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Abstract

The convolutional layers are core building blocks
of neural network architectures. In general, a con-
volutional filter applies to the entire frequency
spectrum of the input data. We explore artificially
constraining the frequency spectra of these filters
and data, called band-limiting, during training.
The frequency domain constraints apply to both
the feed-forward and back-propagation steps. Ex-
perimentally, we observe that Convolutional Neu-
ral Networks (CNNis) are resilient to this compres-
sion scheme and results suggest that CNNs learn
to leverage lower-frequency components. In par-
ticular, we found: (1) band-limited training can
effectively control the resource usage (GPU and
memory); (2) models trained with band-limited
layers retain high prediction accuracy; and (3)
requires no modification to existing training al-
gorithms or neural network architectures to use
unlike other compression schemes.

1. Introduction

Convolutional layers are an integral part of neural network
architectures for computer vision, natural language process-
ing, and time-series analysis (Krizhevsky et al., 2012; Kam-
per et al., 2016; Binkowski et al., 2017). Convolutions
are fundamental signal processing operations that amplify
certain frequencies of the input and attenuate others. Re-
cent results suggest that neural networks exhibit a spectral
bias (Rahaman et al., 2018; Xu et al., 2018); they ultimately
learn filters with a strong bias towards lower frequencies.
Most input data, such as time-series and images, are also
naturally biased towards lower frequencies (Agrawal et al.,
1993; Faloutsos et al., 1994; Torralba & Oliva, 2003). This
begs the question—does a convolutional neural network
(CNN) need to explicitly represent the high-frequency com-
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ponents of its convolutional layers? We show that the answer
to the question leads to some surprising new perspectives on:
training time, resource management, model compression,
and robustness to noisy inputs.

Consider a frequency domain implementation of the convo-
lution function that: (1) transforms the filter and the input
into the frequency domain; (2) element-wise multiplies both
frequency spectra; and (3) transforms the outcome product
to the original domain. Let us assume that the final model is
biased towards lower Fourier frequencies (Rahaman et al.,
2018; Xu et al., 2018). Then, it follows that discarding
a significant number of the Fourier coefficients from high
frequencies after step (1) should have a minimal effect. A
smaller intermediate array size after step (1) reduces the
number of multiplications in step (2) as well as the memory
usage. This gives us a knob to tune the resource utilization,
namely, memory and computation, as a function of how
much of the high frequency spectrum we choose to repre-
sent. Our primary research question is whether we can train
CNNs using such band-limited convolutional layers, which
only exploit a subset of the frequency spectra of the filter
and input data.

While there are several competing compression techniques,
such as reduced precision arithmetic (Wang et al., 2018;
Aberger et al.; Hubara et al., 2017), weight pruning (Han
et al., 2015), or sparsification (Li et al., 2017), these tech-
niques can be hard to operationalize. CNN optimization
algorithms can be sensitive to the noise introduced during
the training process, and training-time compression can re-
quire specialized libraries to avoid instability (Wang et al.,
2018; Aberger et al.). Furthermore, pruning and sparsifi-
cation techniques only reduce resource utilization during
inference. In our experiments, surprisingly, band-limited
training does not seem to suffer the same problems and
gracefully degrades predictive performance as a function
of compression rate. Band-limited CNNs can be trained
with any gradient-based algorithm, where layer’s gradient is
projected onto the set of allowed frequencies.

We implement an FFT-based convolutional layer that se-
lectively constrains the Fourier spectrum utilized during
both forward and backward passes. In addition, we apply
standard techniques to improve the efficiency of FFT-based
convolution (Mathieu et al., 2013), as well as new insights



Band-limited Training and Inference for Convolutional Neural Networks

about exploiting the conjugate symmetry of 2D FFTs, as
suggested in (Rippel et al., 2015a). With this FFT-based
implementation, we find competitive reductions in memory
usage and floating point operations to reduced precision
arithmetic (RPA) but with the added advantage of training
stability and a continuum of compression rates.

Band-limited training may additionally provide a new per-
spective on adversarial robustness (Papernot et al., 2015).
Adversarial attacks on neural networks tend to involve high-
frequency perturbations of input data (Huang et al., 2017;
Madry et al., 2017; Papernot et al., 2015). Our experiments
suggest that band-limited training produces models that can
better reject noise than their full spectra counterparts.

