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ABSTRACT
The proliferation and ubiquity of temporal data across many
disciplines has generated substantial interest in the analysis
and mining of time series. Clustering is one of the most pop-
ular data mining methods, not only due to its exploratory
power, but also as a preprocessing step or subroutine for
other techniques. In this paper, we present k-Shape, a novel
algorithm for time-series clustering. k-Shape relies on a scal-
able iterative refinement procedure, which creates homoge-
neous and well-separated clusters. As its distance measure,
k-Shape uses a normalized version of the cross-correlation
measure in order to consider the shapes of time series while
comparing them. Based on the properties of that distance
measure, we develop a method to compute cluster centroids,
which are used in every iteration to update the assignment
of time series to clusters. To demonstrate the robustness of
k-Shape, we perform an extensive experimental evaluation
of our approach against partitional, hierarchical, and spec-
tral clustering methods, with combinations of the most com-
petitive distance measures. k-Shape outperforms all scalable
approaches in terms of accuracy. Furthermore, k-Shape also
outperforms all non-scalable (and hence impractical) com-
binations, with one exception that achieves similar accuracy
results. However, unlike k-Shape, this combination requires
tuning of its distance measure and is two orders of mag-
nitude slower than k-Shape. Overall, k-Shape emerges as
a domain-independent, highly accurate, and highly efficient
clustering approach for time series with broad applications.

1. INTRODUCTION
Temporal, or sequential, data mining deals with problems

where data are naturally organized in sequences [34]. We
refer to such data sequences as time-series sequences if they
contain explicit information about timing (e.g., stock, au-
dio, speech, and video) or if an ordering on values can be
inferred (e.g., streams and handwriting). Large volumes of
time-series sequences appear in almost every discipline, in-
cluding astronomy, biology, meteorology, medicine, finance,
robotics, engineering, and others [1, 6, 25, 27, 36, 52, 70, 76].
The ubiquity of time series has generated a substantial inter-
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Figure 1: ECG sequence examples and types of alignments
for the two classes of the ECGFiveDays dataset [1].

est in querying [2, 19, 45, 46, 48, 62, 74, 79], indexing [9, 13,
41, 42, 44, 77], classification [37, 56, 68, 88], clustering [43,
54, 64, 87, 89], and modeling [4, 38, 86] of such data.
Among all techniques applied to time-series data, cluster-

ing is the most widely used as it does not rely on costly
human supervision or time-consuming annotation of data.
With clustering, we can identify and summarize interesting
patterns and correlations in the underlying data [33]. In the
last few decades, clustering of time-series sequences has re-
ceived significant attention [5, 16, 25, 47, 60, 64, 66, 87, 89],
not only as a powerful stand-alone exploratory method, but
also as a preprocessing step or subroutine for other tasks.
Most time-series analysis techniques, including clustering,

critically depend on the choice of distance measure. A key
issue when comparing two time-series sequences is how to
handle the variety of distortions, as we will discuss, that are
characteristic of the sequences. To illustrate this point, con-
sider the well-known ECGFiveDays dataset [1], with ECG
sequences recorded for the same patient on two different
days. While the sequences seem similar overall, they exhibit
patterns that belong in one of the two distinct classes (see
Figure 1): Class A is characterized by a sharp rise, a drop,
and another gradual increase while Class B is characterized
by a gradual increase, a drop, and another gradual increase.
Ideally, a shape-based clustering method should generate a
partition similar to the classes shown in Figure 1, where se-
quences exhibiting similar patterns are placed into the same
cluster based on their shape similarity, regardless of differ-
ences in amplitude and phase. As the notion of shape cannot
be precisely defined, dozens of distance measures have been
proposed [11, 12, 14, 19, 20, 22, 55, 75, 78, 81] to offer invari-
ances to multiple inherent distortions in the data. However,
it has been shown that distance measures offering invari-
ances to amplitude and phase perform exceptionally well
[19, 81] and, hence, such distance measures are used for
shape-based clustering [53, 59, 64, 87].
Due to these difficulties and the different needs for invari-

ances from one domain to another, more attention has been
given to the creation of new distance measures rather than



to the creation of new clustering algorithms. It is generally
believed that the choice of distance measure is more im-
portant than the clustering algorithm itself [7]. As a conse-
quence, time-series clustering relies mostly on classic cluster-
ing methods, either by replacing the default distance mea-
sure with one that is more appropriate for time series, or
by transforming time series into “flat” data so that existing
clustering algorithms can be directly used [83]. However, the
choice of clustering method can affect: (i) accuracy, as ev-
ery method expresses homogeneity and separation of clus-
ters differently; and (ii) efficiency, as the computational cost
differs from one method to another. For example, spectral
clustering [21] or certain variants of hierarchical clustering
[40] are more appropriate to identify density-based clusters
(i.e., areas of higher density than the remainder of the data)
than partitional methods such as k-means [50] or k-medoids
[40]. On the other hand, k-means is more efficient than hi-
erarchical, spectral, or k-medoids methods.
Unfortunately, state-of-the-art approaches for shape-based

clustering, which use partitional methods with distance mea-
sures that are scale- and shift-invariant, suffer from two
main drawbacks: (i) these approaches cannot scale to large-
volumes of data as they depend on computationally expen-
sive methods or distance measures [53, 59, 64, 87]; (ii) these
approaches have been developed for particular domains [87]
or their effectiveness has only been shown for a limited
number of datasets [53, 59]. Moreover, the most success-
ful shape-based clustering methods handle phase invariance
through a local, non-linear alignment of the sequence coor-
dinates, even though a global alignment is often adequate.
For example, for the ECG dataset in Figure 1, an efficient
linear drift can reveal the underlying differences in patterns
of sequences of two classes, whereas an expensive non-linear
alignment might match every corresponding increase or drop
of each sequence, making it difficult to distinguish the two
classes (see Figure 1). Importantly, to the best of our knowl-
edge, these approaches have never been extensively evalu-
ated against each other, against other partitional methods,
or against different approaches such as hierarchical or spec-
tral methods. We present such an experimental evaluation
in this paper, as discussed below.
In this paper, we propose k-Shape, a novel algorithm for

