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ABSTRACT

Despite the recent focus on time-series anomaly detection, the

e�ectiveness of the proposed anomaly detectors is restricted to spe-

ci�c domains. A model that performs well on one dataset may not

performwell on another. Therefore, how to develop automated solu-

tions for anomaly detection for a particular dataset has emerged as

a pressing issue. However, there is a noticeable gap in the literature

regarding providing a comprehensive review of the ongoing e�orts

toward automated solutions for selecting or generating scores in an

automated manner. Conducting a meta-analysis of proposed meth-

ods is challenging due to: (i) their evaluation across limited datasets;

(ii) di�erent assumptions on application scenarios; and (iii) the ab-

sence of evaluations for out-of-distribution performance. Motivated

by the limitations above, we introduce the EasyAD, a modular web

engine designed to facilitate the exploration of the �rst comprehen-

sive benchmark for automated time-series anomaly detection. The

EasyAD engine enables rigorous statistical analysis of 20 automated

methods and 70 of their variants across the TSB-AD benchmark, a

recently curated, heterogeneous dataset spanning nine application

domains. The engine supports a two-dimensional evaluation frame-

work, incorporating both accuracy and runtime performance. Our

engine allows users to assess the performance of various methods

per dataset and per instance, which o�ers �ne-grained analysis per

time series. Furthermore, the engine accommodates the processing

of user-uploaded data, enabling users to experiment with di�erent

model selection strategies on their own datasets.
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1 INTRODUCTION

Time-series anomaly detection, which describes the process of ana-

lyzing an instance to identify abnormal patterns, has become critical

across multiple scienti�c �elds and industries [5, 22]. Recent years
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Figure 1: Overview of EasyAD Engine.

have witnessed a surge in the development of anomaly detection

algorithms. Previous studies have evaluated the performance of

these methods across di�erent datasets [15, 24, 27]. These investiga-

tions have consistently highlighted the absence of a one-size-�ts-all

anomaly detector. Despite the vast amount of anomaly detection

models, a critical question remains:How can we automate time-series

anomaly detection by selecting, ensembling, or generating models?

There have been some attempts made to address such chal-

lenges [10, 18, 29]. However, these studies exhibit certain limitations.

Speci�cally, Ma et al. [18] provide an evaluation of unsupervised

model selection for anomaly detection, yet their analysis primarily

revolves around internal evaluation methodologies. Goswami et

al. [10] target the time series scenario; however, their approach

also con�nes itself to internal evaluation. Conversely, Sylligardos et

al. [29] explore pretraining-based techniques, but their study is

only focused on model selection via pretraining-based classi�ers.

The variability in datasets and di�erent assumptions regarding ap-

plication scenarios in these studies present a signi�cant challenge

when attempting to conduct a meta-analysis of their empirical per-

formance. What is more, the e�cacy of automated solutions in the

context of time series datasets remains insu�ciently validated.

To tackle the outlined problems and gain insights into the cur-

rent state of research in this domain, we introduce the EasyAD a

modular web engine designed to facilitate the exploration of au-

tomated time-series anomaly detection. As illustrated in Figure 1,

this system is based on TSB-AutoAD [16], the �rst comprehen-

sive benchmark for automated solutions in time-series anomaly

detection. It is designed not only to improve the visualization and

analysis of EasyAD benchmark which encompasses 20 automated

solutions with 70 variants as shown in Table 1, but also to facili-

tate a deeper comprehension of this domain. The system enables

statistical analysis of TSB-AD dataset [17] and allows for the ex-

ploration of data uploaded by users. In terms of evaluation, the

system features a two-dimensional comparison, focusing on both

the e�ectiveness and e�ciency of solutions for a holistic analysis.



Table 1: Overview of TSB-AutoAD benchmark. ‘TS’ indicates

whether the method is proposed for the time series scenario.

‘D’ indicates whether it requires anomaly scores generated

from the complete candidate model set. And ‘S’ indicates the

requirement of supervision from pretraining data.

