
Artificial Intelligence in Resource-Constrained and
Shared Environments

Sanjay Krishnan, Aaron J. Elmore, Michael Franklin, John Paparrizos,
Zechao Shang, Adam Dziedzic, Rui Liu

University of Chicago
{skr,aelmore,mjfranklin,jopa,zcshang,ady,ruiliu}@uchicago.edu

Abstract

The computational demands of modern AI techniques are
immense, and as the number of practical applications grows,
there will be an increasing burden on shared computing in-
frastructure. We envision a forthcoming era of “AI Systems”
research where reducing resource consumption, reasoning
about transient resource availability, trading off resource
consumption for accuracy, and managing contention on spe-
cialized hardware will become the community’s main re-
search focus. This paper overviews the history of AI systems
research, a vision for the future, and the open challenges
ahead.

1 Introduction

Over the last 10 years, we have witnessed significant break-
throughs on Artificial Intelligence problems spanning from
computer vision to natural language processing [17] 1. While
our mathematical understanding of modeling such problems
has certainly improved, this rapid progress is equally a tes-
tament to novel computer systems architectures that have
enabled high-dimensional model training over vast scales
of data, running massive amounts of simulations in parallel,
and interfacing AI techniques with user-facing applications
to collect even more data.

The necessity of such large systems efforts is the genesis of
the ”AI-Systems” research community [25]. So far, research
has focused on feasibility, i.e., aggressively scaling-up and
scaling-out to solve a problem as accurately as possible in an
acceptable amount of time. However, AI is a victim of its own
success, and the popularity of such algorithms can lead to
unsustainable growth in resource usage. The computational
demands of training state-of-the-art neural networks are
increasing dramatically, e.g., the recent OpenAI GPT-2 [24]
ran for several weeks with an estimated training cost of $50K.
Similarly, AlphaGo Zero used 64 GPUs, 19 CPU parameter
servers for 40 days for training to achieve state-of-the-art
results [28].
In the early days of general-purpose computing, manag-

ing shared resources emerged as a key problem [26]. The
basic theme is still studied today in the form of multitenancy,

1We refer to the trend of Deep Learning and it’s applications as Artificial

Intelligence (AI) in this paper.

provisioning, scheduling, and virtualization [31]. As AI appli-
cations start to dominate our computational infrastructure,
the research community will have to understand this clas-
sical problem in a very new context. AI applications have
widely varying time-scales spanning from model inference
tasks that take milliseconds to training tasks that can take
weeks. These applications are often accelerated by special-
ized hardware, like GPUs, and this means that systems will
have to reason about complex placement constraints. Finally,
AI applications have a fundamentally softer notion of cor-
rectness, so there are new opportunities for systems that can
manipulate the accuracy of their tenants to control resource
usage.

Resource optimization for AI is nascent subject area across
the field. For example, many new projects explore compress-
ing models for faster inference time on mobile devices [11–
13], others reduce memory consumption during model train-
ing [4, 10, 33], compilation techniques for better resource
utilization [3], and hardware-acceleration through reduced
precision [14, 15, 35]. However, the prevailing focus is still
on optimizing the resource usage of a single application, e.g.,
minimizing the memory usage for a neural network training
procedure. We believe that there are interesting, unresolved
research questions when we broaden to the perspective of
an entire workload: a collection of concurrent applications
composed of training and inference tasks. We identify three
core challenges in building a new resource management for
concurrent AI applications on shared infrastructure: (1) auto-
scaling, (2) multitenancy, and (3) graceful accuracy degrada-
tion.

Addressing these challenges requires both a mathematical
and systems approach. We need new numerical optimization
techniques and new deep learning models that can dynam-
ically adapt to varying resource constraints, as well as a
new management layer that handles resource allocation and
performance isolation. We additionally have to rethink the
design of system service level objectives (SLOs) for such ap-
plications where there might be global objectives, such as a
preference to allocating resources to only the most accurate
models. A comprehensive management layer will drastically
reduce costs for an organization maintaining AI applications,
enable faster development of these applications, and lead to
a more sustainable proliferation of AI techniques.

1

processing systems such as Apache Spark can now interface
with Neural Network libraries such as TensorFlow, leading
to new systems such as Spark ML and ML Flow. Several
projects serve and connect models to external applications
via REST [6, 21]. Today each of these applications imple-
ments its own resource management and scheduling–as if it
was the only application using its allocated resources.

