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Abstract—With the explosive growth of high-dimensional data,
approximate methods emerge as promising solutions for nearest
neighbor search. Among alternatives, quantization methods have
gained attention due to the fast query responses and the low
encoding and storage costs. Quantization methods decompose
data dimensions into non-overlapping subspaces and encode data
using a different dictionary per subspace. The state-of-the-art
approach assigns dictionary sizes uniformly across subspaces
while attempting to balance the relative importance of subspaces.
Unfortunately, a uniform balance is not always achievable and
may lead to unsatisfactory performance. Similarly, hardware-
accelerated quantization methods may sacrifice accuracy to
speed up the query execution. We propose a Variance-Aware
Quantization (VAQ) method to encode data by intelligently
adapting dictionary sizes to subspaces to alleviate these signifi-
cant drawbacks. VAQ exploits intrinsic dimensionality reduction
properties to derive the subspaces and only partially balances
the importance of subspaces. Then, VAQ solves a constrained
optimization problem to assign dictionary sizes proportionally to
the importance of each subspace. In addition, VAQ accelerates
the query execution by skipping data and subspaces through
a hardware-oblivious algorithmic solution. To demonstrate the
robustness of VAQ, we perform an extensive evaluation against
quantization, hashing, and indexing methods using five large-
scale benchmarking datasets. VAQ significantly outperforms the
strongest hashing and quantization methods in accuracy while
achieving up to 5× speedup. Compared to the fastest but
less accurate hardware-accelerated method, VAQ achieves a
speedup@recall performance up to 14×. Importantly, a rigorous
statistical comparison using over one hundred datasets reveals
that VAQ significantly outperforms rival methods even with a half
budget. Notably, VAQ’s simple data skipping solution achieves
competitive or better performance against index-based methods,
highlighting the need for new indices for quantization methods.

Index Terms—quantization, similarity search, proximity search

I. INTRODUCTION
Similarity or nearest neighbor search is the process of

retrieving from a database the closest neighbors to a query
under a certain distance measure. Similarity search constitutes
the backbone of a multitude of analytical tasks, including data
querying and exploration [3], [61], [85], [86], [91], [94], [96],
indexing [24], [25], [28], [38], [62]–[64], [122], classification
[12], [18], [48], [87], clustering [13], [34], [88], [89], [110],
pattern recognition [14], [100], [119], and anomaly detection
[19], [20], [22], [29], [71], [118]. With the unprecedented
growth of high-dimensional data [4], [31], [104] and with the
new edge computing paradigm pushing methods closer to the
data source to enable real-time decision making [90], [95],
similarity search applications require to operate over increas-
ingly massive databases and, often, under limited resources.

Unfortunately, gigantic database sizes combined with high
data dimensionality introduce severe computational and stor-

Fig. 1: Comparison of quantization methods across three large-scale
datasets. For the same budget, hardware-accelerated methods (i.e.,
Bolt [17] and PQFS [8]) may sacrifice accuracy (vs. PQ [52] and
OPQ [41], [82]) to accelerate the query execution. In contrast, our
method, VAQ, outperforms Bolt and PQFS in terms of runtime while
significantly improving accuracy compared to PQ and OPQ.

age challenges for exhaustive similarity search [4], [31], [49].
Therefore, similarity search approaches focus on two mecha-
nisms: (i) the encoding mechanism to map high-dimensional
data into compact codes, resulting in reduced storage and
computation costs; and (ii) the retrieval mechanism to organize
such codes, enabling efficient search in massive databases. A
traditional solution to facilitate fast, exact similarity search
has been through multi-dimensional tree-based indexing [15],
[103]. However, due to the “curse of dimensionality” problem,
the performance of tree-based methods degrades significantly
with high-dimensional data [50], [51]. Specifically, their com-
putation (i.e., construction and lookup) and storage costs
become prohibitively high [37], [52]. Despite efforts focusing
on advancing the data compression and filtering strategies
[36], alternative approximate similarity search solutions have
attracted considerable attention [42], [51], [52], [104], [107].

In contrast to exact approaches that retrieve the correct near-
est neighbors, Approximate Nearest Neighbor (ANN) methods
may return samples that are not the actual closest neighbors to
a query. However, for most problems, approximate answers are
sufficient [37], [104], [107]. Among ANN solutions, hashing-
based approaches [5], [27], [41], [42], [52], [104], [107]
have attracted significant attention. Data-independent hash-
ing methods [42], [51] exploit a family of locality-sensitive
hash functions to transform similar data to the same binary
(hash) codes with a higher probability than dissimilar data.
Despite their theoretical guarantees, these methods require
concatenating many hash functions to achieve satisfactory
accuracy, which increases the computational and storage costs
(i.e., maintain many hash tables). In contrast, data-dependent
hashing methods [52], [112], also known as learning-to-hash
methods, abandon guarantees and generate hash functions
aware of the data distribution, resulting in better performance.



Among data-dependent alternatives, quantization methods
[21], [41], [52], [100], [107] are often reported as the best
performing methods [11], [21], [41], [52], [67], [100], [107],
[114] and, therefore, we focus on this class of methods in this
work. The performance of the quantization methods critically
depends on maintaining a large dictionary to map data samples
into their nearest dictionary item. However, constructing one
large dictionary for all dimensions is infeasible. Product Quan-
tization (PQ) [52] addresses this vital issue by decomposing
the original data dimensions into non-overlapping subspaces.
This step enables PQ to also decompose a single large dictio-
nary into a set of small sub-dictionaries, one per subspace, and
encode data by mapping data subspaces to the corresponding
dictionary items. By storing in a table the distances between
the query subspaces and their corresponding dictionary items,
PQ finds nearest neighbors just by performing fast table
lookups using the indices of the encoded items. Theoretically,
the Cartesian product of all small dictionaries produces an
enormous dictionary. Thankfully, PQ keeps the dictionaries
separated and never needs to compute such Cartesian product.

Despite these benefits, PQ suffers from two drawbacks.
First, PQ is agnostic to the relative importance of each
subspace and assigns dictionary sizes uniformly across sub-
spaces, which may impact search accuracy. Second, scanning
of encoded vectors becomes expensive for large databases. To
improve the search accuracy, the state-of-the-art Optimized
Product Quantization (OPQ) [41], [82] swaps dimensions
between subspaces to balance the importance of subspaces,
making uniformly sized dictionaries appropriate. To speed up
the query execution, hardware-accelerated methods, Bolt [17]
and PQ Fast Scan (PQFS) [8], reduce the dictionary sizes
and restrict the precision of the lookup tables to vectorize the
encodings scan. Figure 1 compares PQ, OPQ, Bolt, and PQFS,
using a 256-bit budget (64 subspaces) to illustrate the trade-
offs between recall and runtime performance. We observe that
OPQ marginally improves (SIFT) but in certain cases even
reduces (SALD) its recall compared to PQ. Bolt speeds up
queries significantly but sacrifices accuracy. In contrast, PQFS
maintains the PQ accuracy, but the runtime is worse than Bolt.

We design a quantization method to improve both the search
accuracy and runtime performance. We propose Variance-
Aware Quantization (VAQ), a new approach to encode data by
intelligently adapting the dictionary sizes to subspaces based
on their importance. VAQ measures the importance as the
amount of the overall variance in the original data explained by
each subspace. To learn how to encode data adaptively, VAQ
proceeds in three steps. First, VAQ exploits dimensionality re-
duction properties to derive non-uniform subspaces efficiently
and partially balances the importance of subspaces. Second,
given a bit budget, VAQ determines the number of items
per subspace dictionary by optimizing an objective function
to maximize the variance explained across all subspaces and
per subspace, subject to a number of constraints. Through
such formulation, VAQ enables flexible and easy integration
of constraints to capture different application needs. Finally,
VAQ constructs variable-sized dictionaries and encodes data
by mapping subspaces to corresponding dictionary items.

To accelerate query performance, VAQ introduces a two-
step hardware-oblivious algorithmic solution to prune un-

necessary comparisons between queries and encoded data.
First, VAQ partitions the encoded data through clustering,
caches their distances to the corresponding cluster centroid,
and maintains the encoded data in each cluster in order, from
the closest to the furthest from the corresponding cluster
centroid. During querying, VAQ visits only the closest clusters
to the query and exploits the triangle inequality property for
Euclidean distances to avoid scanning encoded data that cannot
belong in the nearest neighbors based on the cached distances.
For the encoded data that pass the first filter, VAQ also uses
early abandoning for looking up the indices for all subspaces
when the incrementally computed distance exceeds the best-
so-far distance. VAQ manages to skip visiting the majority of
data samples and performs lookups for a subset of subspaces.

