additionally, we ran experiments on

an Intel NUC [1] using the same software setup with an i7-

5557U CPU, 16GB RAM, and a 250GB SSD. Given that

these resources exceed AdaEdge’s requirements, we imposed

stricter constraints on our experiments. We set hard limits in

the experiments, a fixed storage budget with a threshold for

recoding, and varying egress rates corresponding to different

bandwidth conditions. The experiments fail if any of these

constraints are breached. We limit CPU resources with 4

threads by default: one for ingestion, one for compression,

one for recoding, and one for task evaluation. MAB related

operations are managed by the above threads. In the scalability

experiments, we employ multiple threads for the ingestion,

compression, or recoding components as needed.

A. ML Accuracy with Lossy Compression

We applied prominent lossy compression techniques (BUFF,

PAA, FFT, PLA) to the UCR and UCI datasets, which are

widely recognized in the machine learning community and

encompass approximately 250 datasets from diverse domains.

We train the models on the original dataset and then apply

them to the lossy compressed data to evaluate the predicted la-

bel changes after decompressing. Due to space constraints, we

present two illustrative machine learning workloads with two

compression representatives. The horizontal axis represents the

achieved compression ratio by the respective methods, while

the vertical axis displays the relative accuracy as defined in

Section IV-D. Figure 5 illustrates that tree-based models are

particularly sensitive to lossy compression, where minor data

alterations can lead to different branching and, consequently,

altered predictions during inference. Generally, BUFF-lossy

demonstrates the best performance across most compression

ratios due to its minimal distortion from the original data.

However, its effectiveness diminishes at lower compression

ratios, as evidenced in Figure 6, where BUFF-lossy under-

performs compared to FFT, PAA, and PLA at a compression

ratio of approximately 0.12 in decision tree and random forest

evaluations on the UCR dataset. Moreover, BUFF-lossy cannot

compress our dataset when the ratio falls below 0.11.

The evaluations of machine learning tasks reveal that perfor-

mance significantly fluctuates with different lossy compression

methods, depending on the target compression ratio and the

characteristics of the input data. This variability challenges the

effectiveness of simple rule-based, greedy, or heuristic com-

pression selection approaches, which fail to accommodate the

changing data features and varying workloads. Consequently,

a dynamic compression selection model is essential—one that

provides optimal compression recommendations tailored to the

incoming data statistics, host system requirements, and the

specific demands of downstream workloads.

B. Adaptive Compression Selection

Next, we assess AdaEdge on streaming data with an ongoing

ingestion process. AdaEdge receives data from a dummy

client that generates data points from the CBF dataset [47], a
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Fig. 7: Machine learning model accuracy on target compression ratio

simulated dataset with a controlled distribution. By default, the

client produces data at a rate of 200, 000 data points per sec-

ond. The incoming data is ingested as uncompressed segments.

AdaEdge then applies compression selection to these segments

based on system constraints. For comparison, we include

baselines with predetermined compression combinations and,

when applicable, equivalents from TVStore and CodecDB.

1) Online mode: AdaEdge online mode has a clear target

compression ratio derived from the ingestion data rate and

network bandwidth. AdaEdge adaptively chooses the optimal

compression for a given workload. The compression process

fetches the segments from the uncompressed buffer and applies

compression based on the MAB component estimation.

Machine learning tasks: Figure 7 shows the machine

learning accuracy loss across different target compression

ratios. The horizontal axis is the target compression ratio

derived by system constraints, and the vertical axis shows the

corresponding relative accuracy loss. A smaller accuracy loss

signifies better compression for the dataset. The MAB line

represents AdaEdge’s compression selection component. We

show the lossless compression performance with solid lines

and lossy baselines with dash lines. For lossy compression

baselines, PAA, PLA, and FFT can handle any target compres-

sion ratio between range [1.0, 0), while BUFF-lossy does not

support a compression ratio below 0.125 on the CBF dataset.

Lossless compression incurs no accuracy loss within its limited

workable range, consistently resulting in zero accuracy loss.

In the figure, we depict negative values for various lossless

compressions to enhance visual distinction. AdaEdge uses
optimal lossless compression when possible and falls back to
best lossy compression otherwise. From Figure 7, MAB-based
compression selection always selects the optimal compression
for each target compression ratio. It selects BUFF-lossy for

compression range above 0.125 and choose either PAA or

FFT for other compression ratio range. The variation on the
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Fig. 8: Sum query over target compression ratio

MAB line comes from the exploration cost of MAB, in which

sub-optimal action is taken, thus inflating the accuracy loss.

Conversely, CodecDB is effective only within a narrow range

of target ratios for lossless compression and is otherwise

ineffective. KVStore’s PLA typically underperforms.