Our experimental results over CNN training for time-series
and image classification tasks lead to several interesting
findings. First, band-limited models retain their predictive
accuracy, even though the approximation error in the indi-
vidual convolution operations can be relatively high. This
indicates that models trained with band-limited spectra learn
to use low-frequency components. Second, the amount of
compression used during training should match the amount
of compression used during inference to avoid significant
losses in accuracy. Third, coefficient-based compression
schemes (that discard a fixed number of Fourier coefficients)
are more effective than ones that adaptively prune the fre-
quency spectra (discard a fixed fraction of Fourier-domain
mass). Finally, the test accuracy of the band-limited models
gracefully degrades as a function of the compression rate.

In summary, we contribute:

1. A novel methodology for band-limited training and
inference of CNNs that constrains the Fourier spec-
trum utilized during both forward and backward passes.
Our approach requires no modification of the existing
training algorithms or neural network architecture, un-
like other compression schemes.

2. An efficient FFT-based implementation of the
band-limited convolutional layer for 1D and 2D data
that exploits conjugate symmetry, fast complex multi-
plication, and frequency map reuse.

3. An extensive experimental evaluation across 1D
and 2D CNN training tasks that illustrates: (1) band-
limited training can effectively control the resource
usage (GPU and memory) and (2) models trained with
band-limited layers retain high prediction accuracy.

2. Related work

Model Compression: The idea of model compression to
reduce the memory footprint or feed-forward (inference)
latency has been extensively studied (also related to distil-
lation) (He et al., 2018; Hinton et al., 2015; Sindhwani
et al., 2015; Chen et al., 2015a). The ancillary benefits of

compression and distillation, such as adversarial robustness,
have also been noted in prior work (Huang et al., 2017;
Madry et al., 2017; Papernot et al., 2015). One of the first
approaches was called weight pruning (Han et al., 2015),
but recently, the community is moving towards convolution-
approximation methods (Liu et al., 2018; Chen et al., 2016).
We see an opportunity for a detailed study of the training
dynamics with both filter and signal compression in convo-
lutional networks. We carefully control this approximation
by tracking the spectral energy level preserved.

Reduced Precision Training: We see band-limited neu-
ral network training as a form of reduced-precision train-
ing (Hubara et al., 2017; Sato et al., 2017; Alistarh et al.,
2018; De Sa et al., 2018). Our focus is to understand how a
spectral-domain approximation affects model training, and
hypothesize that such compression is more stable and grace-
fully degrades compared to harsher alternatives.

Spectral Properties of CNNs: There is substantial recent
interest in studying the spectral properties of CNNs (Rip-
pel et al., 2015a; Rahaman et al., 2018; Xu et al., 2018),
with applications to better initialization techniques, theoreti-
cal understanding of CNN capacity, and eventually, better
training methodologies. More practically, FFT-based convo-
lution implementations have been long supported in popular
deep learning frameworks (especially in cases where filters
are large in size). Recent work further suggests that FFT-
based convolutions might be useful on smaller filters as well
on CPU architectures (Zlateski et al., 2018).

Data transformations: Input data and filters can be repre-
sented in Winograd, FFT, DCT, Wavelet or other domains.
In our work we investigate the most popular FFT-based fre-
quency representation that is natively supported in many
deep learning frameworks (e.g., PyTorch) and highly opti-
mized (Vasilache et al., 2015). Winograd domain was first
explored in (Lavin & Gray, 2016) for faster convolution but
this domain does not expose the notion of frequencies. An
alternative DCT representation is commonly used for image
compression. It can be extracted from JPEG images and
provided as an input to a model. However, for the method
proposed in (Gueguen et al., 2018), the JPEG quality used
during encoding is 100%. The convolution via DCT (Reju
et al., 2007) is also more expensive than via FFT.