shape-based time-series clustering that is efficient and do-
main independent. k-Shape is based on a scalable iterative
refinement procedure similar to the one used by the k-means
algorithm, but with significant differences. Specifically, k-
Shape uses both a different distance measure and a different
method for centroid computation from those of k-means. As
argued above, k-Shape attempts to preserve the shapes of
time-series sequences while comparing them. To do so, k-
Shape requires a distance measure that is invariant to scal-
ing and shifting. Unlike other clustering approaches [53, 64,
87], for k-Shape we adapt the cross-correlation statistical
measure and we show: (i) how we can derive in a principled
manner a time-series distance measure that is scale- and
shift-invariant; and (ii) how this distance measure can be
computed efficiently. Based on the properties of the normal-
ized version of cross-correlation, we develop a novel method
to compute cluster centroids, which are used in every itera-
tion to update the assignment of time series to clusters.
To demonstrate the effectiveness of the distance measure

and k-Shape, we have conducted an extensive experimental
evaluation on 48 datasets and compared the state-of-the-art
distance measures and clustering approaches for time series
using rigorous statistical analysis. We took steps to ensure
the reproducibility of our results, including making available

our source code as well as using public datasets. Our results
show that our distance measure is competitive, outperform-
ing Euclidean distance (ED) [20], and achieving similar re-
sults as constrained Dynamic Time Warping (cDTW) [72],
the best performing distance measure [19, 81], without re-
quiring any tuning and performing one order of magnitude
faster. For example, for the ECG dataset in Figure 1, our
distance measure achieves a one-nearest-neighbor classifica-
tion accuracy of 98.9%, significantly higher than cDTW’s
accuracy for the task, namely, 79.7%.
For clustering, we show that the k-means algorithm with

ED, in contrast to what has been reported in the literature,
is a robust approach and that inadequate modifications of
the distance measure and the centroid computation can re-
duce its performance. Moreover, simple partitional methods
outperform hierarchical and spectral methods with the most
competitive distance measures, indicating that the choice of
algorithm, which is sometimes believed to be less important
than that of distance measure, is as critical as the choice of
distance measure. Similarly, we show that k-Shape outper-
forms all scalable and non-scalable partitional, hierarchical,
and spectral methods in terms of accuracy, with the only
exception of one existing approach that achieves similar re-
sults, namely, k-medoids with cDTW. However, there are
problems with this approach that can be avoided with k-
Shape: (i) the requirement of k-medoids to compute the dis-
similarity matrix makes it unable to scale and particularly
slow, two orders of magnitude slower than k-Shape; (ii) its
distance measure requires tuning, either through automated
methods that rely on labeling of instances or through the
help of a domain expert; this requirement is problematic for
clustering, which is an unsupervised task. In contrast, k-
Shape uses a simple, parameter-free distance measure. Over-
all, k-Shape is a highly accurate and scalable choice for time-
series clustering that performs exceptionally well across dif-
ferent domains. k-Shape is particularly effective for applica-
tions involving similar but out-of-phase sequences, such as
those of the ECG dataset in Figure 1, for which k-Shape
reaches an 84% clustering accuracy, which is significantly
higher than the 53% accuracy for k-medoids with cDTW.
In this paper, we start with an in-depth review of the

state of the art for clustering time series, as well as with a
precise definition of our problem of focus (Section 2). We
then present our novel approach as follows:
• We show how a scale-, translate-, and shift-invariant dis-
tance measure can be derived in a principled manner
from the cross-correlation measure and how this mea-
sure can be efficiently computed (Section 3.1).
• We present a novel method to compute a cluster centroid
when that distance measure is used (Section 3.2).
• We develop k-Shape, a centroid-based algorithm for time-
series clustering (Section 3.3).
• We evaluate our ideas by conducting an extensive exper-
imental evaluation (Sections 4 and 5).

We conclude with a discussion of related work (Section 6)
and the implications of our work (Section 7).

2. PRELIMINARIES
In this section, we review the relevant theoretical back-

ground (Section 2.1). We discuss distortions that are com-
mon in time series (Section 2.2) and the most popular dis-
tance measures for such data (Section 2.3). Then, we sum-
marize existing approaches for clustering time-series data
(Section 2.4) and for centroid computation (Section 2.5). Fi-
nally, we formally present our problem of focus (Section 2.6).



2.1 Theoretical Background
Hardness of clustering: Clustering is the general prob-

lem of partitioning n observations into k clusters, where a
cluster is characterized with the notions of homogeneity —
the similarity of observations within a cluster — and sep-
aration — the dissimilarity of observations from different
clusters. Even though many clustering criteria to capture
homogeneity and separation have been proposed [35], the
minimum within-cluster sum of squared distances is most
commonly used as it expresses both of them. Given a set
of n observations X = {~x1, . . . ,~xn}, where ~xi ∈ Rm, and the
number of clusters k < n, the objective is to partition X into
k pairwise-disjoint clusters P = {p1, . . . ,pk}, such that the
within-cluster sum of squared distances is minimized:

P ∗ = argmin
P

k∑
j=1

∑
~xi∈pj

dist(~xi,~cj)2 (1)

where ~cj is the centroid of partition pj ∈ P . In Euclidean
space this is an NP-hard optimization problem for k≥ 2 [3],
even for number of dimensions m = 2 [51]. Because finding
a global optimum is difficult, heuristics such as the k-means
method [50] are often used to find a local optimum. Specifi-
cally, k-means randomly assigns the data points into k clus-
ters and then uses an iterative procedure that performs two
steps in every iteration: (i) in the assignment step, every
data point is assigned to the cluster of its nearest centroid,
which is determined with the use of a distance function; (ii)
in the refinement step, the centroids of the clusters are up-
dated to reflect the changes in cluster memberships. The
algorithm converges either when there is no change in clus-
ter memberships or when the maximum number of iterations
is reached.
Steiner’s sequence: In the refinement step, k-means com-
putes new centroids to serve as representatives of the clus-
ters. The centroid is defined as the data point that mini-
mizes the sum of squared distances to all other data points
and, hence, it depends on the distance measure used. Find-
ing such a centroid is known as the Steiner’s sequence prob-
lem [63]: given a partition pj ∈ P , the corresponding cen-
troid ~cj needs to fulfill:

~cj = argmin
~w

∑
~xi∈pj

dist(~w,~xi)2, ~w ∈ Rm (2)

When ED is used, the centroid can be computed with the
arithmetic mean property [18]. In many cases where align-
ment of observations is required, this problem is referred to
as the multiple sequence alignment problem, which is known
to be NP-complete [80]. In the context of time series, Dy-
namic Time Warping (DTW) (see Section 2.3) is the most
widely used measure to compare time-series sequences with
alignment, and many heuristics have been proposed to find
the average sequence under DTW (see Section 2.5).

