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Abstract
Recent advances in data collection technology, accompanied by
the ever-rising volume and velocity of streaming data, underscore
the vital need for time series analytics. In this regard, time-series
anomaly detection has been an important activity, entailing vari-
ous applications in fields such as cyber security, financial markets,
law enforcement, and health care. While traditional literature on
anomaly detection is centered on statistical measures, the increas-
ing number of machine learning algorithms in recent years call
for a structured, general characterization of the research meth-
ods for time-series anomaly detection. In this paper, we present a
process-centric taxonomy for time-series anomaly detection meth-
ods, systematically categorizing traditional statistical approaches
and contemporary machine learning techniques. Beyond this tax-
onomy, we conduct a meta-analysis of the existing literature to
identify broad research trends. Given the absence of a one-size-
fits-all anomaly detector, we also introduce emerging trends for
time-series anomaly detection. Furthermore, we review commonly
used evaluation measures and benchmarks, followed by an analysis
of benchmark results to provide insights into the impact of different
design choices on model performance. Through these contributions,
we aim to provide a holistic perspective on time-series anomaly
detection and highlight promising avenues for future investigation.

CCS Concepts
• Computing methodologies → Anomaly detection; • Mathe-
matics of computing→ Time series analysis.
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(a)  Data series example: Snippet of an electrocardiogram (in 
blue: normal heartbeats, in red: premature heartbeat)

(b)  Data series example: Snippet of simulated engine disks data 
(in blue: usual disk revolution, in red: failed disk revolution)

(c)  Data series example: Snippet of space shuttle marotta valve
(in blue: normal cycle, in red: anomalous cycle)Snippet of an electrocardiogram (in blue: normal heartbeats, in red: premature heartbeat) 
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(a)  Data series example: Snippet of an electrocardiogram (in 
blue: normal heartbeats, in red: premature heartbeat)

(b)  Data series example: Snippet of simulated engine disks data 
(in blue: usual disk revolution, in red: failed disk revolution)

(c)  Data series example: Snippet of space shuttle marotta valve
(in blue: normal cycle, in red: anomalous cycle)
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Figure 1: Example of detecting anomalies in time series.

1 Introduction
A wide range of cost-effective sensing, networking, storage, and
processing solutions enable the collection of enormous amounts of
measurements over time. Recording these measurements results in
an ordered sequence of real-valued data points commonly referred
to as time series. The analysis of time series has become increasingly
prevalent for understanding a multitude of natural or human-made
processes [108–110]. Unfortunately, inherent complexities in the
data generation of these processes, combined with imperfections
in the measurement systems as well as interactions with malicious
actors, often result in abnormal phenomena. Such abnormal events
appear subsequently in the collected data as anomalies. Considering
that the volume of the produced time series will continue to rise
due to the explosion of Internet-of-Things applications [78, 86], an
abundance of anomalies is expected in time-series collections.

The detection of anomalies in time series has received ample
academic and industrial attention for over six decades [15, 41, 80,
81, 102, 105, 107]. With the term anomalies, we refer to data points
or groups of data points that do not conform to some notion of nor-
mality or an expected behavior based on previously observed data
[47, 56]. Depending on the application, anomalies can constitute (i)
noise or erroneous data, which hinders the data analysis; or (ii) data
of interest. In the former case, the anomalies are unwanted data
that are removed or corrected. In the latter case, the anomalies may
identify meaningful events, such as failures or changes in behavior,
which require analysis.

The first approaches for detecting time-series anomalies centered
around using statistical tests [26]. Since then, a large number of
works have appeared in this area, which is still rapidly expanding,
and multiple surveys have been written to summarize the state of
the art (SOTA) [10, 24]. Unfortunately, the majority of the surveys
focus on general-purpose anomaly detection methods and only a
portion of them briefly review methods for time-series anomaly
detection. Even though traditional anomaly detection methods may
treat time series as any other high-dimensional vector and attempt
to detect anomalies, our focus is on approaches that are specifically
designed to consider characteristics of time series.
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To illustrate the importance of this point, in Figure 1, we present
an example anomaly where the temporal ordering and the collec-
tive consideration of points enable the detection of the anomaly.
Depending on the research community, multiple solutions have
been proposed to tackle the above-mentioned challenge. Unfor-
tunately, these areas remain mostly disconnected, using different
datasets, baselines, and evaluation measures. New algorithms are
evaluated only against non-representative approaches, and it is
virtually impossible to find a SOTA approach for a concrete use
case. Moreover, recent benchmarks have highlighted the absence
of a one-size-fits-all anomaly detector [81, 107, 124], as no single
method consistently outperforms others across all domains. This
underscores the growing importance of automating the anomaly
detection process. However, to date, no surveys have systematically
reviewed this line of research.

To remedy this issue, this survey presents a novel, comprehen-
sive, process-centric taxonomy for time-series anomaly detection.
We collected a comprehensive range of algorithms in the litera-
ture and grouped them into families of algorithms with similar
approaches (Section 3). Furthermore, to identify research trends,
we provide statistics over time on the type and area of proposed
approaches (Section 4). Then, we review recent emerging trends
in time-series anomaly detection (Section 5). Additionally, we enu-
merate established and recent evaluation measures used to assess
anomaly detection methods (Section 6). Finally, we present ex-
perimental evaluation results on benchmark datasets and discuss
possible future directions (Section 7).

2 Background
In this section, we provide necessary background, including differ-
ent time-series anomaly types (Section 2.1), categories of methods
concerning supervision (Section 2.2), and the components of anom-
aly detection pipelines (Section 2.3).