Method Variants TS D S

SATzilla [13, 31] [ID, OOD]×2 × × ✓

ISAC [14] [ID, OOD]×2 × × ✓

ARGOSMART [21, 28, 34] [ID, OOD]×2 × × ✓

MetaOD [33] [ID, OOD]×2 × × ✓

MSAD [29] [ID, OOD]×2 ✓ × ✓

UReg [19] [ID, OOD]×2 ✓ × ✓

CFact [19] [ID, OOD]×2 ✓ × ✓

CQ [20] [XB, Silhouette, R2, ...]×10 × ✓ ×

UEC [9] [Excess-Mass, Mass-Volume]×2 × ✓ ×

MC [10, 18] [1N, 3N, 5N, .. 12N]×3 ✓ ✓ ×

Synthetic [7, 10] [STL-cuto�, Orig-cuto�, ...]×12 ✓ ✓ ×

TSADAMS [10] [Borda, MIM, ...]×6 ✓ ✓ ×

OE [3] [Avg, Max, AOM]×3 × ✓ ×

SELECT [25] [Vertical, Horizontal]×2 × ✓ ×

IOE [35] 1 × ✓ ×

HITS [18] 1 × ✓ ×

AutoTSAD [26] 1 ✓ ✓ ×

AutoOD-A [6, 11] [Majority, Orig, Ensemble]×3 × ✓ ×

AutoOD-C [6] [Majority, Individual, Ratio, Avg]×4 × ✓ ×

UADB [32] [Orig, Mean, STD, ...]×5 × × ×

Count: 20 70

Additionally, EasyAD enables a comprehensive assessment through

a global comparison that aggregates evaluations across datasets, as

well as an individual, �ne-grained comparison for each time series.

2 PRELIMINARY

In this section, we provide the background necessary for the rest

of the paper. We �rst introduce the taxonomy and pipeline of auto-

mated time-series anomaly detection, followed by an overview of

the evaluation framework encompassing evaluation measures and

preloaded datasets within the engine.

2.1 TSB-AutoAD Benchmark

From a process-centric perspective, the works in this �eld can be

classi�ed into three main categories, namely model selection, en-

sembling, and generation. The TSB-AutoAD benchmark comprises

20 solutions ranging from the 2010s to the current state-of-the-art

methods as depicted in Figure 2. Model selection involves identi-

fying the best model and its corresponding hyperparameters from

a set of candidate models, which is then employed for anomaly

detection. Within this category, existing approaches can be broadly

classi�ed into two subgroups: meta-learning-based methods and

internal evaluationmethods. Meta-learning-based approaches lever-

age prior knowledge about the performance of various anomaly

detectors on historical labeled datasets to automate model selection

for new, unseen datasets. In contrast, internal evaluation methods

assess model e�ectiveness using surrogate metrics that do not rely

on external data, such as ground-truth anomaly labels.

Model ensembling aims to enhance robustness and accuracy

by combining the predictions of multiple candidate models through

ensemble strategies. Meanwhile, model generation focuses on

constructing an entirely new model from the candidate set, which

is then used as an anomaly detector to produce anomaly scores.
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Figure 2: Overview of automated solution pipeline. We use

M1,M2, andMn to represent the candidate models.

2.2 Evaluation Framework

Evaluation Measures. For accuracy evaluation, when comparing

multiple solutions across multiple datasets, we use the Friedman

test followed by the post-hoc Nemenyi test to determine their rank-

ings. For point-level anomaly detection, we adopt standard metrics

such as AUC-ROC, AUC-PR, and Standard-F1. To enhance com-

pleteness, we include PA-F1, a commonly used but imperfect variant

that applies point adjustment [17]. Event-based-F1 [8] mitigates

biases introduced by point adjustment by evaluating each anomaly

segment as a single event, contributing once to the �nal score. To

capture the sequential nature of time series, R-based-F1 [30] ex-

tends conventional metrics by incorporating existence and overlap

rewards, along with a cardinality factor. A�liation-F1 [12] further

re�nes this by quantifying the temporal proximity between pre-

dicted and true anomaly ranges. Traditional metrics like AUC-ROC

and AUC-PR, which treat all points equally, often fail to account

for temporal consistency and label ambiguity. To address this, VUS-

ROC and VUS-PR [4, 23] introduce a tolerance-aware framework

that softens boundary de�nitions and employs continuous scoring,

improving robustness in range-based evaluations.

In addition to the accuracy evaluation, we measure the detection

time which refers to the duration required to obtain a detection

result (i.e., the anomaly score) for a given time series. In the process

of model selection, the detection time is divided into two compo-

nents: execution time, which measures the time needed to identify

the optimal model, and detector runtime, which is the time required

for the chosen model to compute and produce the anomaly score.