Aggregation tasks: We also evaluated AdaEdge’s encoding

selection performance on aggregation queries. Figures 8 and

9 display the relative aggregation accuracy loss for each

compression method. Due to the minimal accuracy loss, we

employ a logarithmic scale for the vertical axis. As in the

previous experiment, we represent all lossless baselines with

values less than 1.00e − 18 for clarity, noting that lossless

compression incurs no accuracy loss within its limited work-

able range. AdaEdge effectively selects PAA or FFT as the
optimal compression for sum aggregations, aligning with the
ground truth. The spikes in the MAB lines result from the

MAB exploration steps, accentuated by the logarithmic scale

which exaggerates the impact of suboptimal actions on a small

number of segments. For max aggregation queries, AdaEdge
consistently chooses PLA due to its superior performance.
CodecDB, however, is only effective for lossless compression

within a limited range of target ratios and fails outside this

range. KVStore is suitable solely for max aggregation queries.

Complex workload targets: AdaEdge readily optimizes

for a single target. In subsequent experiments, we explore
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Fig. 10: Sum aggregation query and random forest com-

plex optimization target over target compression ratio with

weighted value w1 = 0.625 and w2 = 0.375.

compression selection for complex workload targets with mul-

tiple objectives. For time series data systems, both aggregation

query accuracy and machine learning task accuracy are often

crucial. AdaEdge accommodates complex optimization targets

that account for both, offering a knob to balance the two.

A = argmax
a

(w1 ×Accagg(a) + w2 ×AccML(a))

Figure 10 shows the sum aggregation query and random

forest complex optimization target for the online mode where

a clear target compression ratio can be derived from the

system constraints. According to the baselines, there are two

crossover points for the complex optimization target: the first

is a compression ratio of around 0.8, and the second is around

0.25. FFT is the ground truth optimal compression in the range

1 to 0.8, followed by BUFF-lossy from 0.8 to 0.25, after

which FFT regains its optimality from 0.25 to 0. According

to Figure 10, AdaEdge adapts to optimal compression across
most ranges. The outlier around compression ratio 0.15 is

because of the variation from the sum aggregation query.

Alternatively, the PLA implementation by KVStore exhibits

the least favorable performance in this scenario.
Accuracy is not the only performance dimension for system

evaluation. Data systems care about compression speed in

addition to task accuracy. AdaEdge also supports the balanced

optimization target between those two. Figure 11 shows the

compression selection performance with the optimization tar-

get combining compression speed and task accuracy.

A = argmax
a

(w1 × Cthr(a) + w2 ×AccML(a))

Figure 11 shows a complex target of speed and accuracy,

with higher values being preferable. Notably, AdaEdge’s MAB
effectively selects the optimal compression. We can see a

crossover point at 0.25 between PAA and BUFF-lossy, and

AdaEdge handles those cases well. In contrast, KVStore’s PLA

implementation underperforms in this context.
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Fig. 11: Compression speed and random forest complex op-

timization target over target compression ratio with weights

w1 = 0.524 and w2 = 0.476.

2) Offline mode: The offline mode of AdaEdge aims to

preserve workload-critical information to the greatest extent

possible within the constraints of the system’s storage budget.

Thus, the compression process continuously retrieves segments

from the uncompressed buffer and applies varying levels of

compression based on each segment’s importance.

In this experiment, we allocate 10MB of space for AdaEdge

to ingest 80MB (10 million) data points with a recoding

threshold set at 0.8, meaning recoding is triggered to free

up space when space usage reaches 0.8. An LRU-based

compression policy is employed in the experiments. The

horizontal axis in Figure 12 and Figure 13 represents the

ingestion timestamp, while the two vertical axes show space

usage and machine learning task accuracy loss respectively.

During offline ingestion, there are essentially two phases of

encoding selection: lossless compression, which aims to min-

imize the compression ratio and maximize space savings, and

lossy compression, which focuses on optimizing accuracy for

machine learning tasks. We also include baselines comprising

all possible compression pairs, denoted as lossless lossy. In

total, 25 baselines cover all compression pair combinations.

We display only top-performing representatives to maintain

readability. The term mab mab represents our solution, which

employs MAB-based encoding selection strategies. Space us-

age is periodically monitored, indicated by the red lines.

All compression pairs in Figures 12 and 13 manage to

keep space usage within the safe limit set by the recoding

threshold, shown by the red lines. The MAB space usage curve

has a gentler slope compared to the Gzip, Snappy, or Gorilla

baselines in Figure 13. This is because the MAB lossless

compression selects Sprintz, which yields the smallest file size.