We have conducted a comprehensive evaluation to demon-
strate the effectiveness of VAQ. Specifically, we compare
VAQ against state-of-the-art quantization, hashing, and in-
dexing methods. We evaluate all methods on five large-scale
benchmarking datasets for similarity search. In summary, VAQ
significantly outperforms the strongest hashing and quantiza-
tion methods in accuracy while achieving up to 5× speedup.
Compared to the fastest but less accurate hardware-accelerated
method, VAQ achieves a speedup@recall (i.e., speedup at a
desirable recall) performance up to 14×. (Figure 1 shows
VAQ’s results compared to the previously discussed methods.)
In addition, we evaluate the best-performing methods across
over one hundred datasets [32] using rigorous statistical analy-
sis. Our evaluation reveals that VAQ significantly outperforms
rival methods even with a half budget (a remarkable, first of
its kind, improvement, to the best of our knowledge). Notably,
VAQ’s data skipping solution also achieves comparable or
better performance to strong indexing methods, highlighting
the need for new indices for quantization methods.

We start with a review of the state of the art and a definition
of our problem of focus (Section II). Then, we overview our
novel approach (Section III-A) and present our contributions:
• We derive subspaces and their importance efficiently by

exploiting linear dimensionality reduction (Section III-B).
• We formulate a constrained optimization problem to adap-

tively allocate the bit budget to subspaces proportionally
to their importance by maximizing the variance explained
per subspace and across subspaces (Section III-C).

• We build variable-sized dictionaries and partition and sort
the encoded data to enable fast processing (Section III-D).

• We introduce a hardware-oblivious algorithmic solution for
data skipping to accelerate query execution (Section III-E).

• We evaluate our ideas by conducting an extensive evalua-
tion against the strongest baselines (Sections IV and V).

Finally, we summarize our contributions and conclude by
presenting the implications of our work (Section VI).

II. BACKGROUND AND PRELIMINARIES

First, we review the problem of similarity search (Section
II-A). Then, we briefly overview hashing-based methods (Sec-
tion II-B) and describe quantization-based methods (Section
II-C). Finally, we present our problem of focus (Section II-D).
A. Exact and Approximate Similarity Search

Similarity search is the general problem of searching for
the nearest neighbor item of a given query item in a set of



n items. Formally, given n real-valued d-dimensional vectors
X = [x⃗1, . . . , x⃗n]

⊤ ∈ Rn×d and a query q⃗ ∈ Rd, the objective
of a method is to retrieve a data vector from X such that the
distance from this vector to the query vector is the smallest:

NN(q⃗) = argmin
x⃗∈X

dist(q⃗, x⃗) (1)

where dist(q⃗, x⃗) is the distance between q⃗ and x⃗. When more
nearest neighbors are requested, the problem generalizes to k-
Nearest Neighbor search (k-NN), where k are the requested
neighbors. The choice of the distance measure depends on the
particular application. However, the Euclidean distance is one
of the most popular and widely studied measures [67], [107].

Depending on the retrieved nearest neighbors, we divide
similarity search methods into exact and approximate [104],
[107]. Exact methods return the actual closest neighbors,
whereas approximate methods may not return the actual near-
est neighbors to a query. Approximate approaches are gaining
attention due to their low query responses and storage costs
[37], [104], [107]. There are two notable directions: error-
constrained and time-constrained approximate methods [79],
[80]. The error-constrained methods focus on retrieving neigh-
bors such that the approximated distances between the query
and the data samples differ by some relative error, ϵ, from their
true distances, and may or may not provide guarantees [5],
[16], [27], [37], [51], [107]. In contrast, the time-constrained
methods limit the query execution time (see [43] for a recent
study). We focus on error-constrained approximate methods.
B. Searching with Hashing Methods

Among error-constrained approximate methods, hashing-
based approaches [5], [27], [41], [42], [52], [67], [104], [107]
have attracted significant attention. Hashing-based methods
rely on a hash function, h(·), to transform a data item x⃗ into a
binary (hash) code y. Based on the use of data-independent or
data-dependent hash functions, we categorize these methods
into Locality Sensitive Hashing (LSH) and Learning-to-Hash
(L2H) methods, respectively [67], [104], [107].
LSH or data-independent methods [42], [51]: LSH methods
exploit a family of hash functions to map similar data to the
same codes with high probability. The design of hash functions
is central for these methods. For Euclidean distance, many
hash functions exist [5]–[7], [30], [84], [98], [99]. Despite their
theoretical guarantees, these methods require concatenating
many hash functions to achieve satisfactory search accuracy
and reduce the collisions for dissimilar data. To eliminate
the computational and storage costs, improvements focus on
searching more buckets [58], [76], [77] or employing dynamic
collision schemes [40], [77], [121].
L2H or data-dependent methods [52], [112]: Contrary to
LSH-type methods, L2H methods generate hash functions
aware of the data distribution, and improve accuracy compared
to data-independent methods [67], [104], [107]. The design of
the optimization objective to preserve similarities is critical for
these methods. Among alternatives, such as quantization [52],
[52], pairwise-similar [46], [69], [72], [73], [112], multiwise-
similar [105], [106], and implicitly-similar [56], [59] methods,
the quantization methods have been reported as the best
performing by recent independent studies [67], [107]. Next,
we review quantization methods, which enable in-situ querying
similarly to encodings for databases [35], [54], [55], [70].

C. Searching with Quantization Methods
The objective of the quantization methods is to represent

data by their closest items from a learned dictionary.
Vector Quantization (VQ) [45]: In VQ, the simplest quan-
tization method, the dictionary items or codewords ci form a
dictionary or codebook C = [c1, . . . , ck], where k is the size
of the codebook. Assuming a fixed bit length l, the items in
C are indexed by l = log2 k bits and, therefore, the size of
the dictionary is k = 2l. The quantization error is defined as:

E =
∑n

i=1
||x⃗i − c(x⃗i)||2 (2)

where ||·|| denotes the ℓ2-norm (Euclidean distance), and c(x⃗i)
denotes the dictionary item of x⃗i. To minimize the quantization
error, a method needs to satisfy two conditions. First, a vector
x⃗ must be encoded to its nearest dictionary item. Second, a
dictionary item must capture the fact that data vectors belong
to the same Voronoi cell in the high-dimensional space. The
cornerstone k-means method [74] satisfies these conditions
and is the prevalent choice for dictionary learning.
Product Quantization (PQ) [52]: The effectiveness of VQ
depends on the construction of a large dictionary. Considering
a modest number of l = 128 bits to encode data, the dictionary
size explodes to k = 2128, which becomes infeasible to
compute. PQ addresses this major issue by decomposing the
original data space into a set of m non-overlapping subspaces
of dimension q = d

m . For example, the subvector x⃗i contains
the dimensions [(i ·q−q+1), . . . , (i ·q)] of the d-dimensional
vector x⃗. In contrast to VQ that uses a single dictionary, PQ
constructs a dictionary for each subspace using k-means. Each
dictionary contains 2

l
m items, indexed by l

m bits. For example,
for the ith subspace, the dictionary is Ci = [ci1, . . . , c

i
k′ ],

where k′ = 2
l
m is the size of the dictionaries. Therefore,

the combination of all these sub-dictionaries is the Cartesian
product of all items C = C1×C2×· · ·×Cm. To encode each
subvector of x⃗ by its corresponding dictionary, PQ solves:

ci(x⃗i) = argmin cij
||x⃗i − cij || (3)

where ci(x⃗i) is the codeword of subvector x⃗i in the ith
subspace. PQ encodes an entire vector x⃗ = (x⃗1, . . . , x⃗m) to
(c1(x⃗1), . . . , cm(x⃗m)) and represents the encoded vector as
the concatenation of the indexes of the dictionaries: I(x⃗) =
[I(c1(x⃗1)), . . . , I(cm(x⃗m))], where I(ci(x⃗i)) is the index of
the dictionary item cij in the ith subspace. The encoded vector
I(x⃗) is essentially a binary code of m·log2 k′ bits. As a result,
the asymptotic space and assignment costs are substantially
reduced in comparison to VQ: from O(k · d) to O(k′ · d).