3 Resource Management Layer

Given this architecture, we see a need for a new layer of the
stack that allocates and manages resources available to each
concurrent application. We outline a basic framework, and
then introduce motivating examples.

3.1 What is an AI application?

From a resource management perspective, how should we
think of an AI application? There are different granularities
of optimizations for AI systems spanning from the chipset
level to the macro task level. We focus our attention at the
scale of entire models. For this paper, a model is the basic
object that our layer will query and manipulate. Each model
represents a predictive user-defined function:

prediction = model.predict({obs})

For example, a model could be a neural network that predicts
labels from images, or a linear regression model that predicts
a spam score from a word frequency vector. It might also not
be statistical at all but rather a simulator that returns a final
state of a chemical reaction given an initial input. A model
is a user-defined function with an input and output data type
and an associated runtime library (e.g., Tensorflow).

3.1.1 Updating Models

Models can be updated given new observations and labels.
They are often updated incrementally in an iterative algo-
rithm. We abstract the update algorithm, e.g., Stochastic
Gradient Descent or Random Search, with an update method
that changes the state of the model (takes a single step):

model.update({obs}, {labels})

This function is also a user-defined routine defined in the
model’s runtime framework.

3.1.2 Controlling Model Knobs

We envision that each model can additionally expose knobs
to the resource management system that affect its accuracy,
latency, and memory usage. We would like to be able to au-
tomatically set parameters to temporarily degrade accuracy
to meet a SLO. For example, if we could sacrifice accuracy
for a faster result, our system should be able to make that
decision:

model.set_param(param, value)

3.1.3 AI Applications

For the purposes of our work, every AI application of inter-
est can be described as a sequence (or workload) of concur-
rent model update() and predict() for possibly many model
objects. Supervised learning model training workloads are
mostly update() procedures:

while not converged:

{obs}, {labels} = sample(data)

model.update({obs}, {labels})

Serving workloads are exclusively predict() calls:

while true:

{obs} = next(input_stream)

yield model.predict({obs})

And, online learning and reinforcement learning tasks have
a mix of both:

while true:

{obs} = observe()

{res} = action(model.predict({obs}))

model.update({obs}, {res})

In the case of RL, the simulator call itself observe() might be
another model for the layer to manage.

3.2 Resource Management Granularity

We argue that a model is the right granularity for resource
management. Myopic solutions exist at each level of the
AI stack but a global resource manager that can consider
several concurrent applications is missing. The update() and
predict() interface abstracts the algorithmic details but still
gives us introspection into which models an application is
querying and updating. Our envisioned framework’s job is to
allocate resources and schedule these update() and predict()

calls, and potentially tune model parameters to meet SLOs.
Consider the following example scenarios.

Example 1. Multiple Model Training

Modern deep learning training systems increasingly rely on
specialized hardware like GPUs or TPUs. Neural network
development is a trial-and-error process where parameters
are tuned, architectures are tweaked, and a large number
of trial models are trained. The consequence is that orga-
nizations have many more training jobs than specialized
resources available. GPUs today have significantly more on-
board memory than in the past: up-to 32 GB in commercial
offerings. On the other hand, the largest computer vision
neural network models are still in single-digit GBs [2] and
the rise of neural networks optimized for mobile devices [13]
has led to a number of small-footprint architectures that take
up a significantly smaller space. Allocating one model to one
device is wasteful, and an AI resource management layer

3

Framework Isolation Description Advantage Disadvantage

Shared Model Neurons Combining computation graphs for

co-training & inference

Easy to share computation

when possible

No accuracy or resource isolation

guarantee.

Shared AI

System

Model The neural network library controls

execution and placement of different

via context switching

Ease of use, and explicit

control of resource and

scheduling.

No accuracy or resource isolation

guarantee, no computation sharing.

Shared

Hardware

VM / GPU Virtualization provided via hypervisor

or GPU

Easy to use and strong

isolation

Requires new hardware API for

specialized hardware and worse

overall resource usage

Table 2. A taxonomy of deep learning multitenancy approaches

parallelism in the same units. This model abstracts and sum-
marizes the algorithmic properties related to convergence.
Using this model, we devise a meta-optimizer for SGD. Our
optimizer (called Opt2) searches for the best choice of param-
eters that trains the model in the fastest way, but ensures
that it does not scale the model too aggressively. We show
an example of a predictive logistic regression model trained
on the Criteo dataset 2. Figure 3 illustrates the results. The
default model does not change its level of parallelism and
converges slowly. An over-eager method rapidly scales out
the training and introduces instability. Opt2 is able to safely
and reliably scale-out the training process.

