
Advanced Search, Visualization and Tagging of

Sensor Metadata

Ioannis Paparrizos, Hoyoung Jeung, Karl Aberer

School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne (EPFL)
{firstname.lastname}@epfl.ch

Abstract—As sensors continue to proliferate, the capabilities
of effectively querying not only sensor data but also its metadata
becomes important in a wide range of applications. This paper
demonstrates a search system that utilizes various techniques
and tools for querying sensor metadata and visualizing the
results. Our system provides an easy-to-use query interface, built
upon semantic technologies where users can freely store and
query their metadata. Going beyond basic keyword search, the
system provides a variety of advanced functionalities tailored
for sensor metadata search; ordering search results according
to our ranking mechanism based on the PageRank algorithm,
recommending pages that contain relevant metadata information
to given search conditions, presenting search results using various
visualization tools, and offering dynamic hypergraphs and tag
clouds of metadata. The system has been running as a real
application and its effectiveness has been proved by a number
of users.

I. INTRODUCTION

As sensors become increasingly widespread in the modern

world, they produce huge volumes of data. Such data includes

not only measurement readings but also associated metadata,

such as sensor specification, invalid data history, deployment

location, current status of sensor etc. Since sensor data is

generally processed with its associated matadata, querying

sensor metadata becomes important. In addition, users often

search particular metadata in order to understand, analyze, and

validate associated sensor data.

Unfortunately, most sensor metadata management schemes

have neglected the importance of the metadata search [1], [2],

and support merely basic search functionalities, e.g., keyword

search. Thus, they are unable to effectively capture various

attributes of sensor metadata.

In this paper, we present an advanced search system for

sensor metadata1, running over a large-scale real application,

i.e., the Swiss Experiment Platform2 [3], [4], where various

research institutes share metadata as well as real-time envi-

ronmental observation data. The key features of the system

are briefly highlighted as follows:

• It employs the Semantic MediaWiki [5] with an under-

lying relational database system for maintaining sensor

metadata, which provides a user-friendly environment.

Our system retrieves search results not only from the

1http://www.swiss-experiment.ch/index.php/Special:RunQuery/Advanced
SearchMetadata

2http://www.swiss-experiment.ch

underlying relational database, but also from the seman-

tically related web pages (stored as RDF graphs) with

respect to metadata and query inputs.
• Search results are sorted according to our ranking mecha-

nism built upon the PageRank algorithm [6]. Furthermore,

a recommendation system proposes metadata pages con-

taining relevant information to the query inputs based on

semantic properties that are scored high by the PageRank

algorithm.
• In addition to basic search options (e.g., keyword, sort by,

order by), our system offers a rich body of advanced op-

tions for taking search inputs and visualizing the results.

These include map-based browsing of metadata pages,

real-time bar and pie diagrams, graph representations

showing semantic relations and similarities among meta-

data attributes, and presenting maps when search results

are associated with locations.
• User-browsable hypergraphs are dynamically generated

based on the linking structure of the metadata pages.

These form real-time tag clouds in our search system,

which shows the trends of metadata based on linear

normalization of terms and graph’s cliques.

The demonstration presents an overview of our sensor

metadata search system, focusing on describing the above key

features.

II. THE METADATA SEARCH SYSTEM

We maintain sensor metadata in the Sensor Metadata

Repository (SMR) [3], which is established upon Semantic

MediaWiki [5]. It offers a technique of annotating wiki pages

with semantics in the form of (attribute, value)-pairs, modeling

any process by meaningfully annotating the entities, and

connecting them semantically to each other. Then, queries

in the system are processed using a combination of SQL

and SPARQL [7] query languages since the sensor metadata

information is stored in both a relational database and RDF

graphs. Furthermore, we then enrich this search capability by

employing several advanced mechanisms and algorithms.

Fig. 1 illustrates the search mechanisms in our system.

The Query Interface module takes user’s inputs for queries

within their privileges, since a user may not have a full access

to the whole metadata. It then demonstrates the results with

various visualization tools. The Query Management module

is responsible for processing the queries, while taking into

account the mapping of RDF schema to database schema.

It also connects with several other modules such as Google

Maps API, the GraphViz library, the Google Pie and Bar APIs,

the HyperGraph API etc. for dynamically visualizing search

results in effective formats.

Fig. 1. System architecture.

The system presents search results in various manners,

according to the types of query results. Fig. 2 demonstrates

some snapshots of the visualizations. In addition to plain

tabular formats and bar/pie diagrams, search results that con-

tain positional information can be presented over maps while

using different colors for describing the degree of matching

of each result with respect to given join predicates. Graph

visualization represents the associations (with directed arcs)

of sensor metadata in the results as each metadata page may

have references in several properties that are different or

identical (classification of pages based on similarities of their

metadata). Dynamic HyperGraphs allow users to browse pages

according to their linking structure and help them identify

popular (clustered) pages. Our search system also offers tag

clouds that show the trends of either semantic properties or

user-generated tags. Details for the dyanamic tagging system

are described in Section IV.