To compute distances between a vector x⃗ and a query
q⃗, PQ provides two approaches: the Symmetric Distance
Computation (SDC) or the Asymmetric Distance Compu-
tation (ADC). For SDC, both vectors are encoded (i.e.,
dSDC(C

i(x⃗i), Ci(q⃗i))) while for ADC, only the database vec-
tors are encoded (i.e., dADC(C

i(x⃗i), q⃗i)). As before, the Eu-
clidean distance is used. During query execution, for each sub-
space, PQ caches in a lookup table the dSDC(C

i(x⃗i), Ci(q⃗i))
or dADC(C

i(x⃗i), q⃗i). Then, PQ scans the encoded data and
accumulates the precomputed distances by matching the in-
dexes of the encoded data to the lookup table. The encoded
data are essentially only indexes for a handful of dictionaries
and, therefore, are often stored entirely in memory even for
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Fig. 2: Overview of PQ steps during preprocessing and query execution phases. During preprocessing, PQ decomposes dimensions into
subspaces (1) and learns dictionaries, one per subspace, to encode vectors (2). During query execution, PQ generates a query lookup table
and computes distances by scanning the encoded data (3). The example shows the approximated distance for the first encoded vector (4).

large databases. Figure 2 presents the previous steps visually to
assist in the understanding of how PQ-related methods operate.
Optimized Product Quantization (OPQ) [41], [82]: Despite
the great promise of PQ, a major issue remains open. Con-
sidering that not all subspaces carry the same importance,
treating all subspaces uniformly may lead to unsatisfactory
performance. OPQ addresses this problem by re-ordering
the dimensions such that quantization error with respect to
the space decomposition and the dictionaries is minimized.
Through this step, OPQ balances the informativeness across
subspaces, making uniformly sized dictionaries appropriate.
Accelerations for PQ methods: Another aspect that requires
attention is answering queries fast when scanning the encoded
data. PQ methods compute distances between queries and data
vectors using precomputed lookup tables. To accelerate PQ,
the key idea is to reduce the size of the cached tables to fit
in SIMD registers and use SIMD instructions for fast table
lookups. PQFS [8] combines multiple strategies to accelerate
the approximation of distances, including grouping of similar
vectors and reducing the precision of floating-point distances
to integers. A faster method, namely, Bolt [17], aggressively
reduces the dictionary sizes to accelerate query performance.
State of the Art: In terms of accuracy, OPQ is repeatedly
reported by independent studies as the state-of-the-art quanti-
zation method [17], [37], [41], [67], [104], [107]. Especially
in terms of speedup@recall, a recent study of 19 methods on
20 datasets [67] showed that OPQ significantly outperforms
rival methods. Alternative methods trade-off runtime perfor-
mance to improve recall and introduce storage and encoding
overheads. For example, Additive Quantization (AQ) [9] or
Composite Quantization (CQ) [120], which represent a vector
as an addition of dictionary items, show poor speedup@recall
performance [67]. Indexing methods on top of PQ/OPQ, In-
verted Multi-Index (IMI) [10] and Locally Optimized Product
Quantization (LOPQ) [60], introduce storage and encoding
overheads for query speedup but do not improve recall over
the scan-based variants (these methods sacrifice accuracy for
speedup as we will see). Earlier variants, such as Transform
Coding (TC) [21] and Iterative Quantization (ITQ) [44] have
also not achieved competitive performance w.r.t OPQ [41],
[83]. Related to our work, KSSQ [83] employs a strategy for
non-uniform bit allocation for dimensions (not subspaces) that
results in dimensions to be discarded (i.e., only works for small
budgets). KSSQ does not improve runtime and adds up to 10×
storage and up to 3× encoding overheads w.r.t OPQ [83]. In
contrast, our focus is to improve both accuracy and runtime
performance without overheads, a significant departure from

Method Minimal or No
Storage Overhead

Minimal or No
Encoding Overhead

Query Runtime
Speed Up

Recall/Accuracy
Improvement

PQ [52] ✔ ✔ - -
TC [21] ✔ ✔ ✔ -

ITQ-LSH [44] ✔ ✔ ✔ -
Bolt [17] ✔ ✔ ✔ -
PQFS [8] ✔ ✔ ✔ -

PQ/OPQ+IMI [10] - - ✔ -
LOPQ [60] - - ✔ -

AQ/CQ [9], [120] - - - ✔
KSSQ [83] - - - ✔

(This work) VAQ ✔ ✔ ✔ ✔

TABLE I: Analysis of quantization methods on four critical specifi-
cations w.r.t state-of-the-art OPQ [17], [37], [41], [67], [104], [107].
VAQ matches all specifications, while competitors miss one or more.

the existing literature. In terms of scan efficiency, Bolt is the
best method, often achieving a 10× speedup compared to PQ.
Two recent studies [37], [67] reported Hierarchical Navigable
Small World (HNSW) [78] as one of the best indexing meth-
ods, but with high indexing cost for large datasets. Instead,
[37] also reported two more scalable indices, iSAX2+ [26]
and DSTree [109], among the best, together with HNSW. We
include those indices in our results (Sections IV and V).
D. Problem Definition

We address critical shortcomings of OPQ by adapting the
dictionary sizes of subspaces based on their importance. We
focus on improving both the accuracy and the query runtime
performance. This is fundamentally different than current
variants that trade-off efficiency for accuracy (see Table I).
Importantly, our goal is to avoid introducing significant storage
or encoding overheads w.r.t the state of the art (i.e., OPQ).
We focus on error-constrained methods (Section II-A) with
the popular Euclidean distance (Section II-B).

III. VARIANCE-AWARE QUANTIZATION

Our objective is to automate the process of deriving sub-
spaces and allocating the bit budget to subspaces for PQ
methods, based on their importance. We propose VAQ, a novel
data-driven quantization method to adaptively encode data and
accelerate query execution. We start with an overview of VAQ.
A. Overview

Due to the infeasibility of maintaining a single large dic-
tionary, PQ methods decompose the data dimensions into
multiple non-overlapping subspaces. Unfortunately, optimally
decomposing dimensions into subspaces is a difficult problem
affecting the accuracy of quantization methods. The state-
of-the-art method, OPQ, constructs subspaces uniformly and
allocates the bit budget uniformly by first balancing the
importance of subspaces. We argue that, in practice, achieving
a uniform (optimal) balance of importance across subspaces
is not always achievable due to data characteristics as well as



the choices for budget and number of subspaces. Therefore,
as we will see, there is a significant room for improvement.

For VAQ, we first focus on how to measure the importance
of dimensions efficiently and how to decompose unequal-sized
non-overlapping subspaces (Section III-B). Then, we only par-
tially balance the importance of subspaces (i.e., spread impor-
tance across subspaces) and solve a constrained optimization
problem to adaptively allocate bits to subspaces by maximizing
the overall importance across subspaces without ignoring
importance per subspaces (Section III-C). Having solved those
two fundamental problems, VAQ proceeds similarly to other
PQ methods but with two significant differences. First, VAQ
constructs variable-sized dictionaries to encode data (Section
III-D). Second, VAQ accelerates the query execution with two
hardware-oblivious data skipping solutions (Section III-E).

B. Importance of Dimensions and Construction of Subspaces
The decomposition of data into subspaces directly relates

to measuring the informativeness of dimensions. To illustrate
this point, in Figure 3, we present examples of two diverse
datasets, the popular CBF and StarLightCurves (SLC) datasets
from the UCR Archive [32]. In Figures 3a and 3b we show a
representative sequence of each of the three classes from CBF
and SLC, respectively. We chose these datasets due to their
high (CBF) and low (SLC) noise levels, which assists in the
understanding of informativeness of subspaces. By focusing
for example on the blue (solid lines) data sequences in both
datasets, it becomes evident that only some of their dimen-
sions (and corresponding subspaces) exhibit unique patterns.
Most of the other areas are flat, noisy, and non-informative.
Therefore, treating all subspaces equally is problematic.

Existing methods rely on several different measures to
capture the importance of subspaces, ranging from various
quantization errors to statistical measures [41], [44], [52], [53],
[65], [104], [107], [115], [116]. To capture the informativeness
of the original dimensions, we focus our attention to variance,
similarly to OPQ. However, differently than OPQ, we rely on
clustering to create non-uniform subspaces (unequal number of
dimensions per subspace) and we only partially balance their
importance (see Section III-C). For a set of numbers, variance
measures how far these numbers are spread out from their
average value. Formally, given a dataset X = [x⃗1, . . . , x⃗n]

⊤ ∈
Rn×d, we compute the variance for each dimension as:

V ari(X) =
1

n

∑n

j=1
(fi(x⃗j)− µi)

2 (4)

where µi is the mean of the data distribution of the ith
dimension fi(x⃗j) of x⃗j . To measure the importance of a
subspace, we accumulate the variances of the dimensions
composing the subspace and compute the informativeness:

V ar(x⃗i) =
∑ d

m

j=1
V ar(i·q−q+j)(X) (5)

where d is the number of original dimensions, m is the number
of subspaces, and q = d

m is the length of the subspace
(assuming for now the same dimensions per subspace).
Clustering of Dimensions: Having introduced our measures
of importance, it remains to show how VAQ decomposes
subspaces (i.e., decides which dimensions belong to each
subspace). Our goal is to group together dimensions explaining

(a) Representative sequences of CBF. (b) Representative sequences of SLC.