For model generation, where the method’s output is directly the

detection result, the execution time represents the detection time.

Datasets. To ensure reliable benchmarking results, we conduct our

evaluation of automated solutions using the recently published,

heterogeneous, and curated TSB-AD dataset [17]. Each dataset is

divided into two parts: the training set, which enables access to

ground truth anomaly labels, and the evaluation set, where the labels

are only used for evaluation but are ignored during inference. The

evaluation of automated solutions is conducted on the evaluation

set, with the training set serving as the resource for supervised

selection and pretraining data for meta-learning-based methods.

Baseline.We employ four types of baselines. The Oracle represents

the theoretical upper bound for model selection, where the most

accurate anomaly detector for a time series is selected based on

ground truth labels. Global Best (GB) selects the model that exhibits



Figure 3: The main frames of EasyAD Engine.

the highest overall performance (highest average ranking) across

the entire evaluation set. Supervised Selection (SS) identi�es the best

anomaly detector on the training set of each dataset and then uses

it for the evaluation set. In Random, the model is randomly selected

from the candidate set for each time series and utilized for anomaly

detection on that dataset.

Candidate Model Set: The candidate models serve as the base

anomaly detectors from which automated solutions either select

or generate �nal predictions. To ensure broad and representative

coverage, we leverage the detection algorithms provided by the

TSB-AD benchmark [17] - one of the most extensive and recent

benchmarks for time-series anomaly detection, comprising 40 dif-

ferent algorithms across both univariate and multivariate settings.

3 SYSTEM OVERVIEW

In this section, we describe EasyAD engine [1], a modular web

engine designed to facilitate the exploration of automated time-

series anomaly detection. The GUI is a stand-alone web application

developed using Python 3.10 and the Streamlit framework [2]. In

total, the GUI consists of four frames: (i) Overview, (ii) Benchmark,

(iii) Evaluation, and (iv) Data Exploration as shown in Figure 3. The

Overview frame o�ers an overview of the engine’s goals and a user

manual to help get familiar with the engine. The Benchmark frame

contains the pipeline and taxonomy of automated solutions, along

with details on datasets and candidate model sets. Next, we provide

details for the remaining frames.

Evaluation Frame. This frame is composed of three sub-frames.

Illustrated in Figure 3 (a), the Accuracy Evaluation sub-frame fea-

tures analyzing the performance variance of chosen methods across

selected datasets. For illustrative purposes, this sub-frame includes

a boxplot to summarize the distribution of performance of di�erent

methods, a critical diagram for evaluating rankings relative to one

another and baselines, and a table that presents detailed perfor-

mance metrics. Additionally, this section facilitates the exploration

of performance variance under various anomaly types, such as

single, multiple, point, and sequential anomalies, thus enabling a

more in-depth exploration as depicted in Figure 3 (b). The second

sub-frame Runtime Analysis in Figure 3 (c) showcases the detection

and execution times of the selected methods. Within the bubble

plot, a larger bubble size denotes a longer time, while a bubble’s

height correlates with greater accuracy. The third sub-frame,Model

Selection Distribution, depicted in Figure 3 (d), delves into the nu-

ances of model selection methods. For the pretraining-based model

selection method, this section underscores the variability in model

selection between in-distribution and out-of-distribution scenarios,

followed by a pairwise accuracy comparison. For internal evalu-

ation methods, the section highlights the frequency of di�erent

anomaly detectors being chosen throughout the evaluation process.

Data Exploration Frame. This frame is designed to conduct a

detailed analysis of the e�cacy of various methods across individ-

ual time series, o�ering a more �ne-grained perspective compared

to the Evaluation frame, which focuses on dataset-wise compar-

isons. Speci�cally, within this frame, users have the opportunity to

delve into the evaluation results for all 20 solutions across TSB-AD.

Furthermore, the frame enables the exploration of user-uploaded

data by selecting the “Upload your own” option. For demonstration

purposes, we have selected two best-performing methods SATzilla

and MSAD as the exemplary methods. Upon uploading their data,

users can opt for these methods to generate results, including the se-

lection of the predicted model and the results of anomaly detection

(comprising both the anomaly score and the identi�ed anomalies)

utilizing the chosen model, as illustrated in Figure 3 (e).