2.1 Types of Anomalies in Time Series
Due to the temporality of the data, anomalies can occur in the form
of a single value or collectively in the form of sub-sequences. In the
specific context of point, we are interested in finding points that are
far from the usual distribution of values that correspond to healthy
states. In the specific context of sequences, we are interested in
identifying anomalous sub-sequences, which are usually not out-
liers but exhibit rare and, hence, anomalous patterns. In real-world
applications, such a distinction between points and sub-sequences
becomes crucial because even though individual points might seem
normal against their neighboring points, the shape generated by the
sequence of these points may be anomalous. Formally, we define
three types of time-series anomalies: point, contextual, and collec-
tive anomalies. Point anomalies refer to data points that deviate
remarkably from the rest of the data, as is shown in Figure 2(a).
Figure 2(b) illustrates Contextual anomalies in which data points lie
within the expected range of the distribution (in contrast to point
anomalies) but deviate from the expected data distribution given a
specific context (e.g., a window). Collective anomalies refer to se-
quences of points that do not repeat a typical (previously observed)
pattern. Figure 2(c) depicts a synthetic collective anomaly. The first
two categories, namely, point and contextual anomalies, are called

12000 300 600 900

𝑝𝑜𝑖𝑛𝑡
𝑎𝑛𝑜𝑚𝑎𝑙𝑦

2000 50 100 150
𝑎 𝑃𝑜𝑖𝑛𝑡 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 ℎ𝑒𝑎𝑙𝑡ℎ𝑦
𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 (𝑑𝑜𝑡𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑙𝑖𝑛𝑒)

12000 300 600 900

2000 50 100 150 2000 50 100 150

𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙 𝑎𝑛𝑜𝑚𝑎𝑙𝑦

𝑏 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑙
ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 (𝑑𝑜𝑡𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑏𝑜𝑥)

𝑇

𝑎. 1 𝑇𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠

𝑎. 2 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑐. 1 𝑇𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠

𝑐. 2 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑏. 3𝑏. 2

𝑏. 1 𝑇𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠

𝑃𝑜𝑖𝑛𝑡-𝑏𝑎𝑠𝑒𝑑

12000 300 600 900

𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒
𝑎𝑛𝑜𝑚𝑎𝑙𝑦

𝑇

𝑐 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 ℎ𝑒𝑎𝑙𝑡ℎ𝑦
𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠(𝑑𝑜𝑡𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑙𝑖𝑛𝑒)

2000 50 100 150

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒-𝑏𝑎𝑠𝑒𝑑

Figure 2: Synthetic illustration of three time series anomaly
types: (a) point; (b) contextual; and (c) collective anomalies.

point-based anomalies. whereas, collective anomalies are referred to
as sequence-based anomalies.

2.2 Unsupervised vs. Supervised Methods
An approach can be categorized into three types based on the level
of prior knowledge available: (i) experts do not have information
on what anomalies to detect; (ii) experts only have information on
the expected normal behaviors; (iii) experts have precise examples
of which anomalies they have to detect (and have a collection
of known anomalies). This gives rise to the distinction between
unsupervised (i), semi-supervised (ii), and supervised methods (iii).

2.3 Anomaly Detection Pipelines
An anomaly detection pipeline consists of four parts: data pre-
processing, detection method, scoring, and post-processing. The data
processing step represents how the anomaly detection method pro-
cesses the time series data at the initial step. We have noticed all
the anomaly detection models are somehow based on a windowed
approach by converting the time series data into a matrix with
rows of sliding window slices of the original time series. Subse-
quent to this transformation, various detection methods can be
applied to the windowed data, producing anomaly scores that quan-
tify the abnormality of each data point. A higher anomaly score
implies a greater likelihood of abnormality. Following this, the post-
processing step extracts anomalous points or intervals based on
the computed anomaly scores. Typically, a threshold is defined, and
any data points exceeding this threshold are classified as anomalies.

3 Time-Series Anomaly Detection Taxonomy
In this section, we describe our proposed taxonomy. We divide
methods into three core categories: (i) Distance-based, (ii) Density-
based, and (iii) Prediction-based.

The distance-based family contains methods that focus on an-
alyzing sub-sequences to detect anomalies in time series, mainly
by utilizing distance measures to a given model. Instead of mea-
suring nearest-neighbor distances, density-based methods focus on
detecting globally normal distributions and isolated behaviors. The
prediction-based methods aim to train a model (on anomaly-free
time series) to reconstruct the normal data or predict the future
expected normal points. In the following sections, we break down
each category into subcategories. Figure 3 illustrates our proposed
process-centric taxonomy. Note that the second-level categoriza-
tion is not mutually exclusive. A model might compress the time
series data while adopting a discord-based identification strategy.



Advances in Time-Series Anomaly Detection: Algorithms, Benchmarks, and Evaluation Measures KDD ’25, August 3–7, 2025, Toronto, ON, Canada

TreeDistribution GraphCluster

ℬ

DiscordProximity ReconstructionForecastingEncoding
A  BC  A B C  A   D     E   A  BC

A → BC
A → DE

…

Time Series Anomaly Detection Methods

Distance-based Density-based Prediction-based

Figure 3: Process-centric Time-Series Anomaly Detection Taxonomy.

Table 1: Summary of the Distance-based anomaly detection
methods. I: Univariate, M: Multivariate; S: Supervised, Se:
Semi-Supervised and U: Unsupervised.