(c) Variance per dimension for CBF. (d) Variance per dimension for SLC.

Fig. 3: Examples from two diverse datasets, CBF (left) and SLC
(right), show that the variance explained in the principal components
that we use to measure the importance per dimension.

similar proportion of the overall variance (i.e., create sub-
spaces with similarly important dimensions). First, we rank
dimensions in descending order of their variances (i.e., first
dimension captures higher variance than second) and, then,
we construct m subspaces by clustering the vector of the
variances corresponding to each dimension using k-means
(i.e., we quantize a single d-dimensional vector; in contrast,
OPQ minimizes the quantization error for the entire n × d
matrix to balance importance in subspaces).
Preserving Subspace Importance Ordering: The formed
subspaces contain dimensions following the descending initial
ordering internally. However, rarely, some variances of adja-
cent subspaces may be out of order (i.e., a subspace with many
less important dimensions is ranked higher in terms of the vari-
ance than a subspace with few more important dimensions).
We fix this problem by moving dimensions from the adjacent
(to the right) subspace until the ordering is preserved, starting
from the first subspace. This moving of dimensions guarantees
the importance ordering of subspaces, which is critical for the
bit allocation solution we introduce in the next section as well
as for the subspace skipping strategy for query acceleration
(Section III-E). It differs from the swapping of dimensions
that partially balances or spreads importance across subspaces
(without changing the global ordering) in next Section III-C.

To efficiently compute and rank variances per dimensions,
we exploit the intrinsic properties of PCA [47], [92]. Specifi-
cally, PCA operates over the covariance matrix C = XTX ∈
Rd×d and its eigen-decomposition can be written as C =
V ΛV T ∈ Rd×d, where V = [v⃗1, . . . , v⃗d] ∈ Rd×d is a
column-orthonormal matrix with the eigenvectors of C and
Λ = diag(λ1, . . . , λd) ∈ Rd×d is a matrix containing the
eigenvalues of C in descending order along its diagonal (i.e.,
λ1 ≥ . . . ≥ λd ≥ 0). By projecting the original data X to the
V eigenvectors, we obtain the principal components (PCs) of
X as Z = XV ∈ Rn×d. The eigenvalues, Λ, represent the
energy distribution (variance) of the original data among each
of the PCs. To illustrate this point, in Figures 3c and 3d, we
present the percentage of variance (from the overall variance)
explained in the first 20 PCs of CBF and SLC, respectively, as
captured by their 20 largest eigenvalues. We observe that the
first few PCs explain a large portion of the overall variance in



Algorithm 1: Measuring Variance of Dimensions
Input : X is a n × m matrix of n vectors of length m
Output: EV ectors is a n × m matrix of the sorted eigenvectors of X

EV alues is a 1 × m vector of the sorted eigenvalues of X
1 function [EVectors,EValues] = VarPCA(X):
2 [EV ectors, EigV alues] = solveEIG(XT * X)
3 [EV alues, IndexSorted] = sortDescending(EV alues)
4 EV ectors = EVectors[IndexSorted]

the data while the remaining PCs contribute substantially less.
Therefore, variance is a suitable measure for capturing the

importance of each dimension. For VAQ, instead of computing
the variance of each dimension with Equation 4, we use the
normalized energy of the corresponding eigenvalue:

V ari(X) =
|λi|∑d
j=1 |λj |

(6)

Consequently, the variance of subspaces is defined as in
Equation 5 but by using the normalized variance and with the
non-uniform allocation of dimensions produced by k-means.

Algorithm 1 shows how the eigenvectors and eigenvalues
of the covariance matrix C are computed once the eigen-
decomposition problem is solved. Considering that data sam-
ples are substantially larger than the dimensions (i.e., n ≫ d),
Algorithm 1 requires O(n · d2) time, which is linear to the
number of samples. For large dimensions, sketching methods
reduce the quadratic time over d to linear [68]. To ease
understanding and provide clean pseudocodes, we assume a
uniform allocation of dimensions to subspaces (our released
code contains the non-uniform variant as well).

Next, we use the variance to determine the bit allocation.
C. Adaptive Bit Allocation for Subspaces

OPQ balances the importance of subspaces and alleviates
the need to allocate different bits per subspace. While this
seems as a reasonable idea, in practice, a uniform balance
of importance across subspaces is difficult to achieve. For
example, in Figures 3c and 3d, we observe that just the first
PCs of CBF and SLC capture 40% and 60% of the overall
variance in the data, respectively. Therefore, even though OPQ
permutes PCs to achieve a more uniform balance of impor-
tance across subspaces, such balance is often far from optimal
due to the skewed distribution of the explained variances in
PCs (Figures 3c and 3d). Such a skewness is exhibited in many
natural datasets (from time series to images and videos) and is
captured by different measures of importance not only by vari-
ance (e.g., spectral bias in Frequency domain) [3], [35], [38],
[93], [101], [117]. Depending on the budget and number of
subspaces, OPQ’s balancing may even reduce accuracy (Figure
1, SALD dataset). In our extensive experimental results, we
show across over one hundred datasets that, because such
skewness is so prevalent in natural data, VAQ significantly
outperforms OPQ with the same budget. Specifically, VAQ
achieves comparable performance to OPQ with a half budget
(Figure 10), which strongly supports our claim.
Partial Subspace Importance Balancing: For VAQ, we
propose to maximize the overall informativeness across all
subspaces (P1) and per subspace (P2). By allocation bits
across all subspaces (P1), we achieve the smallest loss in
search accuracy (in comparison to methods omitting dimen-
sions). By allocating more bits to more informative subspaces

Algorithm 2: Adaptive Subspace Budget Allocation
Input : EV alues is a 1 × m vector of the sorted eigenvalues of X

EV ectors is a n × m matrix of the sorted eigenvectors of X
PercentV ar is the target percentage of explained variance
MinBits is the minimum # bits allocated per subspace
MaxBits is the maximum # bits allocated per subspace
Budget is the # of bits for data encoding
NumSubspace is the # of subspaces
SubsLength is the length of a subspace

Output: BitsPerSubs is a vector containing bits per subspace
EV ectors is a n × m matrix of the sorted eigenvectors of X

1 function [BitsPerSubs, EVectors] = BudgetAlloc(EV alues, . . . ):
/* Partial balance on the subspaces variance */

2 for i = 2, . . . ,min(NumSubspace, SubsLength) do
3 swapIdx = (i − 1) ∗ SubsLength + SubsLength
4 swap(EV alues[i], EV alues[swapIdx])

/* Revert back if importance order violated */
5 if not isSubpacesVarSorted(EV alues, NumSubspace) then
6 swap(EV alues[i], EV alues[swapIdx])
7 break
8 swap(EV ectors[:, i], EV ectors[:, swapIdx])
9 end

10 V arDim = EV alues/sum(EV alues)
11 V arSubspace = [ ]
12 for i = 1, . . . , NumSubspaces do
13 currIdx = (i − 1) ∗ SubsLength + 1
14 V arSubspace.push(sum(V arDim[currIdx :

currIdx + SubsLength]))
15 end
16 V arSubspace = cumsum(V arSubspace)

/* ILP constraints: C1-C4 */
17 ConMat = prepareConstraints(V arSubspace)
18 BitsPerSubs = MILP(V arSubspace[:, HighestSub],ConMat)

(P2), we capture more accurately the variance explained
in these subspaces. Satisfying both P1 and P2 principles
is critical because solutions satisfying only P2 work well
only for small budgets (e.g., KSSQ method in Section II-C).
Considering that is hard to achieve a uniform (optimal) balance
of importance across subspaces, for VAQ, we only partially
balance (spread) importance. Specifically, starting from the
first (most important) subspace, we keep the first PC in place
and swap the second best PC with the worst (last) PC of
the second subspace. Similarly, we swap the third best PC
of the first subspace with the worst (last) PC of the third
subspace. We proceed like that while ensuring that the global
ordering of importance of subspaces remains the same. For
the second subspace, we again keep the first PC in place and
swap the second best PC with the second worst PC from the
third subspace (and we repeat until no more dimensions can
be moved without changing the global importance ordering).
Through this step, we cheaply balance or spread (partially)
the importance of the first several most important subspaces.