2.2 Time-Series Invariances
Based on the domain, sequences are often distorted in

some way, and distance measures need to satisfy a number
of invariances in order to compare sequences meaningfully.
In this section, we review common time-series distortions
and their invariances. For a more detailed review, see [7].
Scaling and translation invariances: In many cases, it
is useful to recognize the similarity of sequences despite dif-
ferences in amplitude (scaling) and offset (translation). In
other words, transforming a sequence ~x as ~x′ = a~x+b, where
a and b are constants, should not change ~x’s similarity to

ED

DTW

(a) (b)
Figure 2: Similarity computation: (a) alignment under ED
(top) and DTW (bottom), (b) Sakoe-Chiba band with a
warping window of 5 cells (light cells in band) and the warp-
ing path computed under cDTW (dark cells in band).

other sequences. For example, these invariances might be
useful to analyze seasonal variations in currency values on
foreign exchange markets without being biased by inflation.
Shift invariance: When two sequences are similar but dif-
fer in phase (global alignment) or when there are regions
of the sequences that are aligned and others are not (local
alignment), we might still need to consider them similar.
For example, heartbeats can be out of phase depending on
when we start taking the measurements (global alignment)
and handwritings of a phrase from different people will need
alignment depending on the size of the letters and on the
spaces between words (local alignment).
Uniform scaling invariance: Sequences that differ in
length require either stretching of the shorter sequence or
shrinking of the longer sequence so that we can compare
them effectively. For example, this invariance is required for
heartbeats with measurement periods of different duration.
Occlusion invariance: When subsequences are missing,
we can still compare the sequences by ignoring the subse-
quences that do not match well. This invariance is useful in
handwritings if there is a typo or a letter is missing.
Complexity invariance: When sequences have similar
shape but different complexities, we might want to make
them have low or high similarity based on the application.
For example, audio signals that were recorded indoors and
outdoors might be considered similar, despite the fact that
outdoor signals will be more noisy than indoor signals.
For many tasks, some or all of the above invariances are

required when we compare time-series sequences. To satisfy
the appropriate invariances, we could preprocess the data
to eliminate the corresponding distortions before clustering.
For example, by z-normalizing [29] the data we can achieve
the scaling and translation invariances. However, for invari-
ances that cannot be trivially achieved with a preprocessing
step, we can define sophisticated distance measures that of-
fer distortion invariances. In the next section, we review the
most common such distance measures.

2.3 Time-Series Distance Measures
The two state-of-the-art approaches for time-series com-

parison first z-normalize the sequences and then use a dis-
tance measure to determine their similarity, and possibly
capture more invariances. The most widely used distance
metric is the simple ED [20]. ED compares two time series
~x= (x1, . . . ,xm) and ~y = (y1, . . . ,ym) of length m as follows:

ED(~x,~y) =
√∑m

i=1
(xi−yi)2 (3)

Another popular distance measure is DTW [72]. DTW can
be seen as an extension of ED that offers a local (non-linear)
alignment. To achieve that, an m-by-m matrix M is con-
structed, with the ED between any two points of ~x and ~y. A



warping pathW = {w1,w2, . . . ,wk}, with k≥m, is a contigu-
ous set of matrix elements that defines a mapping between
~x and ~y under several constraints [44]:

DTW (~x,~y) = min

√∑k

i=1
wi (4)

This path can be computed on matrixM with dynamic pro-
gramming for the evaluation of the following recurrence:
γ(i, j) =ED(i, j)+min{γ(i−1, j−1),γ(i−1, j),γ(i, j−1)}.
It is common practice to constrain the warping path to
visit only a subset of cells on matrix M . The shape of the
subset matrix is called band and the width of the band is
called warping window. The most frequently used band for
constrained Dynamic Time Warping (cDTW) is the Sakoe-
Chiba band [72]. Figure 2a shows the difference in align-
ments of two sequences offered by ED and DTW distance
measures, whereas Figure 2b presents the computation of
the warping path (dark cells) for cDTW constrained by the
Sakoe-Chiba band with width 5 cells (light cells).
Recently, Wang et al. [81] extensively evaluated 9 distance

measures and several variants thereof. They found that ED
is the most efficient measure with a reasonably high accu-
racy, and that DTW and cDTW perform exceptionally well
in comparison to other measures. cDTW is slightly better
than DTW and significantly reduces the computation time.
Several optimizations have been proposed to further speed
up cDTW [65]. In the next section, we review clustering
algorithms that can utilize these distance measures.

2.4 Time-Series Clustering Algorithms
Several methods have been proposed to cluster time se-

ries. All approaches generally modify existing algorithms,
either by replacing the default distance measures with a
version that is more suitable for comparing time series (raw-
based methods), or by transforming the sequences into “flat”
data so that they can be directly used in classic algorithms
(feature- and model-based methods) [83]. Raw-based ap-
proaches can easily leverage the vast literature on distance
measures (see Section 2.3), which has shown that invari-
ances offered by certain measures, such as DTW, are gen-
eral and, hence, suitable for almost every domain [19]. In
contrast, feature- and model-based approaches are usually
domain-dependent and applications on different domains re-
quire that we modify the features or models. Because of
these drawbacks of feature- and model-based methods, in
this paper we follow a raw-based approach.
The three most popular raw-based methods are agglomer-

ative hierarchical, spectral, and partitional clustering [7]. For
hierarchical clustering, the most widely used “linkage” cri-
teria are the single, average, and complete linkage vari-
ants [40]. Spectral clustering [58] has recently started re-
ceiving attention [7] due to its success over other types of
data [21]. Among partitional methods, k-means [50] and k-
medoids [40] are the most representative examples. When
partitional methods use distance measures that offer invari-
ances to scaling, translation, and shifting, we consider them
as shape-based approaches. From these methods, k-medoids
is usually preferred [83]: unlike k-means, k-medoids com-
putes the dissimilarity matrix of all data sequences and
uses actual sequences as cluster centroids; in contrast, k-
means requires the computation of artificial sequences as
centroids, which hinders the easy adaptation of distance
measures other than ED (see Section 2.1). However, from
all these methods, only the k-means class of algorithms can
scale linearly with the size of the datasets. Recently, k-
means was modified to work with: (i) the DTW distance

measure [64] and (ii) a distance measure that offers pair-
wise scaling and shifting of time-series sequences [87]. Both
of these modifications rely on new approaches to compute
cluster centroids that we will review next.