4 DEMONSTRATION SCENARIOS

In this section, we present �ve demonstration scenarios to help

users navigate through the evaluation framework and gain insights

into this �eld. This demo has four goals: (i) providing a compre-

hensive overview of the current state of research in automated

time series anomaly detection (Scenarios 1-2); (ii) understanding

the trade-o�s between accuracy and runtime, as well as the appli-

cability of various approaches across di�erent use cases (Scenario

3); (iii) diving into model selection method and understanding the

impact of domain shifting (Scenario 4); (iv) empowering users to

investigate automated solutions on individual time series, enabling

direct interaction with the framework (Scenario 5).

Scenario 1: Finding the overall best automated solutions. As

illustrated in Figure 3 (a), to reproduce similar overall accuracy

evaluation results, users are required to access the Evaluation frame.

Then users can select the desired evaluation measures, datasets, and

automated solutions from the options presented in the left sidebar.

Upon selection, the corresponding evaluation results are displayed,

starting with a boxplot that summarizes the accuracy of the chosen

methods, followed by a critical diagram for assessing their relative

rankings. Additionally, details regarding the datasets and automated

solutions are accessible within the Benchmark frame. This section

aims to provide users with a basic understanding of the comparative



performance of various methods, including their rankings relative

to each other and to baseline approaches. Furthermore, to identify

the best variant within each speci�c category, users may select a

category and then opt for ‘All Variants’ to determine the best one.

Scenario 2: Investigating the in�uence of di�erent anomaly

types. In this scenario, users can explore the performance variance

under di�erent types of anomalies by selecting the corresponding

type under the Anomaly Type menu as depicted in Figure 3 (b). The

selected anomaly types encompass include single, multiple, point,

and sequence anomalies.

Scenario 3: Understanding accuracy to runtime trade-o�. Fol-

lowing the exploration of accuracy evaluations, this scenario delves

into analyzing runtime performance, as depicted in Figure 3 (c). This

analysis is visualized through two bubble plots: one representing de-

tection time and the other execution time, where a larger bubble size

indicates a longer time. A noteworthy distinction emerges between

meta-learning-based methods, such as MSAD, and internal evalua-

tion methods, likeMC, in terms of runtime, with the former exhibit-

ing signi�cantly shorter execution and detection times. However,

this e�ciency is not without its trade-o�s. Meta-learning-based

methods require training on historical labeled datasets, thereby

constraining their applicability across di�erent use cases.

Scenario 4: Exploring the model selected distribution and

the e�ect of domain shift. This scenario focuses on the model

selection methods. We �rst demonstrate the frequency of di�erent

anomaly detectors being chosen. By selecting di�erent methods in

the drop-down menu, the user can explore di�erent model selected

distributions in both meta-learning-based and internal evaluation

methods. Furthermore, within the context of meta-learning-based

model selection, we underscore the discrepancy between perfor-

mance in in-distribution versus out-of-distribution scenarios, as

illustrated in Figure 3 (d). A subsequent pairwise comparison eluci-

dates the signi�cant performance reduction in out-of-distribution

cases, highlighting the impact of domain shift on model e�cacy.

Scenario 5: Testing on your own data. In this scenario, users can

apply automated solutions to their own data by navigating the Data

Exploration frame and uploading their time series for testing. Upon

data uploading, the initial step involves visualizing the time series,

followed by employing a pre-trained model selector to determine

the best anomaly detector from the candidate model set, along with

providing insights into the voting process. As depicted in Figure 3

(e), the model with the highest number of votes is utilized for de-

tecting anomalies in this time series, and ultimately, the generated

anomaly score and predicted anomalies are visualized.

5 CONCLUSION

In this paper, we introduce the EasyAD, a web-based engine de-

signed to expedite the investigation of automated solutions for time-

series anomaly detection. By interacting with the demonstration

system, users can explore thorough evaluations of a comprehen-

sive collection of automated solutions on a large scale of preloaded

datasets as well as their own datasets. This system equips users to

grasp the current state of research within this domain and assists

them in identifying practical methodologies for real-world appli-

cations while highlighting existing research challenges. We hope

the interactive demo system can empower users with insights and

inspire further advancements in the �eld.
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