For our optimization framework, we impose another re-
quirement: it has be flexible and permit easy integration of
new constraints. We believe that it is not sustainable to have
to solve a new optimization problem from scratch whenever
new semantics or constraints are introduced (e.g., query-
aware or supervised PQ [104], [107]). This is an important
step towards creating a query optimizer for similarity search
engines, which, to the best of our knowledge, no current
database system supports. For example, considering workload
characteristics, new constraints can impose restrictions to used
subspaces and bit allocations in order to meet specific runtime
and storage service agreements. Considering machine-learning
models providing weights for subspaces based on some exter-
nal knowledge (e.g., supervision), the integration of the new
weights becomes trivial with the following formulation.



We propose to solve a constrained optimization problem. To
avoid the allocation of bits to only a few important subspaces,
we introduce a number of linear constraints to the bit allocation
variables. Therefore, we pose this as a mixed-integer linear
program (MILP), a general optimization program capable of
capturing the above requirements. Formally, given a vector
W = [w1, . . . , wn] ∈ Rd representing the known weights and
a vector y = [y1, . . . , yd] ∈ Zd representing the unknown bit
budget variables for subspaces, our objective is to:

maximize WT · y
subject to A · y ≤ b, y ≥ 0, y ∈ Zd

where the coefficients in matrix A and vector b capture the
linear constraints to this problem (in the form of inequalities
or equalities) and the variables in y are positive integers. Based
on this formulation, the optimization problem reduces to an
integer linear programming (ILP) problem. Even though this
is an NP-complete problem, standard solvers with branch and
bound optimization [66] can solve it efficiently. We note that
it takes a fraction of a second to determine the bit allocation
for million-scale datasets we consider in this work. This is a
tiny portion of the overall time to encode data.
Constraints: We introduce four critical constraints (C1-C4)
for this problem. First, a trivial (but not accurate) solution
is to allocate all the budget to the subspace with the highest
variance (and ignore the remaining subspaces, i.e., extreme
dimensionality reduction). We introduce a constraint to allo-
cate the budget across all bit variables such that all (target)
data variance is explained (C1). Second, to avoid other trivial
solutions where the most important subspace gets most of
the budget and the remaining subspaces get only one bit, we
introduce constraints to bound the upper and lower number
of bits permitted per subspace (C2). Third, we have to ensure
that the requested budget is respected and data are not encoded
with lower or higher budget (C3). Finally, the budget should be
allocated proportionally to the contribution of each subspace
in explaining the overall variance in the original data (C4).

Algorithm 2 provides the pseudocode starting with partially
balancing the importance of subspaces (lines 2-9). Each con-
straint updates or adds coefficients in matrix A and vector b to
capture the specifications. We omit these straightforward but
lengthy pseudocodes to save space (available in our code).
Comparing Subspace Importance Strategies: To illustrate
the benefits of our bit allocation strategy, in Figure 4, we
compare our approach against OPQ and PQ. Following the
paper introduced OPQ [41], we use the PCA-projected data
matrix Z for all methods and construct 32 subspaces. For
PQ, we randomly permute the PCs to subspaces because PQ
is agnostic of the importance of dimensions. For OPQ, we
use their methodology to permute PCs. CBF is noisy and
variance is spread out across PCs much more than SLC (i.e.,
the first three PCs of CBF capture close to 60% of the variance
vs. 85% in SLC, see Figures 3c and 3d). When we use all
subspaces, VAQ does marginally better than OPQ for CBF
(Figure 4a) but substantially better than OPQ for SLC (Figure
4b), where importance balance is harder, and the number
of dimensions is also higher (an order of magnitude larger
than CBF). VAQ implicitly performs dimensionality reduction
without omitting dimensions by allocating more bits to more

Algorithm 3: VAQ Data Encoding
Input : XTrain is a n × m matrix of n vectors of length m

BitsPerSubs is a vector containing the bit allocation per subspace
NumSubspaces is the # of subspaces
SubsLen is the subspace length
TIClusterNum is # of triangle inequality (TI) cluster
TIClusterNumSubs is # of subspaces of TI centroids

Output: Codebook is the encoded XTrain
Centroids is the centroids per subspace
TICluster is cluster centroids for TI pruning
CodeToTIClusterDistance is distances of data to TI clusters

1 function [Codebook, . . . ] = VAQEncode(XTrain, . . . ):
// Train dictionary per subspace

2 Centroids = [ ]
3 for i = 1...NumSubspaces do
4 Centroids.push([ ])
5 currIdx = (i − 1) ∗ SubsLen + 1
6 Centroids[i] =

KMeans(XTrain[:, currIdx : currIdx + SubsLen],
k=2BitsPerSubs[i])

7 end
8 Codebook = zeros(RowSize(XTrain), NumSubspaces)

// For each row
9 for row = 1..RowSize(XTrain) do

// For each subspace
10 for d = 1..NumSubspaces do
11 currIdx = (d − 1) ∗ SubsLen + 1
12 bsf = +∞ // best so far distance
13 bestCode = 0
14 for code = 0..(2BitsPerSubs[d] − 1) do
15 distance = squaredNorm(XTrain[row, currIdx :

currIdx + SubsLen] − Centroids[d][code])
16 if distance < bsf then
17 bestCode = code
18 bsf = distance
19 end
20 end
21 Codebook[row, d] = bestCode
22 end
23 end

// Cluster encoded data for TI Pruning
24 TICluster = zeros(TIClusterNum,

TIClusterNumSubs ∗ SubsLen)
25 for c = 1,. . . ,TIClusterNum do
26 randIdx = random(RowSize(Codebook))
27 codevector = Codebook[randIdx, :]
28 for d = 1,. . . ,TIClusterNumSubs do
29 currIdx = (d − 1) ∗ SubsLen + 1
30 TICluster[c, currIdx : currIdx + SubsLen] =

Centroids[d][codevector[d]]
31 end
32 end
33 CodeToTIClusterDistance = [ ]
34 for codevector in Codebook do
35 minDist = +∞
36 vector = zeros(ColSize(XTrain))
37 for d = 1,. . . ,Length(codevector) do
38 currIdx = (d − 1) ∗ SubsLen + 1
39 vector[currIdx : currIdx + SubsLen] =

Centroids[d][codevector[d]]
40 end
41 for c = 1,. . . ,TIClusterNum do
42 dist = norm(vector[1 :

TIClusterNumSubs∗SubsLen]−TICluster[c, :])
43 if dist < minDist then
44 minDist = dist
45 end
46 end
47 CodeToTIClusterDistance.append(minDist)
48 end

important subspaces. This is critical because reducing the
dimensionality by an order of magnitude for high-dimensional
data results in significant accuracy loss (e.g., the maximum
possible recall drops from 100% when we use all dimensions
with an exact method to 92% for SLC and 83% for CBF). Even
when we explicitly omit subspaces, starting with subspaces
with the lowest quantization error for each method, VAQ
consistently (and substantially) outperforms PQ and OPQ.



Algorithm 4: VAQ Query Execution
Input : XTest is a q × m matrix of q query vectors of length m

K is the number of K nearest neighbors
EV ectors is a n × m matrix of the sorted eigenvectors
NumSubspaces is the number of subspaces
SubsLen is the length of a subspace
TIClusterNumSubs is the highest subspace to be quantized
Codebook is the encoded training dataset
Centroids is centroids per subspaces
TICluster is cluster centroids for triangle inequality (TI) prune
CodesToTIClusterDist is distances to TI cluster
TIV isit is the maximum number of TI cluster to visit

Output: Answers is a q × K matrix with query-to-K neighbors distances
1 function [Answers] = VAQQuery(XTest, . . . ):
2 Answers = [ ]
3 XTest = XTest * EV ectors // Projected queries

// For each query
4 for query in XTest do

/* Create Lookup table */
5 LookUpTable = []
6 for d = 1..NumSubspaces do
7 currIdx = (d − 1) ∗ SubsLen + 1
8 LookUpTable.push([ ])
9 ncentroids = RowSize(Centroids[d])

10 for code = 0..(ncentroids − 1) do
11 LookUpTable[d][code + 1] =

squaredNorm(query[currIdx :
currIdx+SubsLen]−Centroids[d][code+1])

12 end
13 end

/* Prepare Triangle Inequality Pruning */
14 QueryToTIClusterDist = [ ]
15 for cc in TICluster do
16 QueryToTIClusterDist.push(squaredNorm(query[1 :

TIClusterNumSubs ∗ SubsLen] − cc))
17 end
18 ClusterOrder =

sortAsc(QueryToTIClusterDist).getIndex())
/* Early Abandon Lookup */

19 bsfK = +∞ // best-so-far at position K
20 maxHeapDPair = initializeMaxHeap()
21 counter = 0