Small vs Large Filters: FFT-based convolution is a
standard algorithm included in popular libraries, such as
cuDNN'. While alternative convolutional algorithms (Lavin
& Gray, 2016) are more efficient for small filter sizes (e.g.,
3x3), the larger filters are also significant. (1) During the
backward pass, the gradient acts as a large convolutional
filter. (2) The trade-offs are chipset-dependent and (Zlateski
et al., 2018) suggest using FFTs on CPUs. (3) For ImageNet,
both ResNet and DenseNet use 7x7 filters in their 1st layers
(improvement via FFT noted by (Vasilache et al., 2015)),
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which can be combined with spectral pooling (Rippel et al.,
2015b). (4) The theoretical properties of the Fourier domain
are well-understood, and this study elicits frequency domain
properties of CNNs.

3. Band-Limited Convolution

Let x be an input tensor (e.g., a signal) and y be another
tensor representing the filter. We denote the convolution
operation as x * y. Both x and y can be thought of as dis-
crete functions (mapping tensor index positions n to values
x[n]). Accordingly, they have a corresponding Fourier rep-
resentation, which re-indexes each tensor in the spectral (or
frequency) domain:
Fplw]=F(zn])  Fyw] = F(yn])

This mapping is invertible z = F~!(F(z)). Convolutions
in the spectral domain correspond to element-wise multipli-

cations:
zxy=F Y (F]- FWw])

The intermediate quantity S[w| = Fy[w]- Fy[w] is called the
spectrum of the convolution. We start with the modeling as-
sumption that for a substantial portion of the high-frequency
domain, |S[w]| is close to 0. This assumption is substan-
tiated by the recent work by Rahman et al. studying the
inductive biases of CNNs (Rahaman et al., 2018), with ex-
perimental results suggesting that CNNs are biased towards
learning low-frequency filters (i.e., smooth functions). We
take this a step further and consider the joint spectra of
both the filter and the signal to understand the memory and
computation implications of this insight.

3.1. Compression

Let M.[w] be a discrete indicator function defined as fol-

lows:
lw<
Mfw] = { =
O,w>c

M_[w] is a mask that limits the S[w] to a certain band
of frequencies. The band-limited spectrum is defined as,
Sfw] - M[w], and the band-limited convolution operation is
defined as:

wrey = F H{(Fplw] - Mcw]) - (Fylw] - Mc[w])} (1)
= FY(S[w] - M [w]) (2)

The operation *, is compatible with automatic differentia-
tion as implemented in popular deep learning frameworks
such as PyTorch and TensorFlow. The mask M. [w] is ap-
plied to both the signal F [w] and filter F [w] (in equation
1) to indicate the compression of both arguments and fewer
number of element-wise multiplications in the frequency
domain.

3.2. FFT Implementation

We implement band-limited convolution with the Fast
Fourier Transform. FFT-based convolution is supported
by many Deep Learning libraries (e.g., cuDNN). It is most
effective for larger filter-sizes where it significantly reduces
the amount of floating point operations. While convolutions
can be implemented by many algorithms, including matrix
multiplication and the Winograd minimal filtering algorithm,
the use of an FFT is actually important (as explained above
in section 2). The compression mask M. [w] is sparse in the
Fourier domain. F'~1(M..) is, however, dense in the spatial
or temporal domains. If the algorithm does not operate in
the Fourier domain, it cannot take advantage of the sparsity
in the frequency domain.

3.2.1. THE EXPENSE OF FFT-BASED CONVOLUTION

It is worth noting that pre-processing steps are crucial for a
correct implementation of convolution via FFT. The filter is
usually much smaller (than the input) and has to be padded
with zeros to the final length of the input signal. The input
signal has to be padded on one end with as many zeros as
the size of the filter to prevent the effects of wrapped-around
filter data (for example, the last values of convolution should
be calculated only from the final overlap of the filter with
the input signal and should not be polluted with values from
the beginning of the input signal).

Due to this padding and expansion, FFT-based convolution
implementations are often expensive in terms of memory
usage. Such an approach is typically avoided on GPU ar-
chitecture, but recent results suggest improvements on CPU
architecture (Zlateski et al., 2018). The compression mask
M. [w] reduces the size of the expanded spectra; we need
not compute the product for those values that are masked
out. Therefore, a band-limiting approach has the potential
to make FFT-based convolution more practical for smaller
filter sizes.

3.2.2. BAND-LIMITING TECHNIQUE

We present the transformations from a natural image to a
band-limited FFT map in Figure 1.