2.5 Time-Series Averaging Techniques
The computation of an average sequence or, in the context

of clustering, a centroid, is a difficult task and it critically
depends on the distance measure used to compare time se-
ries (see Section 2.1). We now review the state-of-the-art
methods for the computation of an average sequence.
With Euclidean distance, the property of arithmetic mean

is used to compute an average sequence (e.g., as is the case in
the centroid computation of the k-means algorithm). How-
ever, as DTW is more appropriate for many time-series
tasks [44, 65], several methods have been proposed to aver-
age time-series sequences under DTW. Nonlinear alignment
and averaging filters (NLAAF) [32] uses a simple pairwise
method where each coordinate of the average sequence is cal-
culated as the center of the mapping produced by DTW. This
method is applied sequentially to pairs of sequences un-
til only one pair is left. Prioritized shape averaging (PSA)
[59] uses a hierarchical method to average sequences. The
coordinates of an average sequence are computed as the
weighted center of the coordinates of two time-series se-
quences that were coupled by DTW. Initially, all sequences
have weight one, and each average sequence produced in the
nodes of the tree has a weight that corresponds to the num-
ber of sequences it averages. To avoid the high computation
cost of previous approaches, Ranking Shape-based Template
Matching Framework (RSTMF) [53] approximates an order-
ing of the time-series sequences by looking at the distances
of sequences to all other cluster centroids, instead of com-
puting the distances of all pairs of sequences.
Several drawbacks of these methods have led to the cre-

ation of a more robust technique called Dynamic TimeWarp-
ing Barycenter Averaging (DBA) [64], which iteratively re-
fines the coordinates of a sequence initially picked from the
data. Each coordinate of the average sequence is updated
with the use of barycenter1 of one or more coordinates of the
other sequences that were associated with the use of DTW.
Among all these methods, DBA seems to be the most effi-
cient and accurate averaging approach when DTW is used
[64]. Another averaging technique that is based on matrix
decomposition was proposed as part of K-Spectral Centroid
Clustering (KSC) [87], to compute the centroid of a cluster
when a distance measure for pairwise scaling and shifting is
used. In our approach, which we will present in Section 3,
we also rely on matrix decomposition to compute centroids.

2.6 Problem Definition
We address the problem of domain-independent, accurate,

and scalable clustering of time series into k clusters, for a
given value of the target number of clusters k.2 Even though
different domains might require different invariances to data
distortions (see Section 2.2), we focus on distance measures
that offer invariances to scaling and shifting, which are gen-
erally sufficient (see Section 2.3) [19]. Furthermore, to easily
adopt such distance measures, we focus our analysis on raw-
based clustering approaches, as we argued in Section 2.4.
Next, we introduce k-Shape, our novel clustering algorithm.
1Barycenter is defined as b(X1, . . . ,Xa) = X1+...+Xa

a , where the sums
in the numerator are vector additions.
2Although the exact estimation of k is difficult without a gold stan-
dard, we can do so by varying k and evaluating clustering quality
with criteria that capture information intrinsic to the data alone [40].



3. K-SHAPE CLUSTERING ALGORITHM
Our objective is to develop a domain-independent, accu-

rate, and scalable algorithm for time-series clustering, with
a distance measure that is invariant to scaling and shifting.
We propose k-Shape, a novel centroid-based clustering algo-
rithm that can preserve the shapes of time-series sequences.
Specifically, we first discuss our distance measure, which is
based on the cross-correlation measure (Section 3.1). Based
on this distance measure, we propose a method to compute
centroids of time-series clusters (Section 3.2). Finally, we
describe our k-Shape clustering algorithm, which relies on
an iterative refinement procedure that scales linearly in the
number of sequences and generates homogeneous and well-
separated clusters (Section 3.3).

3.1 Time-Series Shape Similarity
As discussed earlier, capturing shape-based similarity re-

quires distance measures that can handle distortions in am-
plitude and phase. Unfortunately, the best performing dis-
tance measures offering invariances to these distortions, such
as DTW, are computationally expensive (see Section 2.3).
To circumvent this efficiency limitation, we adopt a normal-
ized version of the cross-correlation measure.
Cross-correlation is a measure of similarity for time-lagged

signals that is widely used for signal and image process-
ing. However, cross-correlation, a measure that compares
one-to-one points between signals, has largely been ignored
in experimental evaluations for the problem of time-series
comparison. Instead, starting with the application of DTW
decades ago [8], research on that problem has focused on
elastic distance measures that compare one-to-many or one-
to-none points [11, 12, 44, 55, 78]. In particular, recent
comprehensive and independent experimental evaluations of
state-of-the-art distance measures for time-series compar-
ison — 9 measures and their variants in [19, 81] and 48
measures in [26] — did not consider cross-correlation. Dif-
ferent needs from one domain or application to another hin-
der the process of finding appropriate normalizations for the
data and the cross-correlation measure. Moreover, ineffi-
cient implementations of cross-correlation can make it ap-
pear as slow as DTW. As a consequence of these drawbacks,
cross-correlation has not been widely adopted as a time-
series distance measure. In the rest of this section, we show
how to address these drawbacks. Specifically, we will show
how to choose normalizations that are domain-independent
and efficient, and lead to a shape-based distance measure
for comparing time series efficiently and effectively.
Cross-correlation measure: Cross-correlation is a statis-
tical measure with which we can determine the similarity of
two sequences ~x= (x1, . . . ,xm) and ~y = (y1, . . . ,ym), even if
they are not properly aligned.3 To achieve shift-invariance,
cross-correlation keeps ~y static and slides ~x over ~y to com-
pute their inner product for each shift s of ~x. We denote a
shift of a sequence as follows:

~x(s) =


(
|s|︷ ︸︸ ︷

0, . . . ,0,x1,x2, . . . ,xm−s), s≥ 0
(x1−s, . . . ,xm−1,xm,0, . . . ,0︸ ︷︷ ︸

|s|

), s < 0 (5)

When all possible shifts ~x(s) are considered, with s∈ [−m,m],
we produce CCw(~x,~y) = (c1, . . . , cw), the cross-correlation
sequence with length 2m−1, defined as follows:
3For simplicity, we consider sequences of equal length even though
cross-correlation can be computed on sequences of different length.
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Figure 3: Time-series and cross-correlation normalizations.