/* For each cluster */
22 for ccIndex = 1..ClusterOrder[1 : TIV isit] do
23 CurrentClusterCodes = getCodesInCluster(Codebook,

ccIndex)
24 if RowSize(CurrentClusterCodes) = 0 then
25 for code in CurrentClusterCodes do
26 CurrentQueryToClusterDist =

QueryToClusterDist[ccIndex]
27 CurrentCodeToClusterDist =

CodesToTIClusterDist[code.getIndex()]
28 if bsfK ≤ (CurrentQToCluster -

CurrentCodeToCluster) then
29 break

// Triangle Inequality Pruning
30 distance = 0, i = 1
31 if counter < K then
32 while i ≤ NumSubspaces do
33 distance += LookUpTable[code[i], i]
34 i += 1
35 end
36 counter += 1
37 else

/* Early Abandon Pruning */
38 while i ≤ NumSubpaces and distance ¡

bsfK do
39 distance += LookUpTable[code[i], i]
40 i += 1
41 end
42 if i > NumSubpaces then
43 distance = sqrt(distance)
44 maxHeapDPair.insert(Pair(code.getIndex(),

distance)) if counter ≥ K then
45 maxHeapDPair.popHead()
46 bsfK = (maxHeapDPair.getHead()).distance
47 end
48 end
49 answers.push(maxHeapDPair.convertToList())
50 end

D. Variable-sized Dictionaries for Data Encoding
With robust solutions for (i) determining the subspaces and

their relative importance; and (ii) adaptively allocating bits

(a) Varying used segments for CBF. (b) Varying used segments for SLC.

Fig. 4: Comparison of VAQ against PQ and OPQ based on their
methodologies of determining the relative importance of dimensions
and subspaces. When omitting subspaces with the lowest score for
each method, VAQ substantially outperforms PQ and OPQ.

to subspaces, we now focus on constructing dictionaries of
variable sizes for subspaces to encode data samples.

VAQ proceeds in two steps to encode data. First, VAQ
constructs a dictionary for each subspace using k-means
(similarly to PQ and OPQ). Specifically, the centroids of k-
means summarize the underlying patterns of the k partitions in
a subspace and, therefore, serve as the dictionary items for that
subspace. Second, given the dictionaries, VAQ encodes each
subspace of a data sample by finding the nearest dictionary
item (using the Euclidean distance) in the corresponding dic-
tionary of this subspace. The encoded data is the concatenated
indexes of the nearest dictionary items of all subspaces.

Differently than other approaches, VAQ constructs dictio-
naries of variable sizes for each subspace. For subspaces with
assigned large dictionaries (> 210), we employ k-means in
a hierarchical fashion to avoid the runtime overhead in the
expense of reduced accuracy (i.e., run k-means with a small
k = 26 and split each cluster again to reach the desired size).
To encode a vector x⃗, the vector is first decomposed into m
subspaces x⃗ = (x⃗1, . . . , x⃗m), with subspaces ordered based on
their variance (i.e., x⃗1 contains the highest variance even after
the partial balancing step), the nearest dictionary items are
computed, (c1(x⃗1), . . . , cm(x⃗m)), where ci(x⃗i) is the item of
subspace x⃗i, and, finally, the vector is encoded to the following
vector: I(x⃗) = [I(c1(x⃗1)), . . . , I(cm(x⃗m))], where I(ci(x⃗i))
is the index of the dictionary item cij in ith subspace.
Enabling Data Skipping: Once the data are encoded, VAQ
needs to re-organize them to enable efficient data skipping
during query execution. To achieve that, VAQ clusters the en-
coded data, caches their distances to the corresponding cluster
centroid, and maintains the encoded data in each cluster in
order, from the closest to the furthest from the corresponding
cluster centroid. To cluster the encoded data, VAQ randomly
samples a few of them that form the cluster centroids and
assigns data to their closest centroid. The construction of these
partitions and the ordering of encoded data in each partition
happens only once (and not per query), which is relatively
inexpensive (i.e., does not lead to encoding overhead compared
to OPQ). Importantly, the storage overhead is negligible: a
thousand centroids (in encoded format) are sufficient along
with the distances of encoded data to their corresponding
centroid (i.e., a few thousand more vectors on top of millions
of encoded data that OPQ and VAQ have to keep in memory).

Algorithm 3 shows the pseudocode for the encoding step
of VAQ where variable-sized dictionaries are constructed
followed by the data encoding. The major bottleneck is the



Fig. 5: VAQ employs two algorithmic skipping strategies to accelerate
query execution. For data skipping, by knowing two out of three
triangle edges, we can omit visiting data samples (e.g., best-so-far
distance after visiting C1 cluster is 6, so we omit visiting V3 because
6 < |12−5| but we visit V2 because 6 > |12−9|). For V2, we early
abandon table lookups, i.e., accumulating distances from subspaces,
because the distance exceeds best-so-far in second subspace.

computation of k-means, which is similar for all PQ methods.
k-means requires O(k′ ·n · q) time for each subspace whereas
the assignment cost of data subspaces to dictionary items
requires O(k′ · q), where q is the dimension of each subspace.

E. Accelerating Query Execution
To enable fast approximation of distances, VAQ relies on

asymmetric computation of distances to avoid query encoding
(see Section II-C). Specifically, when a query arrives, VAQ first
decomposes the query into m subspaces, with subspaces and
ordering of dimensions as determined by the partial balancing
step (see Section III-C). Then, for each subspace, VAQ com-
putes and caches in a lookup table the Euclidean distances
between the subspace values and the dictionary items (i.e.,
dADC(q⃗

i, Ci(x⃗i)). As noted earlier (see Sections III-C and
III-D), each subspace contains different number of dictionary
items. To answer a query, VAQ scans the encoded data and
requires to perform only m additions: VAQ incrementally
accumulates m precomputed distances from the lookup tables
by matching the indexes of the encoded data to the tables.
Data Skipping: VAQ leverages the triangle inequality (TI)
property [74], [108] for skip visiting data entirely. The process
is as follows: when a query arrives, VAQ calculates the
distance between query to all cluster centroids (see Section
III-D) and starts searching the encoded vectors from the
nearest cluster to the query. VAQ can completely omit visiting
clusters entirely. For example, VAQ may only visit 25% of the
nearest clusters. For the visited clusters, pruning of encoded
data could occur if the best-so-far distance is less than or
equal to the distance of query, dq , to corresponding cluster
centroid, subtracted by the distance of the data sample, ds, to
corresponding cluster centroid. During the data encoding step
(Section III-D), we introduced a data structure to cluster the
encoded data, precompute and cache the ds distances, and
keep encoded data ordered based on ds. Maintaining such
partitions enables VAQ to visit a fraction of the partitions and,
subsequently, only a subset of the encoded data in each visited
partition, which substantially accelerates queries.
Subspace Skipping: For the visited encoded data, VAQ also
exploits the global ordering of subspaces, which preserves
their importance (Section III-B). Because of this ordering,
VAQ does not always have to perform lookups for all m

Algorithm 5: Variance-Aware Quantization (VAQ)
Input : XTrain is a n × m matrix of n vectors of length d

XTest is a q × d matrix of q query vectors of length d
Budget is the # of bits to encode data
NumSubspaces is number of subspaces
MinBits is the minimum # bits allocated per subspace
MaxBits is the maximum # bits allocated per subspace
TIClusterNum is the number of triangle inequality cluster
TIClusterSubsNum is the number subspaces of TI centroids
TIV isit is the maximum number of TI cluster to visit
K is the number of K nearest neighbors

Output: Answers is answers for k-NN query
1 function Answers = VAQ(X, k,GV,m, f):
2 SubsLen = colSize(XTrain) / NumSubspaces
3 [EV ectors, EV alues] = VarPCA(XTrain)
4 XTrainPCA = XTrain * EigV ectors
5 [BitsPerSubs, EV ectors]= BudgetAlloc(EV alues, . . . )
6 [Codebook, Centroids] = VAQEncode(XTrainPCA, . . . )
7 Answers = VAQQuery(XTest, . . . )

subspaces and, therefore, to keep accumulating distances.
The subspaces are sorted in descending order of variance.
Therefore, the distances only from the first few subspaces often
well approximate the overall distance (similarly to how the first
few more important PCs approximate the overall Euclidean
distance of all PCs). As a result, during querying, VAQ early
abandons (EA) the accumulation of the distances, if the dis-
tances of the first few subspaces exceed the distance of the k-th
nearest neighbor. In simple terms, VAQ skips multiple table
lookups and achieves additional speedup for query runtime
execution. We highlight that such early termination is effective
due to our careful design of subspaces, which are ordered.