Second
Level Prototype Dim Method Stream

KNN [56] Proximity-based Nearest Neighbor M U ×
KnorrSeq2 [103] Proximity-based Nearest Neighbor M U ×
LOF [20] Proximity-based LOF M U ×
COF [138] Proximity-based LOF M U ×
LOCI [104] Proximity-based LOF M U ✓
ILOF [115] Proximity-based LOF M U ✓
DILOF [93] Proximity-based LOF M U ✓
HSDE [74] Proximity-based LOF I U ×
k-Means [56] Clustering-based k-Means M U ×
Hybrid-k-Means [131] Clustering-based k-Means M U ×
DeepkMeans [? ] Clustering-based k-Means M Se ×
DBSCAN [122] Clustering-based DBSCAN M U ×
DBStream [53] Clustering-based DBSCAN M U ✓
MCOD [67] Clustering-based - I U ×
CBLOF [57] Clustering-based LOF M U ×
sequenceMiner [22] Clustering-based - I U ×
NorM (SAD) [13] Clustering-based NormA I U ×
NormA [14] Clustering-based NormA I U ×
SAND [18] Clustering-based NormA I U ✓
TARZAN[64] Discord-based - I S ×
HOT SAX [63] Discord-based - I U ×
DAD [159] Discord-based - I U ×
AMD [157] Discord-based - I U ×
STAMPI [162] Discord-based Matrix Profile M U ✓
STOMP [173] Discord-based Matrix Profile M U ×
MERLIN [? ] Discord-based Matrix Profile I U ×
MERLIN++ [94] Discord-based Matrix Profile I U ×
SCRIMP [172] Discord-based Matrix Profile I U ×
SCAMP [174] Discord-based Matrix Profile I U ×
VALMOD [77] Discord-based Matrix Profile I U ✓
DAMP [82] Discord-based Matrix Profile I U ✓
LAMP [175] Discord-based Matrix Profile I Se ✓

In this case, the model falls within two different sub-categories. In
the table of methods, only one of the second-level will be listed to
give a clearer representation.

3.1 Distance-based Methods
As its name suggests, the distance-based method detects anomalies
purely from the raw time series using distance measures. Given
two sequences (or univariate time series), 𝐴 ∈ Rℓ and 𝐵 ∈ Rℓ ,
of the same length, ℓ , we define the distance between 𝐴 and 𝐵 as
𝑑 (𝐴, 𝐵) ∈ R, such as 𝑑 (𝐴, 𝐵) = 0 when𝐴 and 𝐵 are the same. Differ-
ent definitions of 𝑑 exist in the literature. The widely used classical
distance is the Euclidean distance or the z-normalized Euclidean dis-
tance (euclidean distance with sequences of mean values equal to 0
and standard deviations equal to 1). Then, Dynamic TimeWrapping
(DTW) is commonly used to cope with misalignment issues. Over-
all, the distance-based algorithms merely treat the numerical value
of the time series as it is without further modifications, such as re-
moving seasonality or introducing a new structure built on the data.
Within the Distance-based models, there are three second-level
categories: proximity-based, clustering-based, and discord-based
models. A detailed listing of methods under these subcategories is
demonstrated in Table 2.

The proximity-basedmodel measures proximity by calculating
the distance of a given sub-sequence to its close neighborhood. The
isolation of a sub-sequence regarding its closest neighbors is the
main criterion to consider if this sub-sequence is an anomaly or
not. This notion of isolation about a given neighborhood has been
proposed for non-time series data. Thus, the methods contained in
this category have been introduced for the general case of multi-
dimensional outlier detection. In our specific case, the sub-sequence
of a time series can be considered a multi-dimensional point with
the number of dimensions equal to the length of the sub-sequence.
The most commonly used proximity-based approach is the Local
Outlier Factor (LOF) [21], which measures the degree of being an
outlier for each instance. Unlike the previous proximity-based mod-
els, which directly compute the distance of sub-sequences, LOF
depends on how the instance is isolated to the surrounding neigh-
borhood. This method aims to solve the outlier detection task where
an outlier is considered as "an observation that deviates so much
from other observations as to arouse suspicion that it was generated
by a different mechanism" (Hawkins definition [56]). This definition
is coherent with the anomaly detection task in time series where
the different mechanism can be either an arrhythmia in an electro-
cardiogram or a failure in the components of an industrial machine.
In the past decade, researchers also suggest many variants of the
LOF. COF [138], for example, is a connectivity-based variant of LOF.
It indicates how far away a point shifts from a pattern, adjusting
the notion of isolation to not depend on the density of data clouds.
LOCI [104] is another LOF-like algorithm that utilizes different
statistics (correlation integral and MDEF) to infer individual points’
isolation. Other LOF variants are the ILOF [115] and DILOF [93],
which are able to detect anomalies incrementally.

The clustering-based model infers anomalies from a cluster
partition of the time series sub-sequences. In practice, the anomaly
score is calculated by the non-membership of a sub-sequence of
each of the clusters learned by the model. Other considerations,
such as cluster distance and cluster capacity, can also be considered.
The clustering issue is related to the anomaly detection problem in
that points may either belong to a cluster or be deemed anomalies.
In practice, the fact that a sub-sequence belongs or not to a cluster
is assessed by the computation of the distance between this sub-
sequence and the cluster centroid or medoid. CBLOF [57] is a LOF-
based clustering algorithm, which first clusters the data and then
assigns the CBLOF factor to each entry to measure both the size
and relative of and among the individual clusters. More recently,
NormA [14] is a clustering-based algorithm that summarizes the
time series with a weighted set of sub-sequences. The Normal
set (weighted collection of sub-sequences to feature the training
dataset) results from a clustering algorithm (Hierarchical), and
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the weights are derived from cluster properties (cardinality, extra-
distance clustering, time coverage). An extension of NormA, called
SAND [18], has been proposed for streaming time-series anomaly
detection. The main difference between NormA and SAND is the
mechanism to update the weight in a streaming fashion, but also the
clustering step that is performed using the k-shape method [106]
instead of a hierarchical clustering method.