CCw(~x,~y) =Rw−m(~x,~y), w ∈ {1,2, . . . ,2m−1} (6)
where Rw−m(~x,~y) is computed, in turn, as:

Rk(~x,~y) =


m−k∑
l=1

xl+k ·yl, k ≥ 0

R−k(~y,~x), k < 0
(7)

Our goal is to compute the position w at which CCw(~x,~y)
is maximized. Based on this value of w, the optimal shift of
~x with respect to ~y is then ~x(s), where s= w−m.
Depending on the domain or the application, different

normalizations for CCw(~x,~y) might be required. The most
common normalizations are the biased estimator, NCCb,
the unbiased estimator, NCCu, and the coefficient normal-
ization, NCCc, which are defined as follows:

NCCq(~x,~y) =


CCw(~x,~y)

m , q = “b” (NCCb)
CCw(~x,~y)
m−|w| , q = “u” (NCCu)
CCw(~x,~y)√

R0(~x,~x)·R0(~y,~y)
, q = “c” (NCCc)

(8)

Beyond the cross-correlation normalizations, time series
might also require normalization to remove inherent distor-
tions. Figure 3 illustrates how the cross-correlation normal-
izations for two sequences ~x and ~y of length m = 1024 are
affected by time-series normalizations. (Appendix A also
elaborates on the classification accuracy of cross-correlation
variants under other time-series normalizations.) Indepen-
dently of the normalization applied to CCw(~x,~y), the pro-
duced sequence will have length 2047. Initially, in Figure 3a,
we remove differences in amplitude by z-normalizing ~x and ~y
in order to show that they are aligned and, hence, no shifting
is required. If CCw(~x,~y) is maximized for w ∈ [1025,2047]
(or w ∈ [1,1023]), one of ~x or ~y should be shifted by i−1024
to the right (or 1024− i to the left). Otherwise, if w = 1024,
~x and ~y are properly aligned, which is what we expect in our
example. Figure 3b shows that if we do not z-normalize ~x
and ~y, and we use the biased estimator, then NCCb is max-
imized at w = 1797, which indicates a shifting of a sequence
to the left 1797−1024 = 773 times. If we z-normalize ~x and
~y, and use the unbiased estimator, then NCCu is maximized
at w = 1694, which indicates a shifting of a sequence to the
right 1694− 1024 = 670 times (Figure 3c). Finally, if we
z-normalize ~x and ~y, and use the coefficient normalization,
then NCCc is maximized at w = 1024, which indicates that
no shifting is required (Figure 3d).
As illustrated by the example above, normalizations of

the data and the cross-correlation measure can have a sig-



Algorithm 1: [dist,y′] = SBD(x,y)
Input: Two z-normalized sequences x and y
Output: Dissimilarity dist of x and y

Aligned sequence y′ of y towards x
1 length = 2nextpower2(2∗length(x)−1)

2 CC = IFFT{FFT(x, length)∗FFT(y, length)} // Equation 12
3 NCCc = CC

||x|| ||y|| // Equation 8
4 [value, index] = max(NCCc)
5 dist = 1 − value // Equation 9
6 shift = index− length(x)
7 if shift ≥ 0 then
8 y′ = [zeros(1 ,shift),y(1 : end− shift)] // Equation 5

9 else
10 y′ = [y(1 − shift : end),zeros(1 ,−shift)] // Equation 5

nificant impact on the cross-correlation sequence produced,
which makes the creation of a distance measure a non-trivial
task. Furthermore, as we have seen in Figure 3, cross-
correlation sequences produced by pairwise comparisons of
multiple time series will differ in amplitude based on the
normalizations. Thus, a normalization that produces values
within a specified range should be used in order to mean-
ingfully compare such sequences.
Shape-based distance (SBD): To devise a shape-based
distance measure, and based on the previous discussion, we
use the coefficient normalization that gives values between
−1 and 1, regardless of the data normalization. Coeffi-
cient normalization divides the cross-correlation sequence by
the geometric mean of autocorrelations of the individual se-
quences. After normalization of the sequence, we detect the
position w where NCCc(~x,~y) is maximized and we derive
the following distance measure:

SBD(~x,~y) = 1−max
w

(
CCw(~x,~y)√

R0(~x,~x) ·R0(~y,~y)

)
(9)

which takes values between 0 to 2, with 0 indicating perfect
similarity for time-series sequences.
Up to now we have addressed shift invariance. For scaling

invariance, we transform each sequence ~x into ~x′ = ~x−µ
σ , so

that its mean µ is zero and its standard deviation σ is one.
Efficient computation of SBD: From Equation 6, the
computation of CCw(~x,~y) for all values of w requires O(m2)
time, where m is the time-series length. The convolution
theorem [39] states that the convolution of two time series
can be computed as the Inverse Discrete Fourier Transform
(IDFT) of the product of the individual Discrete Fourier
Transforms (DFT) of the time series, where DFT is:

F(xk) =
|~x|−1∑
r=0

xre
−2jrkπ
|~x| , k = 0, . . . , |~x|−1 (10)

and IDFT is:

F−1(xr) = 1
|~x|

|~x|−1∑
k=0

F(xk)e
2jrkπ
|~x| , r = 0, . . . , |~x|−1 (11)

where j =
√
−1. Cross-correlation is then computed as the

convolution of two time series if one sequence is first reversed
in time, ~x(t) = ~x(−t) [39], which equals taking the complex
conjugate (represented by ∗) in the frequency domain. Thus,
Equation 6 can be computed for every m as:

CC(~x,~y) = F−1{F(~x)∗F(~y)} (12)
However, DFT and IDFT still require O(m2) time. By using
a Fast Fourier Transform (FFT) algorithm [15], the time re-
duces toO(m log(m)). Data and cross-correlation normaliza-
tions can also be efficiently computed; thus the overall time
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Figure 4: Examples of centroids for each class of the ECG-
FiveDays dataset, based on the arithmetic mean property
(solid lines) and our shape extraction method (dashed lines).

complexity of SBD remains O(m log(m)). Moreover, recur-
sive algorithms compute an FFT by dividing it into pieces
of power-of-two size [24]. Therefore, to further improve the
performance of the FFT computation, when CC(~x,~y) is not
an exact power of two we pad ~x and ~y with zeros to reach the
next power-of-two length after 2m− 1. Algorithm 1 shows
how this efficient and parameter-free measure is computed
in a few lines of code using modern mathematical software.
In this section, we showed effective cross-correlation and

data normalizations to derive a shape-based distance mea-
sure. Importantly, we also discussed how the cross-correlation
distance measure can be efficiently computed. In our experi-
mental evaluation (Sections 4 and 5), we will show that SBD
is highly competitive, achieving similar results to cDTW and
DTW while being orders of magnitude faster. We now turn
to the critical problem of extracting a centroid for a cluster,
to represent the cluster data consistently with the shape-
based distance measure described above.