The FFT domain cannot be arbitrarily manipulated as we
must preserve conjugate symmetry. For a 1D signal this is
straight-forward. F[—w] = F*[w], where the sign of the
imaginary part is opposite when w < 0. The compression is
applied by discarding the high frequencies in the first half
of the signal. We have to do the same to the filter, and then,
the element-wise multiplication in the frequency domain is
performed between the compressed signal (input map) and
the compressed filter. We use zero padding to align the sizes
of the signal and filter. We execute the inverse FFT (IFFT)
of the output of this multiplication to return to the original
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(1) Spatial domain (2) Frequency domain with 50% band-limiting a) exact b) practical c) shifted DC
0.
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Figure 1. Transformations from input image to compressed FFT
map. (1) Natural image in the spatial domain. (2) FFT transfor-
mation to frequency domain and a) exact band-limiting to 50%,
b) practical band-limiting to 50%, c) lowest frequencies shifted to
corners. The heat maps of magnitudes of Fourier coefficients are
plotted for a single channel (0-th) in a logarithmic scale (dB) with
linear interpolation and the max value is colored with white while
the min value is colored with black.

Legend:

- 0s ,half” of the discarded
coefficients (conj. symmetry)

- 1st layer of discarded
coefficients (compression)
- 2nd layer of discarded
coefficients (compression)

- Orange: real-value
constraint

- Gray: values fixed by

conjugate symmetry

Figure 2. An example of a square input map with marked conjugate
symmetry (Gray cells). Almost half of the input cells marked with
Os (zeros) are discarded first due to the conjugate symmetry. The
remaining map is compressed layer by layer (we present how
the first two layers: 1 and 2 are selected). Blue and Orange
cells represent a minimal number of coefficients that have to be
preserved in the frequency domain to fully reconstruct the initial
spatial input. Additionally, the Orange cells represent real-valued
coefficients.

spatial or time domain.

In addition to the conjugate symmetry there are certain
values that are constrained to be real. For example, the first
coefficient is real (the average value) for the odd and even
length signals and the middle element (| £ | + 1) is also
real for the even-length signals. We do not violate these
constraints and keep the coefficients real, for instance, by
replacing the middle value with zero during compression or
padding the output with zeros.

The conjugate symmetry for a 2D signal F[—w, —0] =
F*[w, 6] is more complicated. If the real input map is of
size M x N, then its complex representation in the frequency
domain is of size M x (| § | +1). The real constraints for
2D inputs were explained in detail in Figure 2, similarly
to (Rippel et al., 2015a). For the most interesting and most

common case of even height and width of the input, there are
always four real coefficients in the spectral representation
(depicted as Orange cells: top-left corner, middle value in
top row, middle value in most-left column and the value in
the center). The DC component is located in the top-left
corner. The largest values are placed in the corners and
decrease towards the center. This trend is our guideline in
the design of the compression pattern, in which for the left
half of the input, we discard coefficients from the center in
L-like shapes towards the top-left and bottom-left corners.

3.2.3. MAP REUSE

The FFT computations of the tensors: input map, filter, and
the gradient of the output as well as the IFFT of the final
output tensors are one of the most expensive operations in
the FFT-based convolution. We avoid re-computation of the
FFT for the input map and the filter by saving their frequency
representations at the end of the forward pass and reusing
them in the corresponding backward pass. The memory
footprint for the input map in the spatial and frequency
domains is almost the same. We retain only half of the
frequency coefficients but they are represented as complex
numbers. Further on, we assume square input maps and
filters (the most common case). For an N x N real input
map, the initial complex-size is N x (|5 | + 1). The filter
(also called kernel) is of size K x K. The FFT-ed input
map has to be convolved with the gradient of size G x G
in the backward pass and usually G > K. Thus, to reuse
the FFT-ed input map and avoid wrapped-around values,
the required padding is of size: P = max(K — 1,G — 1).
This gives us the final full spatial size of tensors used in
FFT operations (N + P) x (N + P) and the corresponding

full complex-size (N + P) X (VNQLP)J + 1) that is finally

compressed.