The discord-based model tries to identify efficiently specific
types of sub-sequences in the time series named discord. Formally,
a sub-sequence𝐴 (or a given length ℓ) is a discord if the distance be-
tween its nearest neighbor is the largest among all the nearest neigh-
bors’ distances computed between sub-sequences of length ℓ in the
time series. Overall, similar to proximity-based methods, the isola-
tion of a sub-sequence regarding its closest neighbors is the main
criterion to consider if this sub-sequence is an anomaly or not. How-
ever, on contrary to proximity-based methods, discord-based meth-
ods have been introduced for the specific case of anomaly detection
in time series. Thus, as such methods introduced efficient processes
for time series distance computation specifically, we group them
into one different sub-category. Matrix Profile [161] represents time
series as a matrix of closest neighbor distances. Compared to its
predecessor, Matrix Profile proposed a new metadata time series
computed effectively, capable of providing various valuable details
about the examined time series, such as discords. A family of Ma-
trix Profile anomaly detection methods has also been proposed
in the last decade. STAMP [162] proposed an algorithm that can
provide an accurate answer at any time during the full computa-
tion with time complexity of 𝑂 (𝑛2𝑙𝑜𝑔(𝑛)). STAMPI [162] not only
performs the standard all-pairs-similarity-join of sub-sequences for
matrix profile methods but also adapts the method incrementally
to accommodate streaming purposes. Moreover, MERLIN [? ] and
MERLIN++ [94] have been proposed to identify discords of arbi-
trary length. Finally, DAMP [82] is able to work on online settings
while scaling to fast-arriving streams.

3.2 Density-based Methods
The density-based methods do not treat the time series as simple
numerical values but imbue them with more complex architecture.
The density-based method processes time series data on top of a
representation of the time series that aims to measure the density of
the points or sub-sequence space. Such representation varies from
graphs, trees, and histograms to a grammar induction rule. There
are four second-level categories: distribution-based, graph-based,
tree-based, and encoding-based. A comprehensive enumeration of
methods within these subcategories is in Table 2.

A distribution-based anomaly detection approach is building a
distribution from statistical features of the points or sub-sequences
of the time series. By examining the distributions of features of
the normal sub-sequences, the distribution-based approach tries to
recover relevant statistical models. It uses them to infer the abnor-
mality of the data. The One-Class Support Vector Machine (SVM)
is a representative distribution-based anomaly detection method
that aims to separate instances from the origin while maximizing
the margin of separation. This separation can be achieved either
through a hyperplane-based approach [126] or a spherical bound-
ary approach [140]. Anomalies are identified as data points that

Table 2: Summary of the Density-based anomaly detection
methods. I: Univariate, M: Multivariate; S: Supervised, Se:
Semi-Supervised and U: Unsupervised.

Second
Level Prototype Dim Method Stream

FAST-MCD [119] Distribution-based MCD M Se ×
MC-MCD [54] Distribution-based MCD M Se ×
OCSVM [84] Distribution-based SVM M Se ×
AOSVM [48] Distribution-based SVM M U ✓
Eros-SVMs [70] Distribution-based SVM M Se ×
S-SVM [9] Distribution-based SVM I Se ×
MS-SVDD [152] Distribution-based SVM M Se ×
NetworkSVM [167] Distribution-based SVM M Se ×
HMAD [52] Distribution-based SVM I Se ×
DeepSVM [149] Distribution-based SVM M U ×
HBOS [46] Distribution-based - M U ×
COPOD [75] Distribution-based - M U ×
ConInd [3] Distribution-based - M Se ×
MGDD [135] Distribution-based - M U ✓
OC-KFD [117] Distribution-based - M U ×
SmartSifter [156] Distribution-based - M U ✓
MedianMethod [8] Distribution-based - I U ✓
S-ESD [59] Distribution-based ESD I U ×
S-H-ESD [59] Distribution-based ESD I U ×
SH-ESD+ [143] Distribution-based ESD I U ×
TwoFinger [90] Graph-based - I Se ×
GeckoFSM [121] Graph-based - M S ×
Series2Graph [16] Graph-based Series2Graph I U ×
DADS [125] Graph-based Series2Graph I U ×
IForest [79] Tree-based IForest M U ×
IF-LOF [30] Tree-based IForest/LOF M U ×
Extended IForest [55] Tree-based IForest M U ×
Hybrid IForest [91] Tree-based IForest M Se ×
SurpriseEncode [23] Encoding-based - M U ×
GranmmarViz [127] Encoding-based - I U ×
Ensemble GI [43] Encoding-based - I U ×
PST [136] Encoding-based Markov Ch. M U ×
EM-HMM [111] Encoding-based Markov Ch. M Se ✓
LaserDBN [100] Encoding-based Bayseian Net. M Se ×
EDBN [113] Encoding-based Bayseian Net. M Se ×
KDE-EDBN [114] Encoding-based Bayseian Net. M Se ×
PCA [128] Encoding-based PCA M Se ×
RobustPCA [101] Encoding-based PCA M U ×
DeepPCA [25] Encoding-based PCA M Se ×
POLY [160] Encoding-based - I U ×
SSA [160] Encoding-based - I U ×

lie far from the decision boundary, indicating deviations from the
learned normal data distribution.

A graph-basedmethod represents the time series and the corre-
sponding sub-sequences as a graph. The nodes and edges represent
the different types of sub-sequences (or representative features)
and their evolution in time. For instance, the nodes can be sets of
similar sub-sequences (using a predefined distance measure), and
the edge weights can be the number of times a sub-sequence of a
given node has been followed by a sub-sequence of another node.
The detection of anomalies is then achieved using characteristics of
the graph, such as the node and edge weights, but also the degree
of the nodes. One approach is to convert the time series into a
directed graph with nodes representing the usual types of subse-
quences and edges representing the frequency of the transitions
between types of subsequences. Series2Graph [17] is building such
kinds of graphs. Moreover, an extension of Series2Graph, named
DADS [125], proposes a distributed implementation and, therefore,
a much more scalable method for large time series.