3.2 Time-Series Shape Extraction
Many tasks in time-series analysis rely on methods that ef-

fectively summarize a set of time series by only one sequence.
This summary sequence is often referred to as an average se-
quence or, in the context of clustering, as a centroid. The
extraction of meaningful centroids is a challenging task that
critically depends on the choice of distance measure (see
Section 2.1). We now show how to determine such centroids
for time-series clustering for the SBD distance measure, to
capture shared characteristics of the underlying data.
The easiest way to extract an average sequence from a set

of sequences is to compute each coordinate of the average
sequence as the arithmetic mean of the corresponding coor-
dinates of all sequences. This approach is used by k-means,
the most popular clustering method. In Figure 4, the solid
lines show such centroids for each class in the ECGFive-
Days dataset of Figure 1: these centroids do not capture
effectively the class characteristics (see Figures 1 and 4).
To avoid such problems, we cast the centroid computation

as an optimization problem where the objective is to find the
minimizer of the sum of squared distances to all other time
series sequences (Equation 2). However, as cross-correlation
intuitively captures the similarity — rather than the dis-
similarity — of time series, we can express the computed
sequence as the maximizer µ?k of the squared similarities to
all other time-series sequences. By rewriting Equation 2 as
a maximization problem and from Equation 8, we obtain:

~µk
? = argmax

~µk

∑
~xi∈Pk

NCCc(~xi, ~µk)2

= argmax
~µk

∑
~xi∈Pk

(
maxw CCw(~xi, ~µk)√
R0(~xi, ~xi) ·R0( ~µk, ~µk)

)2

(13)

Equation 13 requires the computation of an optimal shift for
every ~xi ∈ Pk. As this approach is used in the context of it-



Algorithm 2: C ′ = ShapeExtraction(X ,C )
Input: X is an n-by-m matrix with z-normalized time series.

C is a 1-by-m vector with the reference sequence against
which time series of X are aligned.

Output: C′ is a 1-by-m vector with the centroid.
1 X′← [ ]
2 for i← 1 to n do
3 [dist,x′]← SBD(C ,X(i)) // Algorithm 1
4 X′← [X′;x′]

5 S← X′T ·X′ // S of Equation 15
6 Q← I − 1

m ·O // Q of Equation 15
7 M ←QT ·S ·Q // M of Equation 15
8 C ′← Eig(M,1) // Extract first eigenvector

erative clustering, we use the previously computed centroid
as reference and align all sequences towards this reference
sequence. This is a reasonable choice because the previous
centroid will be very close to the new centroid. For this align-
ment, we use SBD, which identifies an optimal shift for every
~xi ∈ Pk. Subsequently, as sequences are already aligned to-
wards a reference sequence before the centroid computation,
we can also omit the denominator of Equation 13. Then, by
combining Equations 6 and 7, we obtain:

~µk
? = argmax

~µk

∑
~xi∈Pk

 ∑
l∈[1,m]

xil ·µkl

2

For simplicity, we express this equation with vectors and as-
sume that the ~xi sequences have already been z-normalized
to handle the differences in amplitude:

~µ?k = argmax
~µk

∑
~xi∈Pk

(~xTi ·~µk)2

= argmax
~µk

~µk
T ·
∑
~xi∈Pk

(~xi · ~xiT ) · ~µk (14)

In the previous equation, only ~µk is not z-normalized. To
handle the centering (i.e., the subtraction of mean) of ~µk we
set ~µk = ~µk ·Q, where Q= I− 1

mO, I is the identity matrix,
and O is a matrix with all ones. Furthermore, to make ~µk
have unit norm, we divide Equation 14 by ~µk

T · ~µk. Finally,
by substituting S for

∑
~xi∈Pk (~xi · ~xiT ), we obtain:

~µk
? = argmax

~µk

~µk
T ·QT ·S ·Q · ~µk

~µk
T · ~µk

= argmax
~µk

~µk
T ·M · ~µk
~µk
T · ~µk

(15)

where M = QT ·S ·Q. Through the above transformations,
we have reduced the optimization of Equation 13 to the
optimization of Equation 15, which is a well-known problem
called maximization of the Rayleigh Quotient [30]. We can
find the maximizer ~µk

? as the eigenvector that corresponds
to the largest eigenvalue of the real symmetric matrix M .
Algorithm 2 shows how we can extract the most repre-

sentative shape from the underlying data in a few lines of
code. In Figure 4, the dashed lines show the centroids of
each class in the ECGFiveDays dataset, extracted with Al-
gorithm 2 and using randomly selected sequences as refer-
ence sequences. This method for shape extraction can more
effectively capture the characteristics of each class (Figure 1)
than by using the arithmetic mean property (solid lines in
Figure 4). In the next section, we show how our shape ex-
traction method is used in a time-series clustering algorithm.

Algorithm 3: [IDX ,C ] = k-Shape(X ,k)
Input: X is an n-by-m matrix containing n time series of

length m that are initially z-normalized.
k is the number of clusters to produce.

Output: IDX is an n-by-1 vector containing the assignment of
n time series to k clusters (initialized randomly).
C is a k-by-m matrix containing k centroids of
length m (initialized as vectors with all zeros).

1 iter ← 0
2 IDX′← [ ]
3 while IDX! = IDX′ and iter < 100 do
4 IDX′← IDX

// Refinement step
5 for j← 1 to k do
6 X′← [ ]
7 for i← 1 to n do
8 if IDX(i) = j then
9 X′← [X′;X(i)]

10 C(j)← ShapeExtraction(X′,C(j)) // Algorithm 2

// Assignment step
11 for i← 1 to n do
12 mindist←∞
13 for j← 1 to k do
14 [dist,x′]← SBD(C(j),X(i)) // Algorithm 1
15 if dist < mindist then
16 mindist← dist
17 IDX(i)← j

18 iter ← iter + 1

3.3 Shape-based Time-Series Clustering
We now present k-Shape, our novel algorithm for time-

series clustering. k-Shape relies on the SBD distance mea-
sure of Section 3.1 and the shape extraction method of Sec-
tion 3.2 to efficiently produce clusters of time series.
k-Shape Clustering Algorithm: k-Shape is a partitional
clustering method that is based on an iterative refinement
procedure similar to the one used in k-means. Through this
iterative procedure, k-Shape minimizes the sum of squared
distances (Equation 1) and manages to: (i) produce homo-
geneous and well-separated clusters, and (ii) scale linearly
with the number of time series. Our algorithm compares se-
quences efficiently and computes centroids effectively under
the scaling-, translation-, and shift invariances. k-Shape is a
non-trivial instantiation of k-means and, in contrast to sim-
ilar attempts in the literature [64, 87], its distance measure
and centroid computation method make k-Shape the only
scalable method that significantly outperforms k-means.
In every iteration, k-Shape performs two steps: (i) in the