The results matched to queries are ranked by our ranking

metric described in the following section. In addition, a

recommendation mechanism is embedded to our system. This

presents relevant pages based on the combination of query

inputs and properties that are high-scored by the PageRank

algorithm.

III. RANKING SEARCH RESULTS

Every metadata page in our system has two kinds of linking

structures: one is the links provided by the RDF graphs and

metadata properties, and the other is the normal web-page

links from one page to another. We extend the original PageR-

ank algorithm [6] to consider these two links simultaneously

Fig. 2. Snapshots of visualized search results.

for scoring the metadata pages. This is a non-trivial problem

as not all of the metadata pages have semantic attributes and

thus both linking structures become important to provide an

objective ranking.

Pagerank scores need to be updated regularly as new

metadata pages are continuously created. Thus, it is necessary

to evaluate the convergence and calculation time of several

methods that solve the Pagerank algorithm in order to identify

which one is most appropriate for our double linking structure.

Pagerank algorithm can be solved either as an Eigen System

or as a Linear System. A web graph adjacency matrix A with

elements Aij equal to 1 if there is a link from i to j or equal

to 0 otherwise. This can be normalized by setting Pij =
Aij

deg(i)

where deg(i) is the number of out-links. However, some

metadata pages may not have out-links, called dangling nodes,

which makes the calculation of Pagerank problematic. One

way to overcome this difficulty is to slightly change the

transition matrix P to a row-stochastic matrix P ′:

P ′ = P + duT (1)

where d is the dangling page indicator, and u is some

probability distribution over pages (normally ui = 1
n
). Due

to the strong connectivity in the Web graph, a small degree

of teleportation has to be added in every page. Thus P ′ is

rewritten as P ′′:

P ′′ = cP ′ + (1− c)euT , e = (1, ..., 1) (2)

where c is a teleportation coefficient. In practice 0.85 ≤ c < 1.
After these modifications, matrix P ′′ becomes row-stochastic

and irreducible. Therefore, simple power iterations

x(k + 1) = (P ′′)Tx(k) (3)

for the eigensystem (P ′′)Tx = x converge to its principal

eigenvector. Now, combining Eq. 1 - 3 we get

[cPT + c(udT) + (1− c)(ueT)]x = x. (4)

Eq. 4 can be written as a linear system

(I − cPT)x = kv (5)

where k = k(x) = ||x|| − c||PTx|| = (1 − c)||x|| + (dTx).
All assumptions taken and full proofs can be found at [8].

To solve the pagerank algorithm we consider several it-

erative methods [9], [10] - as a direct method incurs high

computational cost, due to the large-size, asymmetric prop-

erty of the matrix. Specifically, we take a set of Krylov

subspace methods to solve the linear system of eq. 5, such

as Generalize Minimum Residual (GMRES), Gauss-Siedel

iterations (GS), Arnoldi iterations, Biconjugate Gradient Sta-

bilized (BiCGSTAB) etc. Fig. 3 exhibits the evaluation of these

methods. The Gauss-Siedel method outperforms the others

with respect to the convergence iterations and computational

efficiency. Thus, we use that for the Pagerank Calculation

module of our advanced search system.

(a) Convergence Evaluation

(b) Time Evaluation

Fig. 3. PageRank Evaluation

IV. DYNAMIC TAGGING

Tag clouds are important in sensor metadata search as

they can offer an easy, conceivable way to show the current

trends of metadata (e.g. which institutions or universities

participate mostly, which is the most popular project, and

which deployments are widely used etc.). Our tagging system

takes into consideration not only the importance (frequency)

of a term but also its semantic meaning.

A. Architecture of Dynamic Tagging System

The tagging system consists of several components illus-

trated in Fig. 4. The Interface module provides the neccesary

commands in order to create tags and to accept users’ inputs

for visualizing tag clouds. The Parser module is responsible

for connecting to the SMR, exchanging data, fetching and

storing tags. A Cache mechanism is also implemented to

decrease the number of computations and data exchanges.

Users are able to create tags in each webpage, describing the

topic of it or the metadata. As tags can also be considered

the values of metadata properties of the page. The stored

tags are given as input to the Matrix Transformation module.

This module then computes tag matrices based on using the

cosine similarity measure (two tags considered similar for a

threshold above 50%). Each matrix is considered as a graph in

which 1 denotes a link from one tag to another and 0 denotes

no linking between tags. This transformation is done in the

Graph module. The transformed graph is then used as input

to the Max Clique Algorithm module which calculates all the

cliques of the graph and stores the information of clique-tag

relationships. Last, the Font Size Calculation module computes

the font size of each tag depending on a mathematical formula

that is described in the following section. The result is then

sent to the SMR for visualization. The modularized imple-

mentation of the tagging system allows easy modifications

on the ranking mechanism (e.g. by replacing the Max Clique

Algorithm module we can focus on other graph properties

or by modifying the Font Size Calculation module we can

promote tags differently depending on the application).