A tree-based approach aims to divide the point or sub-sequence
of a time series using trees. For instance, such trees can be used
to split different points or sub-sequences based on their similarity.
The detection of anomalies is then based on the statistics and char-
acteristics of the tree, such as its depth. Isolation Forest (IForest) is
density-based and the most famous Tree-based approach for anom-
aly detection. IForest tries to isolate the outlier from the rest [79].
The key idea remains that, in a normal distribution, anomalies are
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more likely to be isolated (i.e., requiring fewer random partitions to
be isolated) than normal instances. Other IForest algorithms have
also been proposed recently. Extended IForest [55] is an extension
of the traditional method, which removes the branching bias using
hyperplanes with random slopes. The random sloping hyperplanes
enable an unbiased selection of features free of the branching struc-
ture within the dataset. Hybrid IForest [91] is another improvement,
enabling a supervised setting and eliminating the dataset’s poten-
tial confounding due to unbalanced clusters. Finally, IF-LOF [30]
combines IForest and LOF by applying IForest and then utilizes
LOF to refine the results, which speeds up the process.

A encoding-based anomaly detection model compresses or rep-
resents the time series into different forms of symbols. It suggests
that a time series can be interpreted as a sequence of context-free,
discrete symbols or states. For instance, anomalies can be detected
by using grammar rules with the symbols extracted from the time
series. One approach is to encode and represent the time series with
its principal components. PCA [128] investigates the major compo-
nents of the time series that contribute the most to the covariance
structure. The anomaly score is measured by the sub-sequences
distance from 0 along the principal components weighted by their
eigenvalues. A standard routine is to pick 𝑞 significant components
that can explain 50% variations of the time series and 𝑟 minor com-
ponents that explain less than 20% variations. A point is an anomaly
if its values of major principles components have a weighted sum
exceeding the threshold its minor one has. RobustPCA [101] aims
to recover the principal matrix by decomposing the original covari-
ance matrix. Moreover, DeepPCA [25] extends RobustPCA by first
using an autoencoder to map the time series into a latent space,
then applying PCA to detect anomalies.

3.3 Prediction-based Methods
Prediction-based methods aim to detect anomalies by predicting
the expected normal behaviors based on a training set of time series
or sub-sequences (containing anomalies or not). For instance, some
methods will be trained to predict the next value or sub-sequence
based on the previous one. Then, the prediction error is used as
an anomaly score. The underlying assumption of prediction-based
methods is that normal data are easier to predict, while anomalies
are unexpected, leading to higher prediction errors. Such assump-
tions are valid when the training set contains no or few time series
with anomalies. Therefore, prediction-based methods are usually
more optimal under semi-supervised settings. An enumeration of
methods within these subcategories is in Table 3.

The forecasting-based method is a model that, for a given in-
dex or timestamp, takes as input points or sub-sequences before
this given timestamp and predicts its corresponding value or sub-
sequence. In other words, such methods use past values as input to
predict the following one. The forecasting error (the difference be-
tween the predicted and the real value) is used as an anomaly score.
Indeed, such forecasting error is representative of the expectation
of the current value based on the previous points or sub-sequences.
The larger the error, the more unexpected the value, and thus, po-
tentially abnormal. Forecasting-based approaches assume that the
training data (past values or sub-sequences) is almost anomaly-free.
Thus, such methods are mostly semi-supervised. Long Short-Term

Table 3: Summary of the Prediction-based anomaly detection
methods. I: Univariate, M: Multivariate; S: Supervised, Se:
Semi-Supervised and U: Unsupervised.

Second
Level Prototype Dim Method Stream

ES [129] Forecasting-based - I Se ×
DES [129] Forecasting-based - I Se ×
TES [129] Forecasting-based - I U ×
ARIMA [120] Forecasting-based ARIMA I U ✓
NoveltySVR [83] Forecasting-based SVM I U ✓
PCI [163] Forecasting-based ARIMA I U ✓
OceanWNN [145] Forecasting-based - I Se ×
MTAD-GAT [168] Forecasting-based GRU M Se ✓
AD-LTI [151] Forecasting-based GRU M Se ✓
CoalESN [99] Forecasting-based ESN M Se ✓
MoteESN [27] Forecasting-based ESN I Se ✓
HealthESN [29] Forecasting-based ESN I Se ×
Torsk [58] Forecasting-based ESN M U ✓
LSTM-AD [88] Forecasting-based LSTM M Se ×
DeepLSTM [28] Forecasting-based LSTM I Se ×
DeepAnT [92] Forecasting-based LSTM M Se ×
Telemanom★ [61] Forecasting-based LSTM M Se ×
RePAD [71] Forecasting-based LSTM M U ×
NumentaHTM [2] Forecasting-based HTM I U ✓
MultiHTM [148] Forecasting-based HTM M U ✓
RADM [36] Forecasting-based HTM M Se ✓
MAD-GAN [72] Reconstruction-based GAN M Se ✓
VAE-GAN [98] Reconstruction-based GAN M Se ×
TAnoGAN [7] Reconstruction-based GAN M Se ×
USAD [4] Reconstruction-based GAN M Se ×
EncDec-AD [87] Reconstruction-based AE M Se ×
LSTM-VAE [112] Reconstruction-based AE M Se ✓
DONUT [153] Reconstruction-based AE I Se ×
BAGEL [73] Reconstruction-based AE I Se ×
OmniAnomaly [134] Reconstruction-based AE M Se ×
MSCRED [166] Reconstruction-based AE I U ×
VELC [165] Reconstruction-based AE I Se ×
CAE [44] Reconstruction-based AE I Se ×
DeepNAP [65] Reconstruction-based AE M Se ✓
STORN [130] Reconstruction-based AE M Se ✓
Anomaly Transformer [154] Reconstruction-based Transformer M Se ×
TranAD [141] Reconstruction-based Transformer M Se ×
DCdetector [158] Reconstruction-based Transformer M Se ×
MEMTO [132] Reconstruction-based Transformer M Se ×
SARAD [33] Reconstruction-based Transformer M Se ×

Memory (LSTM) [60] network has been demonstrated to be partic-
ularly efficient in learning inner features for sub-sequences classi-
fication or time series forecasting. Such a model can also be used
for anomaly detection purposes [40, 89]. A stacked LSTM model is
trained on normal parts of the data. The objective is to predict the
future point or the sub-sequence using the historical sub-sequence.
Consequently, the model will be trained to forecast a healthy state
of the time series, and, therefore, will fail to forecast when it will
encounter an anomaly. Telemanom [61] focuses on multivariate
time series, where an LSTM network is trained for each channel.
The prediction error is further smoothed over time, and low errors
are pruned retroactively. RePad [71] considers short-term historical
data points to predict future anomalies in streaming data.