4.3 Multitenancy for Model Training

Our resource management layer should be able to flexibly
choose a multitenancy framework depending on a desired
SLO. A multitenancy framework specifies how a task shares
the underlying resources and defines the degree of resource
isolation between tenants. The AI setting has a number of key
differences compared to a classical multitenancy or shared-
resource setting. First, AI workloads often consist of repe-
titions of very similar tasks, e.g., during hyper-parameter
optimization a user may train many very similar neural net-
work models. For many use cases, such as for static neural
networks (the predominant architecture in computer vision),
the system has access to a full white-box description of the
model. Therefore, there are significantly more opportunities
to share computation between concurrent AI tasks. However,
the drawback is that increased sharing reduces the degree of
isolation between these tasks. Relating back to experiment
on auto-scaling, the problem is subtle because changes in
system-level parameters (e.g., latency of weight updates) can
actually affect the accuracy of the task.
Therefore, the resource management layer will have to

analyze the AI task to determine how best to isolate both
accuracy and completion time from the other tenants. At one
end of the spectrum, we have full virtualization, i.e., as if
the models residing in their own containers. This offers the
strongest level of isolation, but may be wasteful in terms
of resource usage (e.g., duplicate execution sessions, con-
text switching overheads). At the other end of the spectrum

2https://labs.criteo.com/category/dataset/

is model-level consolidation, where we concurrently run
training and inference routines in the same execution en-
vironment. While this may not isolate performance, it may
allow for improved opportunities to share common com-
putation. We envision that different use-cases will require
different levels of isolation. In Table 2, we summarize each
these frameworks and at what granularity they isolate ten-
ants.

5 A Vision for the Future

In this paper, we have presented a number of related projects
that are integral steps towards a long-term vision of auto-
mated resource management for AI. Such a layer will resem-
ble the multitenancy and resource management frameworks
widely employed in programmed systems today but with
added knobs to control accuracy.

Long-term, we believe that understanding resource man-
agement in AI requires accounting for model accuracy in
SLOs. Classical systems have a concept of performance iso-
lation; where the running time and resource utilization of
one tenant is independent of all others on the same infras-
tructure. We envision that this concept has to be amended
to include accuracy considerations. In particular, we envi-
sion a new concept of accuracy isolation, where the system’s
scheduling and resource allocation decisions will not affect
the final accuracy of any model more than a certain amount.
Designing an API for describing such accuracy objectives
over tasks and groups of tasks will be one of the overarching
challenges.
We choose to focus on this problem because the compu-

tational demands of modern AI techniques will soon over-
whelm our data-intensive systems. We envision a forthcom-
ing era of AI-Systems research where reducing resource con-
sumption, reasoning about transient resource availability,
trading off resource consumption for accuracy, and man-
aging contention on specialized hardware will become the
community’s main research focus. All of these components
will have to be integrated into a new resource management
layer that solves the familiar systems problems of multite-
nancy and isolation, but also addresses the key differences
in AI tasks and workloads.

5

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-

scale machine learning. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), pages 265–283, 2016.

[2] A. Canziani, A. Paszke, and E. Culurciello. An analysis of deep

neural network models for practical applications. arXiv preprint
arXiv:1605.07678, 2016.

[3] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu, L. Ceze,

C. Guestrin, and A. Krishnamurthy. Tvm: end-to-end optimization

stack for deep learning. arXiv preprint arXiv:1802.04799, pages 1–15,
2018.

[4] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with

sublinear memory cost. arXiv preprint arXiv:1604.06174, 2016.
[5] S. Chetlur, C.Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,

and E. Shelhamer. cudnn: Efficient primitives for deep learning. arXiv
preprint arXiv:1410.0759, 2014.

[6] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and

I. Stoica. Clipper: A low-latency online prediction serving system. In

14th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 17), pages 613–627, 2017.

[7] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,

J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov. Openai baselines. GitHub,
GitHub repository, 2017.