assignment step, the algorithm updates the cluster mem-
berships by comparing each time series with all computed
centroids and by assigning each time series to the cluster
of the closest centroid; (ii) in the refinement step, the clus-
ter centroids are updated to reflect the changes in cluster
memberships in the previous step. The algorithm repeats
these two steps until either no change in cluster member-
ship occurs or the maximum number of iterations allowed is
reached. In the assignment step, k-Shape relies on the dis-
tance measure of Section 3.1, whereas in the refinement step
it relies on the centroid computation method of Section 3.2.
k-Shape (see Algorithm 3) expects as input the time series

set X and the number of clusters k that we want to produce.
Initially, we randomly assign the time series in X to clusters.
Then, we compute each cluster centroid using Algorithm 2
(lines 5-10). Once the centroids are computed, we refine
the memberships of the clusters by using the SBD distance
measure (Algorithm 1) in lines 11-17. We repeat this proce-
dure until the algorithm converges or reaches the maximum



number of iterations (usually a small number, such as 100).
The output of the algorithm is the assignment of sequences
to clusters and the centroids for each cluster.
Complexity of k-Shape: As we claimed earlier, k-Shape
scales linearly with the number of time series. To see why, we
will analyze the computational complexity of Algorithm 3,
where n is the number of time series, k is the number of
clusters, and m is the length of the time series. In the
assignment step, k-Shape computes the dissimilarity of n
time series to k centroids by using SBD, which requires
O(m · log(m)) time. Thus, the time complexity of this step is
O(n ·k ·m · log(m)). In the refinement step, for every cluster,
k-Shape computes matrix M , which requires O(m2) time,
and performs an eigenvalue decomposition on M , which re-
quires O(m3) time. Thus, the complexity of this step is
O(max{n ·m2, k ·m3}). Overall, k-Shape requiresO(max{n ·
k ·m · log(m), n ·m2, k ·m3}) time per iteration. We see that
this algorithm has a linear dependence in the number of time
series, and the majority of the computation cost depends on
the length of the time series. However, this length is usually
much smaller than the number of time series (i.e., m� n)
and, hence, the dependence on m is not a bottleneck. (Ap-
pendix B further examines the scalability of k-Shape.) In
rare cases where m is very large (i.e., m� n), segmenta-
tion or dimensionality reduction approaches can be used to
sufficiently reduce the length of the sequences [10, 49].
We now turn to the experimental evaluation of k-Shape

against the state-of-the-art time-series clustering approaches.

4. EXPERIMENTAL SETTINGS
In this section, we describe the experimental settings for

the evaluation of both SBD and our k-Shape algorithm.
Datasets: We use the largest public collection of class-
labeled time-series datasets, namely, the UCR time-series
collection [1]. It consists of 48 datasets,4 both synthetic and
real, which span several different domains. Each dataset
contains from 56 to 9236 sequences. The sequences in each
dataset have equal length, but from one dataset to another
the sequence length varies from 24 to 1882. These datasets
are annotated and every sequence can belong to only one
class, which, in the context of clustering, should be inter-
preted as the cluster where the sequence belongs. Further-
more, the datasets are already z-normalized5 and split into
training and test sets. As we will see, we use this split of
the datasets for the distance measure evaluation; we also use
the training sets for tuning some of the baselines.
Platform: We ran our experiments on a cluster of 10 servers
with identical configuration: Dual Intel Xeon X5550 (4-core
with 2-way SMT) processor with clock speed at 2.67 GHz
and 24 GB RAM. We utilized up to 16 processes continu-
ously for a period of two months in order to perform all ex-
periments included in this paper. Each server runs Ubuntu
12.04 (64-bit) and Matlab R2012b (64-bit).
Implementation: We implemented our approach and all
state-of-the-art approaches that we compare against under
the same framework, in Matlab, for a consistent evaluation
in terms of both accuracy and efficiency. For repeatability
purposes, we make all datasets and source code available.6

4Currently, 47 out of 48 datasets are listed in [1]. One dataset,
namely, Insect, will become publicly available in the next release,
according to the owners of the UCR repository [1].
5Several datasets as available in [1] are not z-normalized. (We have
communicated about this issue with the site owners.) Therefore, our
experiments start with a z-normalization step for all datasets.
6http://www.cs.columbia.edu/~jopa/kshape.html

Baselines: We evaluate both our distance measure, SBD,
and our clustering approach, k-Shape. We compare SBD
against the strongest state-of-the-art distance measures for
time series (see Section 2.3 for a detailed discussion):
• ED: a simple, efficient — yet accurate — distance mea-
sure for time series [20]
• DTW: the best performing — but expensive — distance
measure for time series [72]
• cDTW: the constrained version of DTW, with improved
accuracy and efficiency [72]

We compare k-Shape against the three strongest types of
scalable and non-scalable clustering methods, namely, par-
titional, hierarchical, and spectral methods (see Section 2.4
for a detailed discussion), combined with the most compet-
itive distance measures. As scalable methods, we consider
the classic k-means algorithm with ED (k-AVG+ED) [50]
and the following variants of k-means:
• k-AVG+Dist: k-means with DTW and SBD as dis-
tance measures and the arithmetic mean of time series
coordinates for centroid computation
• k-DBA: k-means with DTW as distance measure and
the DBA method for centroid computation [64]
• KSC: k-means with a distance measure offering pairwise
scaling and shifting of time series and computation of the
spectral norm of a matrix (i.e., matrix decomposition)
for centroid computation [87]

As non-scalable methods, among partitional methods we
consider the Partitioning Around Medoids (PAM) imple-
mentation of the k-medoids algorithm [40]. Among hierar-
chical methods, we use agglomerative hierarchical clustering
with single, average, and complete linkage criteria [40]. Fi-
nally, among spectral methods, we consider the popular nor-
malized spectral clustering method [58]. These non-scalable
approaches require a large number of distance calculations
to compute the full dissimilarity matrix and, hence, they be-
come unacceptably inefficient with high-cost distance mea-
sures. For this reason, we ignore DTW and focus instead on
ED, cDTW, and SBD as distance measures. In Table 1 we
summarize the combinations used in our evaluation. Over-
all, we compared k-Shape against 20 clustering approaches.
Parameter settings: Among the distance measures dis-
cussed above, only cDTW requires setting a parameter, to
constrain its warping window. We consider two cases from
the literature: (i) cDTWopt: we compute the optimal win-
dow by performing a leave-one-out classification step over
the training set of each dataset; (ii) cDTWw: we use as
window 5%, for cDTW5, and 10%, for cDTW10, of the
length of the time series of each dataset; this second case
is more realistic for an unsupervised setting such as cluster-
ing.7 For the 1-NN classification computation, we also con-
sider the state-of-the-art lower bounding approach LBKeogh
[44], which prunes time series unlikely for a match when
DTW and cDTW are used. We denote lower bounding with
the LB subscript (e.g., cDTW10

LB). For clustering, all the
algorithms that we compare, except for hierarchical cluster-
ing, receive the target number of clusters k as input, which
is equal to the number of classes for each dataset. For hi-
erarchical clustering, we compute a threshold that cuts the
produced dendrogram at the minimum height such that k
clusters are formed. We set the maximum number of itera-
tions for k-Shape, all variants of k-means, PAM, and spec-
tral methods to 100. Finally, in every iteration of k-Shape,
k-DBA, and KSC, we use the centroids of the previous run

7For non-scalable methods, we use cDTW5 for its efficiency, as noted
in Table 1, even though cDTW10 and cDTWopt perform similarly.