Fig. 4. Architecture of Dynamic Tagging System.

B. Tagging Algorithm

Once all the tags to be shown are selected, the next step is

to calculate the font size of each tag based on its incidence

(frequency). The frequency of each tag corresponds to the

number of entries that are assigned to each page. Specifically,

the font size of tagi is mapped to a size scale of 1 through

f , where tmin and tmax are specifying the range of available

font sizes.

We also consider the maximum clique problem. By com-

puting the cliques of a graph with tags, we can promote in

the tag cloud the tags that belong to cliques as well as we

can identify the semantics behind the tags. Fig. 5 illustrates

the semantics of tag “Apple” which belongs to two cliques.

Different colors indicate different cliques.

Fig. 5. Semantically important the cliques in tag graphs.

In our system we used the Bron-Kerbosch algorithm3 for

finding maximal cliques in an undirected graph [11] which is

frequently reported as being more effiecient than alternatives

which in theory are better for inputs with few maximal

independent sets [12].

The formula with which the font size of each tag is

computed as:

si = ⌈
ci ∗ ω(maxcliquei)

C
+

fmax(ti − tmin)

tmax − tmin

⌉ (6)

for ti > tmin; else si = 1. In this formula si is the fontsize,

fmax is the maximum fontsize, ti is the count of tag, ci is

the number of cliques the tag belongs, C is the number of

cliques (always ≥ 1), maxcliquei is the maximum clique a

tagi belongs, ω(maxcliquei) is the order of clique (number
of nodes), tmin is the minimum frequency and tmax the

maximum frequency of tags.

V. DEMONSTRATION

In the demonstration we first present our Bulk-loading

Interface4 where users can upload huge volume of metadata to

the SMR5 that stores all metadata from deployments all over

the world (Fig. 6). We explain the metadata schema and we

highlight how easily users can register and edit their metadata

in the system without any programming.

Then, the easy-to-use advanced search interface (Fig. 7) is

presented, covering autocomplete features, drop-down menus

that change dynamically based on the chosen properties of

schema and map-based browsing of metadata pages. The

audience in the demonstration will be able to participate in

giving inputs for query, retrieve the corresponding metadata

from the SMR, visualize the search results using a variety of

tools, such as (clustered) maps, hypergraphs, pie/bar diagrams

etc., and browse them. Last, the tagging system will be

presented and tag clouds showing the trends in our system

will be generated in real time.

3The code is based on Katharina Wäschle’s implementation which was
extended to optimize candidate tag selection and minimize recursion steps

4http://www.swiss-experiment.ch/bulkload/bulkload.html
5http://www.swiss-experiment.ch/index.php/Fieldsite:Home

Fig. 6. Snapshots of Sensor Metadata Repository

Fig. 7. Snapshots of Query Interface

REFERENCES

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang,
W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik, “The design of the borealis stream processing engine,”
in CIDR, 2005, pp. 277–289.

[2] M. Balazinska, H. Balakrishnan, and M. Stonebraker, “Load manage-
ment and high availability in the medusa distributed stream processing
system,” in SIGMOD, 2004, pp. 929–930.

[3] N. Dawes, K. A. Kumar, S. Michel, K. Aberer, and M. Lehning, “Sensor
metadata management and its application in collaborative environmental
research,” in eScience, 2008, pp. 143–150.

[4] S. Michel, A. Salehi, L. Luo, N. Dawes, K. Aberer, G. Barrenetxea,
M. Bavay, A. Kansal, K. A. Kumar, S. Nath, M. Parlange, S. Tansley,
C. van Ingen, F. Zhao, and Y. Zhou, “Environmental monitoring 2.0,”
in ICDE, 2009, pp. 1507–1510.

[5] M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and R. Studer,
“Semantic wikipedia,” in WWW, 2006, pp. 585–594.

[6] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, 1999, Technical
Report.

[7] “SPARQL query language for RDF,” W3C Recommendation, World
Wide Web Consortium, Technical Report, January 2008.

[8] D. F. Gleich, “Models and algorithms for pagerank sensitivity.” Stanford
InfoLab, 2009, Ph.D Thesis.

[9] G. H. Golub and C. F. V. Loan, Matrix computations (3rd ed.). Johns
Hopkins University Press, 1996.

[10] O. Axelsson, Iterative solution methods. Cambridge University Press,
1994.

[11] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an
undirected graph,” Communications of ACM, vol. 16(9), pp. 575 – 577,
1973.

[12] F. Cazals and C. Karande, “A note on the problem of reporting maximal
cliques,” Theoretical Computer Science, vol. 407(1), pp. 564 – 568,
2008.