3.3. Implementation in PyTorch and CUDA

Our compression in the frequency domain is implemented
as a module in PyTorch that can be plugged into any ar-
chitecture as a convolutional layer. The code is written in
Python with extensions in C++ and CUDA for the main
bottleneck of the algorithm. The most expensive compu-
tationally and memory-wise component is the Hadamard
product in the frequency domain. The complexity analy-
sis of the FFT-based convolution is described in (Mathieu
et al., 2013) (section 2.3, page 3). The complex multiplica-
tions for the convolution in the frequency domain require
35 f' fn? real multiplications and 5S f’ fn? real additions,
where S is the mini-batch size, f’ is the number of filter
banks (i.e., kernels or output channels), f is the number
of input channels, and n is the height and width of the in-
puts. In comparison, the cost of the FFT of the input map is
S fn?2logn, and usually f’ >> 2logn. We implemented in
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Table 1. Test accuracies for ResNet-18 on CIFAR-10 and g\i ResNet-18 on CIFAR-10
DenseNet-121 on CIFAR-100 with the same compression rate 390 = e P
across all layers. We vary compression from 0% (full-spectra o
model) to 50% (band-limited model). o 80 . .
[v] —e— fixed compression
2 701 —=— energy based compression
CIFAR 0% 10% 20% 30% 40% 50% é 0 20 40 60 80
10 93.69 9342 9324 92.89 92.61 9232 Compression rate (%)
100 75.30 75.28 74.25 73.66 72.26 71.18 X DenseNet-121 on CIFAR-100
75
(9}
. . - E0
CUDA the fast algorithm to multiply complex numbers with S —e— fixed compression
3 real multiplications instead of 4 as described in (Lavin & o 651 energy based compression
Gray, 2016). 3 0 20 40 60 80

Our approach to convolution in the frequency domain aims
at saving memory and utilizing as many GPU threads as
possible. In our CUDA code, we fuse the element-wise
complex multiplication (which in a standalone version is
an injective one-to-one map operator) with the summation
along an input channel (a reduction operator) in a thread ex-
ecution path to limit the memory size from 25 f f'n?, where
2 represents the real and imaginary parts, to the size of the
output 2.5 f'n?, and avoid any additional synchronization by
focusing on computation of a single output cell: (z,y) co-
ordinates in the output map. We also implemented another
variant of convolution in the frequency domain by using
tensor transpositions and replacing the complex tensor mul-
tiplication (CGEMM) with three real tensor multiplications
(SGEMM).

4. Results

‘We run our experiments on single GPU deployments with
NVidia P-100 GPUs and 16 GBs of total memory. The
objective of our experiments is to demonstrate the robust-
ness and explore the properties of band-limited training and
inference for CNNs.

4.1. Effects of Band-limited Training on Inference

First, we study how band-limiting training effects the final
test accuracy of two popular deep neural networks, namely,
ResNet-18 and DenseNet-121, on CIFAR-10 and CIFAR-
100 datasets, respectively. Specifically, we vary the com-
pression rate between 0% and 50% for each convolutional
layer (i.e., the percentage of coefficients discarded) and we
train the two models for 350 epochs. Then, we measure
the final test accuracy using the same compression rate as
the one used during training. Our results in Table 1 show
a smooth degradation in accuracy despite the aggressive
compression applied during band-limiting training.

To better understand the effects of band-limiting training, in
Figure 3, we explore two different compression schemes:
(1) fixed compression, which discards the same percentage

Compression rate (%)

Figure 3. Test accuracy as a function of the compression rate for
ResNet-18 on CIFAR-10 and DenseNet-121 on CIFAR-100. The
fixed compression scheme that uses the same compression rate for
each layer gives the highest test accuracy.

of spectral coefficients in each layer and (2) energy com-
pression, which discards coefficients in an adaptive manner
based on the specified energy retention in the frequency
spectrum. By Parseval’s theorem, the energy of an input
tensor z is preserved in the Fourier domain and defined as:
E(z) = N0 2n]? = 3227, | Fy[w]| (for normalized
FFT transformation). For example, for two convolutional
layers of the same size, a fixed compression of 50% discards
50% of coefficients in each layer. On the other hand, the en-
ergy approach may find that 90% of the energy is preserved
in the 40% of the low frequency coefficients in the first con-
volutional layer while for the second convolutional layer,
90% of energy is preserved in 60% of the low frequency
coefficients.