In addition to LSTM, the Gated Recurrent Unit (GRU) has also
been employed for anomaly detection. MTAD-GAT [168] is the first
example of anomaly detection methods based on GRU units. The
model utilizes two parallel graph attention layers to preprocess the
time series and then implements a GRU network to reconstruct and
predict the next values. AD-ITL [151] uses seasonal and raw features
as input. The input time series is first used to extract seasonal
features and further fed to the GRU network. The GRU then predicts
each value of the window, and Local Trend Inconsistency is used as
a measure of the error to assess the abnormality between predicted
and actual values. Finally, it is important to note that forecasting-
based approaches represent a broad concept requiring a model
to predict future values based on historical data. Consequently,
any regression-based method can be employed as a forecasting
approach for anomaly detection.
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The reconstruction-basedmethod corresponds to a model that
compresses the input time series (or sub-sequence) into a latent
space (smaller than the input size) and is trained to reconstruct the
input time series from the latent space. The difference between the
input time series and the reconstructed one (named the reconstruc-
tion error) is used as an anomaly score. As for forecasting-based
methods, the larger the error, the more unexpected the value, and
thus, the more potentially abnormal. Moreover, as the reconstruc-
tion error is likely to be small for time series used to train the model,
such reconstruction methods are optimal in semi-supervised set-
tings. Autoencoder is a type of artificial neural network used to
learn to reconstruct the dataset given as input using a smaller en-
coding size to avoid identity reconstruction. It will try to learn
the best latent representation using a reconstruction loss. There-
fore, it will learn to compress the dataset into a shorter code and
then uncompress it into a dataset that closely matches the original.
The reconstruction error can be used as an anomaly score for the
specific anomaly detection task. As the model is trained on the
non-anomalous sub-sequence of the time series, it is optimized
to reconstruct the normal sub-sequences. Therefore, all the sub-
sequences far from the training set will have a bigger reconstruc-
tion error. EncDec-AD [87] is the first model that implements an
encoder-decoder by using reconstruction error to score anomalies.
LSTM-VAE [112] and MSCRED [166] are similar to EncDec-AD but
use LSTM and Convolutional LSTM cells in the AutoEncoder archi-
tecture. Similarly, OmniAnomaly [134] extends the autoencoder-
based methodology by employing GRU and planar normalizing
flow for improved anomaly detection.

In addition, Generative Adversarial Network (GAN), which was
initially proposed for image generation purposes [49], can also be
used for the detection of anomalies. It has two components: (i)
one to generate new time series and (ii) one to discriminate the
existing time series. For anomaly detection, the generator is trained
to produce subsequences labeled as normal, and the discriminator
is trained to discriminate the anomalies. Several anomaly detec-
tion methods based on GAN have been proposed in the literature,
such as MAD-GAN [72], USAD [4], and TAnoGAN [7]. These ap-
proaches train GAN on the normal sections of the time series. The
anomaly score is based on the combination of discriminator and re-
construction loss. VAE-GAN [98] is another GAN-based model that
combines GAN and Variational AutoEncoder. More specifically, the
generator is a VAE, which further competes with the discriminator.
The anomaly score is computed as the previous two.

Transformers [142] have demonstrated remarkable performance
in processing sequential data, spanning natural language tasks [35]
and computer-vision applications [38]. For time-series analysis,
they leverage the self-attention mechanism to capture long-range
temporal dependencies [146]. Unlike RNNs, Transformers process
the entire sequence in parallel. Due to the rarity of anomalies,
establishing meaningful associations between abnormal points
and the overall time series remains highly challenging. Anoma-
lyTransformer [154] addresses this by introducing an “Anomaly-
attention” mechanism, which extends self-attention into a two-
branch structure to separately capture both prior-association and
series-association for each time point. Similarly, TranAD [141] re-
lies on focus score-based self-conditioning to achieve robust multi-
modal feature extraction while employing adversarial training for
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Figure 4: Evolution of anomaly detection methods: (a) Num-
ber of methods per second-level category, (b) Distribution
by learning paradigm (Unsupervised or Semi-Supervised), (c)
Capability to handle Univariate or Multivariate time series.
enhanced stability. DCdetector [158] proposes a dual attention
asymmetric design that creates a permuted environment and uses
pure contrastive loss to guide the learning process, thus yielding a
permutation-invariant representation with superior discrimination
capabilities. To address over-generalization, MEMTO [132] inte-
grates a novel memory module that learns how each memory item
should be updated in response to incoming data. Finally, extending
beyond solely temporal modeling, SARAD [33] incorporates spatial
information in addition to autoencoding errors to improve both
anomaly detection and diagnosis.

4 Evolution of Anomaly Detection Methods
Until now, we have described the main methods proposed in the
literature to detect anomalies in time series. We grouped them
into three first-level categories and nine second-level categories.
However, these first- or second-level categories do not share the
same distribution over time. Figure 4(a) illustrates the number of
proposed methods across different time intervals.

We first observe that the number of methods proposed yearly
was constant between 1990 and 2016. The number of methods
proposed in the literature significantly increased after 2016. This
first confirms the growing academic interest in the topic of time-
series anomaly detection. We can then dive into the second-level
categories, and we observe that the significant increase in methods
proposed is caused mainly by the prediction-based approach and,
more specifically, by LSTM and AutoEncoders-based approaches.
Between 2020 and 2024, such methods represent almost 50% of the
newly introduced anomaly detection methods.