Figure 5 illustrates the two algorithmic pruning strategies.
Algorithm 4 shows how data skipping and subspace skipping
work for VAQ (Algorithm 3 contains the preprocessing steps).
We combine those strategies so that early abandoning becomes
the internal pruning mechanism whenever triangle inequality
fails. For querying, VAQ requires to compute distances to
dictionary items and, therefore, for each subspace requires
O(k′ ·q). VAQ adaptively allocates bits to subspaces, invalidat-
ing traditional optimizations for PQ-based methods (e.g., 8-bit
allocations align well with cache lines). As a result, VAQ can
only partially take advantage of hardware acceleration (e.g.,
during EA by performing checks after every four subspaces).
In addition, VAQ’s algorithmic accelerations can be affected
by intrinsic data properties (i.e., the pruning power of EA
might be lower for some datasets). Despite these limitations,
VAQ significantly outperforms strong baselines, including
hardware-accelerated methods (see Section V-B). In Algorithm
5 we put everything together in an end-to-end solution.

IV. EXPERIMENTAL SETTINGS

We review the settings for evaluating VAQ against the state-
of-the-art quantization, hashing, and indexing methods.
Environment: We ran our experiments on five identical
servers: Dual Intel(R) Xeon(R) Silver 4116 (12-core with 2-
way SMT), 2.10 GHz, 196GB RAM. Each server ran Ubuntu
Linux 18.04.3 (64-bit) and used GCC 7.4.0 compiler.
Implementation: We implemented VAQ in C++ for a con-
sistent and fair evaluation with baselines. The codes for the
baselines were obtained from the popular and well optimized
FAISS library [57] as well as from the authors of the following
papers [8], [17], [36], [37], [67]. Following the common



practice [36], [37], [67], when we compare hashing and quan-
tization methods (without indices) from different libraries we
compile codes by setting the optimization level to 2. However,
when we compare VAQ against the hardware-accelerated or
indexing methods, we compile all codes with -ffast-math flag
and optimization level 3 to ensure rival methods take full
advantage of several optimizations.
Datasets: We use over one hundred datasets to assess the
robustness of VAQ. We rely on publicly available large-scale
and medium-scale datasets to ensure reproducibility. Specif-
ically, following [36], [37], we use five large-scale datasets:
(1) SIFT [52] - 1 billion images of 128-dimensional SIFT
descriptors of images [75]; (2) SEISMIC [1] - 100 million
sequences of size 256 representing earthquake recordings of
seismic stations worldwide; (3) SALD [111] - 200 million
sequences of size 128 representing neuroscience MRI data;
(4) DEEP [2] - 1 billion vectors of size 96 extracted from the
last layers of a convolutional neural network; and (5) ASTRO
[97] - 100 million sequences of size 256 representing celestial
objects. We create two sets for each dataset. For brevity in
experimentation, we use the first 1 million vectors as one
training set and the first 100 million vectors for our scalability
experiments, using these datasets as provided in [36], [37].

We also use all 128 medium-scale datasets from the UCR
archive [32]. Datasets contain up to 24, 000 sequences and
the maximum sequence length is 2, 844. The datasets are z-
normalized and span many different domains.
Queries: To follow the literature in our community and
ensure repeatability of our results, we obtained all queries for
SIFT, SEISMIC, SALD, DEEP, and ASTRO from [36], [37],
which were generated using different procedures: for DEEP,
100 queries were randomly selected from its dataset archives.
For SALD, SEISMIC, and ASTRO, 100 queries were extracted
from raw data by progressively adding larger amounts of noise
to increase their level of difficulty. For SIFT, 100 queries were
sampled from the provided dataset. For all 128 UCR datasets,
we treat their corresponding test sets as their query sets.
Evaluation Measures: We assess the k-NN search accuracy
using two measures: the Recall and the Mean Average Pre-
cision (MAP). Recall is the most commonly used measure in
the approximate similarity search literature. Since Recall does
not consider the ranking of the top-k answers, we also use
MAP [102] that is common in information retrieval [23]. For
a workload SQ with NQ queries, the measures are defined as:

• Recall(workload) = (
∑NQ

i=1
#true neighbors returned by Qi

k )/NQ

• MAP (workload) = (
∑NQ

i=1 AP (SQi
))/NQ

• where AP (SQi
) =

∑k
r=1 P (SQi

,r)×rel(r)

k , ∀ ∈ [1, NQ]

P (SQi
, r) is the ratio of true neighbors among the first

r elements and rel(r) is equal 1 if the neighbor returned
at position r is one of the k exact neighbors of SQi and
0 otherwise. We use k=100 when measuring k-NN search
accuracy unless otherwise specified (e.g., Recall@10). For
runtime results, we report CPU time utilization.
Statistical Analysis: To statistically validate the accuracy
improvement when multiple datasets are used, we follow
[12], [33], [88] and use the Wilcoxon test [113] with a 99%
confidence level to evaluate pairs of algorithms over multiple
datasets and the Friedman test [39] followed by the post-hoc

Fig. 6: Comparison of VAQ against PQ, OPQ, and ITQ-LSH.

Nemenyi test [81] with 95% confidence level for comparison
of multiple algorithms over multiple datasets.
Baselines: We compare VAQ against the state-of-the-art hash-
ing and quantization methods (see Section II-C and Table
I). Specifically, from quantization methods, we report results
against PQ [52] and OPQ [41]. OPQ is repeatedly reported as
the state-of-the-art quantization method [17], [37], [41], [67],
[104], [107]. Importantly, in terms of speedup@recall, a recent
study has shown that OPQ achieves a remarkable performance
compared to 19 methods across 20 datasets [67]. From hash-
ing, we use a state-of-the-art variant that exploits quantization,
namely, ITQ-LSH [44]. We also compare VAQ against two
state-of-the-art hardware-accelerated methods, Bolt [17] and
PQFS [8]. In addition to all previous scan-based variants, we
also compare VAQ against a state-of-the-art indexing method
for OPQ, namely, IMI+OPQ [10]. We note that indices for
quantization methods reduce recall compared to scan-based
variants to speed up queries (at least indices do not improve
recall over exhaustive scan-based variants). Therefore, we omit
comparisons to occasionally better indices, such as LOPQ
[60], which introduce higher storage and encoding overheads,
because we included the scan-based variants. Two recent
studies [37], [67] reported HNSW [78], as one of the best
performing indices. Along with HNSW, the work in [37] report
two other indices among the best, namely, iSAX2+ [26] and
DSTree [109]. Therefore, we include them in our analysis.

V. EXPERIMENTAL RESULTS
In this section, we demonstrate the robustness of VAQ.

A. Comparison vs. Hashing and Quantization
We first perform a comparison against the state-of-the-art

hashing and quantization methods. Specifically, in Figure 6
we compare VAQ against PQ, OPQ, and ITQ-LSH under the
exact same settings: using an encoding budget of 256 bits
and 32 subspaces for SALD, SIFT, and DEEP, and 128 bits
and 16 subspaces for ASTRO and SEISMIC datasets. These
configurations ensure the commonly used uniform allocation
of 8 bits per subspace for PQ and OPQ in the literature. For
VAQ, we use the same budget and number of segments as
PQ and OPQ but set the minimum and maximum number of
bits per subspace to 1 and 13 bits, respectively. We observe
that VAQ outperforms rival methods in terms of both search
quality and runtime performance. Specifically, VAQ achieves



Fig. 7: Evaluation of early abandoning (EA) and triangle inequality
(TI) during query execution.