For more than 50% of compression rate for both techniques,
the fixed compression method achieves the max test accu-
racy of 92.32% (only about 1% worse than the best test
accuracy for the full model) whereas the preserved energy
method results in significant losses (e.g., ResNet-18 reaches
83.37% on CIFAR-10). Our findings suggest that alter-
ing the compression rate during model training may affect
the dynamics of SGD. The worse accuracy of the models
trained with any form of dynamic compression is result of
the higher noise incurred by frequent changes to the number
of coefficients that are considered during training. The test
accuracy for energy-based compression follows the coeffi-
cient one for DenseNet-121 while they markedly diverge
for ResNet-18. ResNet combines outputs from L and L + 1
layers by summation. In the adaptive scheme, this means
adding maps produced from different spectral bands. In
contrast, DenseNet concatenates the layers.
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Figure 4. Compression changes during training with constant en-
ergy preserved: the longer we train the models with the same
energy preserved, the smaller compression is applied. The com-
pression rate (%) is calculated based on the size of the intermediate
results for the FFT based convolution. E - is the amount of energy
(in %) preserved in the spectral representation: 80, 90 and 95. We
trained ResNet-18 models on CIFAR-10 for 350 epochs. The best
test accuracy levels achieved by the models are: 69.47%, 83.37%
and 88.99%, respectively.

To dive deeper into the effects on SGD, we performed an ex-
periment where we keep the same energy preserved in each
layer and for every epoch. Every epoch we record what is
the physical compression (number of discarded coefficients)
for each layer. The dynamic compression based on the en-
ergy preserved shows that at the beginning of the training
the network is focused on the low frequency coefficients and
as the training unfolds, more and more coefficients are taken
into account, which is shown in Figure 4. The compression
based on preserved energy does not steadily converge to a
certain compression rate but can decrease significantly and
abruptly even at the end of the training process (especially,
for the initial layers).

4.2. Training Compression vs. Inference Compression

Having shown a smooth degradation in performance for var-
ious compression rates, we now study the effect of changing
the compression rates during training and inference phases.
This scenario is useful during dynamic resource allocation
in model serving systems.

Figure 5 illustrates the test accuracy of ResNet-18 and
DenseNet-121 models trained with specific coefficient com-
pression rates (e.g., 0%, 50%, and 85%) while the com-
pression rates are changed systematically during inference.
We observe that the models achieve their best test accu-
racy when the same level of compression is used during
training and inference. In addition, we performed the same

ResNet-18 on CIFAR-10
100

~
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Figure 5. The highest accuracy during testing is for the same com-
pression level as used for training and the test accuracy degrades
smoothly for higher or lower levels of compression. First, we train
models with different compression levels (e.g. DenseNet-121 on
CIFAR-100 with compression rates: 0%, 50%, 75%, and 85%).
Second, we test each model with compression levels ranging from
0% to 85%.

experiment across 25 randomly chosen time-series datasets
from the UCR archive (Chen et al., 2015b) using a 3-layer
Fully Convolutional Network (FCN), which has achieved
state-of-the-art results in prior work (Wang et al., 2017). We
used the Friedman statistical test (Friedman, 1937) followed
by the post-hoc Nemenyi test (Nemenyi, 1962) to assess
the performance of multiple compression rates during in-
ference over multiple datasets (see supplementary material
for details). Our results suggest that the best test accuracy
is achieved when the same compression rate is used during
training and inference and, importantly, the difference in
accuracy is statistically significantly better in comparison to
the test accuracy achieved with different compression rate
during inference.

Overall, our experiments show that band-limited CNNs
learn the constrained spectrum and perform the best for sim-
ilar constraining during inference. In addition, the smooth
degradation in performance is a valuable property of band-
limited training as it permits outer optimizations to tune the
compression rate parameter without unexpected instabilities
or performance cliffs.

4.3. Comparison Against Reduced Precision Method

Until now, we have demonstrated the performance of band-
limited CNNs in comparison to the full spectra counterparts.
It remains to show how the compression mechanism com-
pares against a strong baseline. Specifically, we evaluate
band-limited CNNs against CNNs using reduced precision
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Table 2. Resource utilization (RES. in %) for a given precision
and compression rate (SETUP). MEM. ALLOC. - the memory
size allocated on the GPU device, MEM. UTIL. - percent of time
when memory was read or written, GPU UTIL. - percent of time
when one or more kernels was executing on the GPU. C - denotes
the compression rate (%) applied, e.g., FP32-C=50% is model
trained with 32 bit precision for floating point numbers and 50%
compression applied.