We can then measure the evolution of the number of unsuper-
vised and semi-supervised methods over the years. The latter is
illustrated in Figure 4(b). We observe that 65% of the anomaly detec-
tion methods proposed in the literature were unsupervised between
1980 and 2000, whereas 50% of the methods proposed between 2012
and 2018 were unsupervised. Finally, we can inspect the evolution
of the number of methods proposed in the literature that can handle
univariate or multivariate time series. Figure 4(c) shows the number
of methods for multivariate and univariate time series per interval
of years listed on the x-axis.

Surprisingly, we observe that most of the methods proposed
between 1990 and 2016 were proposed for multivariate time series,
whereas, in the last three years, most of the proposed methods
are for univariate time series. However, after a deep inspection,
most of the methods proposed before 2016 were designed for point
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anomaly detection (i.e., well-defined problems for multivariate time
series). The recent interest in sub-sequence anomaly detection,
joined by the fact that the subsequence anomaly detection problem
for multivariate time series is harder to define, leads to a significant
increase in methods for univariate time series.

5 Emerging Trends for Anomaly Detection
In recent years, there has been a paradigm shift driven by the
emergence of foundation models (FM) [11]. These models exhibit
impressive few-shot or even zero-shot generalization capabilities
across a broad spectrum of downstream tasks, often surpassing task-
specific models. Within this evolving landscape, there are two main
categories of works: (i) adapting large language models (LLMs) for
time-series anomaly detection and (ii) leveraging foundationmodels
pre-trained on large-scale time-series data to support a variety
of time-series applications. Representative of the first direction,
OFA [170] fine-tunes the existing GPT backbone using time-series
data. Meanwhile, in the second direction, MOMENT [51] offers a
family of foundation models designed for general-purpose time-
series analysis, trained via a masked time-series modeling strategy.
Similarly, UniTS [42] incorporates a modified transformer block
to learn universal time-series representations and employs task
tokenization to merge predictive and generative objectives.

In addition to this line of research, another emerging approach
involves prompting LLMs to directly perform anomaly detection
tasks. In this setup, an LLM is given a textual prompt (e.g., “Identify
anomalies in this time series") along with the corresponding time-
series data, expecting it to pinpoint anomalous segments. However,
recent studies [31, 171] reveal that while LLMs detect trivial anom-
alies, they struggle with complex real-world cases, perform better
with visual rather than textual inputs, and lack structured reason-
ing in anomaly detection. Additionally, LLMs’ anomaly recognition
does not always align with human intuition, detecting obscure
patterns while missing obvious anomalies.

Despite the growing number of anomaly detection algorithms,
no single stand-alone detector can consistently outperform others
across different domains. A model that achieves good performance
on one dataset may perform poorly on another. This raises a critical
question: How can we automate time-series anomaly detection for
reliable, adaptable results?

One approach is to evaluate model effectiveness without relying
on labeled anomalies. Unsupervised Evaluation Curves [45] elim-
inate label dependence by using Mass-Volume and Excess-Mass
curves instead of ROC or PR curves. Clustering Quality [96] applies
clustering metrics, such as Silhouettes [118], to evaluate anomaly
score separation without labeled data. Model Centrality [76] ranks
detectors based on their proximity to an assumed ground truth
using Kendall’s 𝜏 distance, though it may cluster poor detectors to-
gether. Synthetic Anomaly Injection [50] evaluates models on data
with artificial anomalies, with some approaches incorporating STL
decomposition [32] for more realistic synthetic datasets, though
simulated data may not fully reflect real-world scenarios. Finally,
TSADAMS [50] refines rankings by aggregating results from multi-
ple unsupervised metrics using Kemeny rank aggregation [68] and
robust variants of the Borda method [19].

Figure 5: Illustration of evaluation measures for AD.

Another line of research leverages meta-learning [6] to guide
model selection using historical datasets with labeled anomalies.
These approaches require historical datasets with labeled anomalies
to guide the selection of the most suitable model for new data. Given
a new dataset, the model selector predicts the best-performing
model among the candidates. These methods are categorized based
on their optimization functions for training model selectors. Simple
meta-learners use direct search strategies: ARGOSMART [97] se-
lects the model that performed best on the most similar past dataset,
while ISAC [62] clusters historical datasets and selects the best
model from the nearest cluster. Optimization-based meta-learners
learn task similarity through advanced performance estimation
techniques. MetaOD [169] employs collaborative filtering with ma-
trix factorization to estimate model performance on new datasets.
MSAD [137] formulates model selection as a classification prob-
lem, training a classifier to recommend the best detector for new
time series. Meanwhile, SATzilla [155], UReg [95], and CFact [95]
frame it as a regression task, predicting each model’s expected per-
formance to make selection. Unlike classification-based methods,
regression-based approaches provide both the recommended model
and its expected performance, offering greater interpretability.

Additionally, ensemble learning improves anomaly detection by
integrating multiple detectors, enhancing robustness while miti-
gating individual model weaknesses [37]. Methods fall into two
categories: (i) aggregating scores from all models and (ii) select-
ing and combining a subset. Outlier Ensemble [1] introduces AVG
(mean of scores), MAX (highest score per point), and AOM (average
of maximums) to balance variance and bias. SELECT [116] strategi-
cally selects ensemble components using Vertical and Horizontal
selection. IOE [85] iteratively refines anomaly scores by averag-
ing the closest matches to a pseudo-ground truth. HITS [85] ranks
detectors based on hubness scores [66].