(a) SIFT (b) SALD

(c) DEEP (d) SEISMIC

Fig. 8: Comparison of VAQ against hardware-accelerated methods.

better performance in terms of MAP in comparison to all
methods (and the same holds for recall, which we omit
due to space limitation). We note that this configuration is
favorable for PQ and OPQ as sufficient budget is given for
all subspaces. In Figure 1, we showed a configuration of 4
bits/subspace, which favors the hardware-accelerated methods,
Bolt and PQFS, where VAQ can substantially outperform again
PQ and OPQ and, interestingly, OPQ may also perform worse
than PQ. (Runtime results are not comparable due to different
configurations). Importantly, VAQ achieves significant speedup
in query performance in comparison to PQ and OPQ (5.1×
on average) and ITQ-LSH (2× on average). However, ITQ-
LSH is not competitive in terms of accuracy despite using
quantization, which confirms previous studies [41], [52], [107].
VAQ is also faster in terms of encoding time (construction
of dictionaries and encoding of data) in comparison to OPQ
but, as expected, VAQ is slower than the simpler PQ and
ITQ-LSH. The computation of distances from subspaces to
the corresponding dictionaries requires up to 71% of the
overall encoding time whereas, for the 100M datasets, this
part requires up to 97% of the encoding time.
B. Impact of Pruning in Query Execution

Figure 6 shows that VAQ substantially reduces the query
responses while improving in accuracy, which is a departure
from current literature that trade-offs efficiency for accuracy.
This is because VAQ uses two strategies in a cascade to
avoid scanning fully the encoded data (see Section III-E). To
understand the impact of these ideas, in Figure 7, we compare
variants of VAQ using 256 bits budget and 32 subspaces with
and without exploitation of these strategies. The Heap strategy
corresponds to runtime performance without any pruning strat-
egy (storing top-k results in a heap data structure). We observe
that with Early Abandoning (EA) strategy, VAQ reduce the
query responses by 2.3× on average in comparison to the
regular Heap strategy. EA permits VAQ to skip subspaces but

Fig. 9: Evaluate the impact of constructing uniform vs. clustered
subspaces in combination with uniform vs. adaptive bit allocation
strategies, with 256 or 128 bit budgets and 64, 32, or 16 segments.

still performs look ups for all data vectors. In contrast, the
Triangle Inequality (TI) strategy permits VAQ to skip visiting
data vectors entirely. We evaluate two settings, visiting 25%
(TI+EA-0.25) and 10% (TI+EA-0.1) of the TI clusters (we
always create 1000 TI clusters for all VAQ results in the
paper). For the visited clusters, VAQ uses TI to skip data
samples inside each cluster. We observe that for the TI+EA-
0.25 strategy VAQ achieves on average 5× speed up and for
the TI+EA-0.1 strategy VAQ achieves on average 8.7× speed
up in comparison to the regular Heap strategy. Combining
the two strategies in a cascade leads to significant runtime
improvement, often over an order of magnitude. We note that
in all of these settings VAQ’s accuracy remains the same. For
some datasets, we can visit even less clusters without losing
accuracy but we chose these settings to ensure fairness.

The runtime performance of VAQ varies due to its depen-
dence on dataset characteristics and the skewness of variances
across subspaces. To understand how VAQ performs in com-
parison to hardware-accelerated variants that do not rely on
an algorithmic solutions, we compare VAQ against Bolt and
PQFS (Figure 8). Specifically, in high recall settings, VAQ
substantially outperforms PQFS (on average 24×) and Bolt
(up to 3×). Importantly, in terms of speedup@recall, VAQ
outperforms Bolt up to 14× and PQFS up to 105×. We also
note that Bolt operates only with 4 bits/subspace. In contrast,
VAQ, due to an algorithmic acceleration, does not have such
limitation, which leads to substantial recall improvement.
C. Impact of Adaptive Subspace and Dictionary Sizes

We now focus on evaluating the impact of adapting subspace
and dictionary sizes. Specifically, in Figure 9, we evaluate
VAQ’s options for constructing uniform or clustered (non-
uniform) subspaces in combination with uniform or adaptive
bit allocation strategies on SIFT. We observe that using non-
uniform subspaces is not sufficient by its own to improve
the performance over the plain VAQ version. Interestingly,
in most settings non-uniform subspaces reduces performance.
However, when the adaptive bit allocation strategy is used,
the overall recall improves substantially for both uniform or
non-uniform subspaces. From our analysis across datasets, we
conclude that adaptive bit allocation should always be used.
D. Evaluation on 128 Medium-Scale Datasets

Until now, we have evaluated all methods on benchmarking
datasets commonly used in the similarity search literature. Un-
fortunately, these datasets have been preprocessed in various
ways, limiting our ability to demonstrate the full potential
of VAQ. Specifically, VAQ implicitly performs dimensionality
reduction with its adaptive bit allocation solution (i.e., focuses
on the important subspaces without omitting any dimensions).
Therefore, VAQ’s benefit become even more evident for data



Budget, Seg Method Rec@5 Rec@10 MAP@5 MAP@10
64, 16 Bolt 0.68412 0.74098 0.52261 0.56732
64, 16 PQ 0.72292 0.77060 0.55748 0.59874
64, 16 OPQ 0.76992 0.80802 0.63070 0.66220
64, 16 VAQ 0.85862 0.88013 0.78355 0.7994
128, 32 Bolt 0.74696 0.79261 0.60755 0.64601
128, 32 PQ 0.79300 0.82749 0.65438 0.68819
128, 32 OPQ 0.83642 0.86248 0.72364 0.74787
128, 32 VAQ 0.89021 0.90688 0.82585 0.83815

TABLE II: Average Recall and MAP of 128 medium-scale datasets.
VAQ outperforms all rival methods even with half the budget.

1 2 3 4 5 6 7 8

VAQ-128
VAQ-64

OPQ-128
PQ-128

Bolt-64
PQ-64

OPQ-64
Bolt-128

Fig. 10: Ranking of methods based on the average of their ranks
across 128 datasets. The wiggly line connects all methods that do
not perform statistically differently according to the Nemenyi test.

with increasingly higher dimensionality. We now focus on 128
medium-scale unprocessed datasets with dimensionality up to
an order of magnitude larger than the previous datasets [32]. In
Table II, we present the average (across 128 datasets) Recall
and MAP results of VAQ, PQ, OPQ, and Bolt. We observe
that OPQ is consistently better than PQ and, similarly, PQ,
is consistently better than Bolt under the same budget. As
average values may be misleading, we compare all methods
pairwise to assess the significance of their differences across
datasets using the Wilcoxon test. VAQ outperforms all other
methods significantly (under the same budget). For example,
VAQ-128 (with 128-bit budget) performs better in 92 out of
128 datasets compared to OPQ-128. We also perform rigorous
statistical analysis to assess the significance of all methods
and budgets together using the Friedman test followed by the
Nemenyi test (see Section IV). Figure 10 shows that VAQ-128
is ranked first (using Recall@5) and its difference to all other
methods is statistically significantly better. VAQ-64 and OPQ-
128 follows, but their differences are not significant. VAQ-64
achieves comparable performance to OPQ-128 despite using
the half budget, and VAQ-64 significantly outperforms PQ-
128. To the best of our knowledge, the is the first time a
quantization method is achieving such a performance while
improving runtime and with minimal overhead.

E. Comparison against Indexing Methods
To understand how VAQ scales on larger datasets, we

evaluate the strongest methods along with indexing approaches
on the 100M datasets (Figure 11). Following [37], we con-
sider variants with (Epsilon) and without (NG) guarantees
for iSAX2+ and DSTree. We also consider the state-of-
the-art index for quantization methods, IMI+OPQ [52]. For
VAQ and OPQ variants we vary the retrieved neighbors for
all methods, from 100 to 1000, and re-rank the neighbors
using the original data to evaluate different recall levels. For
iSAX2+ and DSTree, we vary the NG and Epsilon parameters
(baselines optimized by consulting the authors of the previous
study to ensure reproducible results in our community [37]).
We observe that in terms of speedup@recall, VAQ outpeforms
these strong indexes. We also observe that indexing for OPQ
(IMI+OPQ variants) leads to significant runtime improvement

Fig. 11: Comparison of VAQ against iSAX2+, DSTree, and OPQ
with indexing (OPQ+IMI variants).

Fig. 12: Comparison of VAQ against HNSW over PQ-encoded data.

over scan-based OPQ but the recall also reduces. Our findings
suggest the need for new indexes for quantization methods.

Therefore, we turn our attention to HNSW, a strong graph-
based indexing method, which trades-off encoding time for
improved query latency. In Figure 12, we use the SIFT1M
dataset and compare VAQ against HNSW, which works on
top of PQ-based encoded data. We set the encoding budget
at 256 bits for both approaches. For HNSW, we vary M
from 8 to 32, EFC from 10 to 200, and EFS from 8 to 64
(e.g., for EFC=200 and EFS=32, we vary M). For VAQ, we
vary the percentage of the visited clusters from 0.05 to 0.25.
We observe that HNSW requires substantial preprocessing
time, and its accuracy is affected by choice of parameters.
At the same accuracy (MAP) level, VAQ requires 22× less
preprocessing, and VAQ’s query runtime is slower only by
2× compared to the best configuration for HNSW. Despite
HNSW’s improved query performance, an index that leverages
the primitives of VAQ could potentially outperform HNSW.

VI. CONCLUSIONS

We presented VAQ, a data-driven quantization method for
adapting dictionary sizes to subspaces, based on their impor-
tance. Through an evaluation on over one hundred datasets, we
demonstrated that VAQ outperforms state-of-the-art hashing,
quantization, and index-based methods. Overall, VAQ rises as
a highly accurate and efficient quantization method.
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