CodecDB also selects Sprintz for lossless compression but fails

upon reaching the recoding budget, lacking support for lossy

compression to further free up space with minimal impact on

task accuracy. The blue line to the bottom shows the KMeans

task accuracy loss, which increases when the space usage

line reaches the recoding threshold where the lossy recoding

process is initialized. The slower the task accuracy loss line

increases, the better compression it is. AdaEdge MAB-based
lossy compression selection is always the best to choose the
optimal compression to minimize task accuracy loss.

In this experiment, MAB-based lossy compression selection

initially picks BUFF-lossy as optimal lossy compression and
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CodecDB failsXX

Fig. 12: KMeans accuracy loss over in-

gestion time for baselines Sprintz X
Fig. 13: KMeans accuracy loss over in-

gestion time for baselines X bufflossy

x         
 gorilla_pla fails

x
 gorilla_fft fails

Fig. 14: KMeans accuracy loss over high-

frequency signal (1 million points/s)

switches to PAA when BUFF-lossy fails to compress the

segment further. Baselines in Figure 12 show that the accuracy

loss stays low when recoding first starts and increases quickly

when more data is ingested, requiring more aggressive com-

pression for old data. BUFF-lossy fails and falls back to RRD-

sample to further compress the segments in the late phase of

the ingestion experiment. In addition to KMeans, we also test

AdaEdge offline mode on other aggregation and ML tasks. The
experiments demonstrate AdaEdge’s adaptability in finding the
best solution for aggregation queries and various machine
learning tasks, including KNN, random forest, and decision
tree. Beyond general accuracy improvements, we consistently

evaluate the task accuracy of the recent data segments. Due

to the LRU-based compression policy, AdaEdge consistently

delivers 100% accuracy for these fresh data segments.
Previous experiments showcase scenarios with relatively

modest ingestion rates, where all compression baselines suc-

cessfully managed the ingested signals within the given storage

budget, and AdaEdge delivered the optimal compression so-

lution. Figure 14 shows the ingestion experiments with high-

frequency signal (1 million points per second). We include

the top compression combinations (e.g., gzip bufflossy,

buff bufflossy and sprintz bufflossy), which perform

similarly to their counterparts’ performance on a lower fre-

quency signal in Figure 12 and 13 but in a smaller time

scale. AdaEdge consistently selects the most appropriate com-

pression method that minimizes accuracy loss while staying

feasible. However, several compression pairs could not keep

space usage within the storage budget threshold of 0.8, ul-

timately exceeding the total storage capacity. For instance,

combinations like gorilla fft and gorilla pla exceeds the

storage budget at 8.0 seconds and 8.4 seconds, respectively,

failing to complete the ingestion task. The Gorilla-based pairs

underperform because Gorilla decompression was more time-

consuming than other baselines, delaying the recoding process.

Such bottlenecks could potentially be alleviated by assigning

additional threads to the recoding component.

C. Robustness against data shifts and hardware variability
Here, we test AdaEdge on smaller edge-class hardware.

We use a synthetic dataset consisting of half high-entropy

data from the CBF dataset and half randomly generated low-

entropy data. We set the optimization goal to minimize space

usage. We also doubled the decision space by including more

(a) Baseline candidates (b) mab ε = [0.05, 0.1, 0.2]

Fig. 15: AdaEdge choose the best compression solution with

shifting workload at a rate 100k points per second

compression candidates shown in Figure 15a. Figure 15b

shows AdaEdge still converges to the optimal solution that

starts with Sprintz and then switches to gzip or zlib-9 for

the second half, even with a large decision space. The ε
value directly affects the exploration rate, but it does not

prevent AdaEdge from finding the best solution. A sub-optimal

exploration may result in space overhead, which can be fixed

or alleviated later by a recoding step if applicable. We also ran

the experiments by tuning the nonstationary step value, where

the result shows that a larger step value results in a more swift

change of choice with data distribution. To better balance the

overall performance, we used MAB ε = 0.1 and step = 0.5
as the default in AdaEdge for the cases with data shift.

This demonstrates AdaEdge’s capability in handling inges-

tion tasks with a single compression and recoding thread, con-

sistently selecting the most effective compression approach.

AdaEdge exhibits strong scalability when ingesting multiple

signals, supporting concurrent compression and recoding pro-

cesses. In our scalability tests, AdaEdge successfully managed

an ingestion rate of approximately 8 million points per second

using 8 threads while adhering to the system’s constraints.

VI. CONCLUSION

AdaEdge offers a robust compression selection framework

tailored for data systems with defined compression ratios or

storage budgets. It accommodates singular and multifaceted

optimization objectives, allowing users to customize targets

specific to their system needs. AdaEdge compresses data based

on usage frequency and selects between lossy and lossless

compression methods, accounting for hardware limitations and

workload requirements.
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