[8] A. Dziedzic*, J. Paparrizos*, S. Krishnan, A. Elmore, and M. Franklin.

Band-limited training and inference for convolutional neural networks.

ICML, 2019.
[9] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Towards an elastic

and autonomic multitenant database. In Proc. of NetDB Workshop,
2011.

[10] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse. The reversible

residual network: Backpropagation without storing activations. In

Advances in neural information processing systems, pages 2214–2224,
2017.

[11] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc: Automl for

model compression and acceleration on mobile devices. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 784–800,
2018.

[12] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531, 2015.
[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W.Wang, T. Weyand,

M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional

neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[14] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer. Firecaffe:

near-linear acceleration of deep neural network training on compute

clusters. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2592–2600, 2016.

[15] N. Jouppi, C. Young, N. Patil, and D. Patterson. Motivation for and

evaluation of the first tensor processing unit. IEEE Micro, 38(3):10–19,
2018.

[16] D. Kirk et al. Nvidia cuda software and gpu parallel computing archi-

tecture. In ISMM, volume 7, pages 103–104, 2007.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[18] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M.

Patel, K. Ramasamy, and S. Taneja. Twitter heron: Stream processing at

scale. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 239–250. ACM, 2015.

[19] S. Loesing, M. Hentschel, T. Kraska, and D. Kossmann. Stormy: an elas-

tic and highly available streaming service in the cloud. In Proceedings
of the 2012 Joint EDBT/ICDT Workshops, pages 55–60. ACM, 2012.

[20] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Eli-

bol, Z. Yang, W. Paul, M. I. Jordan, et al. Ray: A distributed framework

for emerging {AI} applications. In 13th {USENIX} Symposium on Op-
erating Systems Design and Implementation ({OSDI} 18), pages 561–577,
2018.

[21] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Ra-

jashekhar, S. Ramesh, and J. Soyke. Tensorflow-serving: Flexible,

high-performance ml serving. arXiv preprint arXiv:1712.06139, 2017.
[22] A. Paszke, S. Gross, S. Chintala, and G. Chanan. Pytorch: Tensors

and dynamic neural networks in python with strong gpu acceleration.

PyTorch: Tensors and dynamic neural networks in Python with strong
GPU acceleration, 6, 2017.

[23] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell. R-storm:

Resource-aware scheduling in storm. In Proceedings of the 16th Annual
Middleware Conference, pages 149–161. ACM, 2015.

[24] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.

Language models are unsupervised multitask learners.

[25] A. Ratner, D. Alistarh, G. Alonso, P. Bailis, S. Bird, N. Carlini, B. Catan-

zaro, E. Chung, B. Dally, J. Dean, et al. Sysml: The new frontier of

machine learning systems. arXiv preprint arXiv:1904.03257, 2019.
[26] D. M. Ritchie and K. Thompson. The unix time-sharing system. Bell

System Technical Journal, 57(6):1905–1929, 1978.
[27] C. J. Shallue, J. Lee, J. M. Antognini, J. Sohl-Dickstein, R. Frostig, and

G. E. Dahl. Measuring the effects of data parallelism on neural network

training. CoRR, abs/1811.03600, 2018.
[28] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,

A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al. Mastering the

game of go without human knowledge. Nature, 550(7676):354, 2017.
[29] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson.

Container-based operating system virtualization: a scalable, high-

performance alternative to hypervisors. In ACM SIGOPS Operating
Systems Review, volume 41, pages 275–287. ACM, 2007.

[30] G. Somani and S. Chaudhary. Application performance isolation in vir-

tualization. In 2009 IEEE International Conference on Cloud Computing,
pages 41–48. IEEE, 2009.

[31] A. S. Tanenbaum and H. Bos. Modern operating systems. Pearson, 2015.
[32] N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack, and M. Stone-

braker. Load shedding in a data stream manager. In VLDB, 2003.
[33] T. T. D. Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller,

D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov, et al. Theano: A

python framework for fast computation of mathematical expressions.

arXiv preprint arXiv:1605.02688, 2016.
[34] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang.

Intel math kernel library. In High-Performance Computing on the Intel®
Xeon PhiâĎć, pages 167–188. Springer, 2014.

[35] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong. Caffeine:

Towards uniformed representation and acceleration for deep convolu-

tional neural networks. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2018.

6