RES(E SETUP FP32-  FP16- FP32- FP32-
7 C=0% C=0% C=50% C=85%
AVG. MEM. ALLOC. 6.69 4.79 6.45 4.92
MAX. MEM. ALLOC. 16.36 11.69 14.98 10.75
AVG. MEM. UTIL. 9.97 5.46 5.54 3.50
MAX. MEM. UTIL. 41 22 24 20
AvG. GPU UTIL. 24.38 22.53 21.70 16.87
MAX. GPU UTIL. 89 81 74 70
TEST AcCC. 93.69 91.53 92.32 85.4

arithmetic (RPA). RPA-based methods require specialized
libraries > and are notoriously unstable. They require sig-
nificant architectural modifications for precision levels un-
der 16-bits—if not new training chipsets (Wang et al., 2018;
Aberger et al.). From a resource perspective, band-limited
CNNs are competitive with RPA-based CNNs—without re-
quiring specialized libraries. To record the memory alloca-
tion, we run ResNet-18 on CIFAR-10 with batch size 32
and we query the VBIOS (via nvidia-smi every millisecond
in the window of 7 seconds). Table 2 shows a set of basic
statistics for resource utilization for RPA-based (fp16) and
band-limited models. The more compression is applied or
the lower the precision set (fp16), the lower the utilization
of resources. In the supplementary material we show that it
is possible to combine the two methods.

4.4. Robustness to Noise

Next, we evaluate the robustness of band-limited CNNss.
Specifically, models trained with more compression discard
part of the noise by removing the high frequency Fourier
coefficients. In Figure 6, we show the test accuracy for input
images perturbed with different levels of Gaussian noise,
which is controlled systematically by the sigma parameter,
fed into models trained with different compression levels
(i.e., 0%, 50%, and 85%) and methods (i.e., band-limited vs.
RPA-based). Our results demonstrate that models trained
with higher compression are more robust to the inserted
noise. Interestingly, band-limited CNNs also outperform
the RPA-based method and under-fitted models (e.g., via
early stopping), which do not exhibit the robustness to noise.

We additionally run experiments using Foolbox (Rauber

2https://devblogs.nvidia.com/apex-pytorch-easy-mixed-
precision-training/

100
—o— FP32-C=0% full spectra
: FP16-C=0% full spectra
80 (reduced precision: 16 bits)
§ ~=— FP32-C=0% early stopping
; —+— FP32-C=50% band-limited
o 60 —e— FP32-C=85% band-limited
5
3
o 40
m
%]
(V]
'_
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%.0 0.5 1.0 1.5 2.0

Level of Gaussian noise (sigma)

Figure 6. Input test images are perturbed with Gaussian noise,
where the sigma parameter is changed from 0 to 2. The more
band-limited model, the more robust it is to the introduced noise.
We use ResNet-18 models trained on CIFAR-10.
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Figure 7. Normalized performance (%) between models trained
with different FFT-compression rates.

et al., 2017). Our method is robust to decision-based
and score-based (black-box) attacks (e.g., the band-limited
model is better than the full-spectra model in 70% of cases
for the additive uniform noise, and in about 99% cases for
the pixel perturbations attacks) but not to the gradient-based
(white-box and adaptive) attacks, e.g., Carlini-Wagner (Car-
lini & Wagner, 2017) (band-limited convolutions return
proper gradients). Fourier properties suggest further in-
vestigation of invariances under adversarial rotations and
translations (Engstrom et al., 2017).