6 Evaluating Anomaly Detection Methods
The measures used to evaluate anomaly detection vary signifi-
cantly in terms of their characteristics. Consequently, evaluating
and selecting the most appropriate method for a given scenario
has emerged as a major challenge in this field. In this section, we
present an overview of evaluation measures used to assess the per-
formance of anomaly detectors and categorize them based on the
requirement of threshold setting.
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Threshold-based evaluation requires setting a threshold to clas-
sify each point as an anomaly or not based on the anomaly score.
Generally, a higher anomaly score value indicates a more abnormal
point. After setting the threshold, we can classify the time points
as either normal or abnormal based on whether they exceed the
threshold. By comparing prediction to the true-labeled anomalies,
the points can fall into one of the following four categories: True
Positive, True Negative, False Positive, and False Negative. Given
these four categories, several point-wise evaluation measures can
be used to assess the performance, such as Precision, Recall and
F-Score. These metrics ignore the sequential nature of time series.
A range-based measure [139] was recently proposed to address the
shortcomings of point-based measures. The point-based Precision
and Recall can be extended to calculating range-based F-score.

Two threshold-independent metrics commonly employed in clas-
sification can be adapted for anomaly detection: AUC-PR [39] and
AUC-ROC [34] as depicted in Figure 5(a). These two metrics are
primarily designed for point-based anomalies, treating each point
independently and assigning equal weight to the detection of each
point in calculating the overall AUC. However, these metrics may
not be ideal for assessing subsequence anomalies. To address these
limitations, an extension of the ROC and PR curves called Range-
AUC [105] has been introduced specifically for subsequences. By
adding a buffer region at the outliers’ boundaries as shown in Fig-
ure 5(b), it accounts for the false tolerance of labeling in the ground
truth and assigns higher anomaly scores near the outlier bound-
aries. However, the buffer length in Range-AUC, denoted as 𝑙 , needs
to be predefined. If not properly set, it can strongly influence range-
AUC measures. To eliminate this influence, VUS [12, 105] computes
Range-AUC for different buffer lengths from 0 to the 𝑙 , which leads
to the creation of a three-dimensional surface in the ROC-PR space
as shown in Figure 5(b). Different evaluation measures have dif-
ferent properties. The selection of evaluation metrics should be
approached with caution, considering the specific requirements of
the task (refer to [81, 105, 133] for additional details).

7 Benchmarks & Discussion
In previous sections, we observed that a substantial number of
time-series anomaly detection methods have been developed over
the past several decades. However, evaluating the performance of
these methods across diverse application backgrounds, domains,
and anomaly types has become a significant challenge. Multiple
surveys and experimental analyses have been proposed in recent
years [5, 10, 124]. These evaluations have been based on several
collections of labeled time series and benchmarks. The benchmarks
are presented in chronological order in Table 4. However, the qual-
ity of time-series anomaly detection datasets poses critical chal-
lenges, with common issues such as mislabeling, bias, and limited
feasibility hindering progress in evaluation and benchmarking prac-
tices [81, 150]. Addressing these limitations, TSB-AD [81] offers a
heterogeneous and curated collection of time-series anomaly detec-
tion datasets, along with a rigorous and comprehensive benchmark
to systematically assess various anomaly detection methods.

Moreover, we summarize the research insights drawn upon the
experimental results of previous benchmark studies. First, there

Table 4: Summary of existing benchmarks.
Benchmark Dataset Algorithm Evaluation

# Datasets # Curated TS Uni Multi Stat NN FM HP # Measures

Wu & Keogh [150] 1 250 ✓ × - - - - -
TODS [69] 5 0 ✓ ✓ 7 2 0 × 3
TimeEval [124] 15 0 ✓ ✓ 49 22 0 × 3
TSB-UAD [107] 18 0 ✓ × 9 3 0 × 9
TimeSeAD [144] 2 21 × ✓ 0 28 0 ✓ 3
Zhang et al. [164] 15 0 ✓ ✓ 11 6 0 ✓ 4
TSB-AD [81] 40 1070 ✓ ✓ 25 10 5 ✓ 10

is no one-size-fits-all anomaly detector across all settings. Cer-
tain methods excel in specific contexts yet underperform in oth-
ers [81, 144, 147, 164]. Second, statistical approaches generally
demonstrate robust performance, while neural network-basedmeth-
ods often fall short of their presumed advantages [81, 124]. While
in TSB-AD [81], researchers also observe that neural networks and
foundation models still strive to excel in detecting point anomalies
and in handling multivariate cases. Third, simpler architectures
such as CNNs and LSTMs generally outperform more complex de-
signs, such as advanced transformer architectures [81, 123]. Finally,
foundation models excel at detecting point-based anomalies but
face difficulties with extended sequence anomalies. Their predictive
mechanism often relies on limited look-back windows, constrain-
ing the available temporal context. Consequently, performance
diminishes, and noise increases when dealing with long sequence
anomalies. In addition, flawed point-adjustment techniques can
artificially inflate their results, creating an illusion of progress [81].

Even though a large number of unsupervised methods have
been proposed for univariate time-series anomaly detection, not
much attention has been paid to multivariate time series, streaming
time series, series with missing values, series with non-continuous
timestamps, heterogeneous time series, or a combination of the
above. Such times series are often encountered in practice, thus we
need robust and accurate methods for these cases, as well.

8 Conclusions
We presented an extensive and process-centric taxonomy for time-
series anomaly detection. The existing literature is classified into
three primary categories and nine subcategories. Additionally, we
conduct a meta-analysis on the evolution of time series anomaly
detection algorithms, providing a holistic overview of the field’s pro-
gression. Furthermore, we highlight recent advancements in auto-
mated anomaly detection, emphasizing the need for approaches that
leverage model selection, ensembling, and generation to enhance
detection performance. By looking into the evaluation measures
and the performance of diverse anomaly detectors, we advocate the
necessity for methodologies that can effectively handle the complex
characteristics of real-world time series.
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