4.5. Control of the GPU and Memory Usage

In Figure 7, we compare two metrics: maximum GPU mem-
ory allocated (during training) and time per epoch, as we
increase the compression rate. The points in the graph
with 100% performance for 0% of compression rate cor-
respond to the values of the metrics for the full spectra
(uncompressed) model. We normalize the values for the

. metric value for a compressed model
Compressed models as: metric value for the full spectra model 100%'

For the ResNet-18 architecture, a small drop in accuracy can
save a significant amount of computation time. However, for
more convolutional layers in DenseNet-121, the overhead
of compression (for small compression rate) is no longer
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100 Test accuracy (%) of the full-spectra
@ model vs. accuracy of band-limited
95 model with 50% compression
—— +/- 0% (accuracy difference)
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Test accuracy (%) of band-limited model
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Figure 8. Comparing test accuracy (%) on a 3-layer FCN archi-
tecture between full-spectra models (100% energy preserved, no
compression) and a band-limited models with 50% compression
rate for time-series datasets from the UCR archive. The red line
indicates no difference in accuracy between the models while green
and orange margin lines show +/- 5% and +/- 10% differences.

amortized by fewer multiplications (between compressed
tensors). The overhead is due to the modifications of tensors
to compress them in the frequency domain and their decom-
pression (restoration to the initial size) before going back to
the spatial domain (to preserve the same frequencies for the
inverse FFT). FFT-ed tensors in PyTorch place the lowest
frequency coefficients in the corners. For compression, we
extract parts of a tensor from its top-left and bottom-left
corners. For the decompression part, we pad the discarded
parts with zeros and concatenate the top and bottom slices.

DenseNet-121 shows a significant drop in GPU memory
usage with relatively low decrease in accuracy. On the other
hand, ResNet-18 is a smaller network and after about 50% of
the compression rate, other than convolutional layers start
dominate the memory usage. The convolution operation
remains the major computation bottleneck and we decrease
it with higher compression.

4.6. Generality of the Results

To show the applicability of band-limited training to dif-
ferent domains, we apply our technique using the FCN
architecture discussed previously on the time-series datasets
from the UCR archive. Figure 8 compares the test accuracy
between full-spectra (no compression) and band-limited
(with 50% compression) models with FFT-based 1D convo-
lutions. As with the results for 2D convolutions, we find that
not only is accuracy preserved but there are very significant
savings in terms of GPU memory usage (Table 3).

5. Conclusion and Future Work

Our main finding is that compressing a model in the fre-
quency domain, called band-limiting, gracefully degrades

Table 3. Resource utilization and accuracy for the FCN network
on a representative time-series dataset (see supplement for details).

ENERGY AvG. GPU MEM MAX. TEST
PRESERVED (%) USAGE (MB) ACCURACY (%)
100 118 64.40
920 25 63.52
50 21 59.34
10 17 40.00

the predictive accuracy as a function of the compression
rate. In this study, we also develop principled schemes to
reduce the resource consumption of neural network training.
Neural networks are heavily over-parametrized and modern
compression techniques exploit this redundancy. Reduc-
ing this footprint during training is more challenging than
during inference due to the sensitivity of gradient-based
optimization to noise.

While implementing an efficient band-limited convolutional
layer is not trivial, one has to exploit conjugate symmetry,
cache locality, and fast complex arithmetic, no additional
modification to the architecture or training procedure is
needed. Band-limited training provides a continuous knob
to trade-off resource utilization vs. predictive performance.
But beyond computational performance, frequency restric-
tion serves as a strong prior. If we know that our data has
a biased frequency spectra or that the functions learned by
the model should be smooth, band-limited training provides
an efficient way to enforce those constraints.

There are several exciting avenues for future work. Trad-
ing off latency/memory for accuracy is a key challenge in
streaming applications of CNNs, such as in video process-
ing. Smooth tradeoffs allow an application to tune a model
for its own Quality of Service requirements. One can also
imagine a similar analysis with a cosine basis using a Dis-
crete Cosine Transform rather than an FFT. There is some
reason to believe that results will be similar as this has been
applied to input compression (Gueguen et al., 2018) (as
opposed to layer-wise compression in our work). Finally,
we are interested in out-of-core neural network applications
where intermediate results cannot fit in main-memory. Com-
pression will be a key part for such applications. We believe
that compression can make neural network architectures
with larger filter sizes more practical to study.

We are also interested in the applications of Band-limited
training to learned control and reinforcement learning prob-
lems. Control systems are often characterized by the im-
pulse response of their frequency domains. We believe that
a similar strategy to that presented in this paper can be used
for more efficient system identification or reinforcement
algorithms.
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