Name Clustering Algorithm Distance
Measure

PAM+ED Partitioning Around Medoids ED
PAM+cDTW Partitioning Around Medoids cDTW5

PAM+SBD Partitioning Around Medoids SBD
H-S+ED Hierarchical with single linkage ED
H-A+ED Hierarchical with average linkage ED
H-C+ED Hierarchical with complete linkage ED

H-S+cDTW Hierarchical with single linkage cDTW5

H-A+cDTW Hierarchical with average linkage cDTW5

H-C+cDTW Hierarchical with complete linkage cDTW5

H-S+SBD Hierarchical with single linkage SBD
H-A+SBD Hierarchical with average linkage SBD
H-C+SBD Hierarchical with complete linkage SBD

S+ED Normalized Spectral Clustering ED
S+cDTW Normalized Spectral Clustering cDTW5

S+SBD Normalized Spectral Clustering SBD

Table 1: Combinations of PAM, hierarchical, and spectral
methods with ED, cDTW, and SBD for our evaluation.

as reference sequences to refine the centroids of the current
run once.
Metrics: We compare all approaches on both runtime and
accuracy. For runtime, we compute CPU time utilization
and report time ratios for our comparisons. Following [19],
we use the 1-NN classifier, which is a simple and parameter-
free classifier, to evaluate distance measures. We report the
classification accuracy (i.e., number of correctly classified in-
stances over all instances) by performing 1-NN classification
over the training and test sets of each dataset. Because the
1-NN classifier is deterministic, we make this computation
once. Following [7], we use the Rand Index [67] to evaluate
clustering accuracy over the fused training and test sets of
each dataset. This metric is related to the classification ac-
curacy and is defined as R = TP+TN

TP+TN+FP+FN , where TP
is the number of time series pairs that belong to the same
class and are assigned to the same cluster, TN is the number
of time series pairs that belong to different classes and are
assigned to different clusters, FP is the number of time se-
ries pairs that belong to different classes but are assigned to
the same cluster, and FN is the number of time series pairs
that belong to the same class but are assigned to different
clusters. As hierarchical algorithms are deterministic, we re-
port the Rand Index over one run. However, for partitional
methods, we report the average Rand Index over 10 runs
and for spectral methods the average Rand Index over 100
runs; in every run we use a different random initialization.
Statistical analysis: Following [7, 26], we analyze the re-
sults of every pairwise comparison of algorithms over multi-
ple datasets using the Wilcoxon test [84] with a 99% confi-
dence level. According to [17], the Wilcoxon test is less af-
fected by outliers than is the t-test [69], as Wilcoxon does not
consider absolute commensurability of differences. More-
over, using pairwise tests to reason about multiple algo-
rithms is not fully satisfactory because sometimes the null
hypotheses are rejected due to random chance. Therefore,
we also use the Friedman test [23] followed by the post-hoc
Nemenyi test [57] for comparison of multiple algorithms over
multiple datasets, as suggested in [17]. The Friedman and
Nemenyi tests require more evidence to detect statistical
significance than the Wilcoxon test [26] (i.e., the larger the
number of methods, the larger the number of datasets re-
quired) and, hence, as we already use all 48 datasets for the
Wilcoxon test, we report statistical significant results with
a 95% confidence level.

5. EXPERIMENTAL RESULTS
In this section, we discuss our experiments. First, we

evaluate SBD against the state-of-the-art distance measures
(Section 5.1). Then, we compare k-Shape against scalable
(Section 5.2) and non-scalable (Section 5.3) clustering ap-
proaches. Finally, we highlight our findings (Section 5.4).

5.1 Evaluation of SBD
Comparison against ED: To understand if SBD (Sec-

tion 3.1) is an effective measure for time-series comparison,
we evaluate it against the state-of-the-art distance measures,
using their 1-NN classification accuracies across 48 datasets
(Section 4). Table 2 reports the performance of the state-of-
the-art measures against the baseline ED. All distance mea-
sures, including SBD, outperform ED with statistical signif-
icance. For DTW, constraining its warping window signifi-
cantly improves performance. In particular, cDTWopt per-
forms at least as well as DTW in 36 datasets, cDTW5 per-
forms at least as well as DTW in 34 datasets, and cDTW10

performs at least as well as DTW in 41 datasets. However,
the statistical test suggests that there is no significant differ-
ence between cDTWopt, cDTW5, and cDTW10. Figure 5a
further illustrates the superiority of SBD over ED.
Comparison against DTW and cDTW: Figure 5b shows
that the difference in accuracy between SBD and DTW is in
most cases negligible: SBD performs at least as well as DTW
in 30 datasets, but the statistical test reveals no evidence
that either measure is better than the other. Considering
the constrained versions of DTW, we observe that SBD per-
forms similarly to or better than cDTWopt, cDTW5, and
cDTW10 in 22, 18, and 19 datasets, respectively. Inter-
estingly, there is no significant difference between SBD and
cDTW10, but cDTWopt and cDTW5 are significantly better
than SBD. cDTWopt, with its optimal tuning, identifies that
across the 48 datasets the average warping window is 4.5%.
This explains why cDTW5 behaves similarly to cDTWopt

and outperforms SBD, whereas the large majority of con-
strained cDTWw variants, including cDTW10, do not out-
perform SBD. Importantly, the p-values for the Wilcoxon
test between cDTWopt and SBD, and between cDTW5 and
SBD, are close to the confidence level, which indicates that
deeper statistical analysis is required, as we discuss next.
Statistical analysis: To better understand the performance
of SBD in comparison with cDTWopt and cDTW5, we eval-
uate the significance of their differences in accuracy when
considered all together. Figure 6 shows the average rank
across datasets of each distance measure. cDTWopt is the
top measure, with an average rank of 1.96, meaning that
cDTWopt performed best in the majority of the datasets.
The Friedman test rejects the null hypothesis that all mea-
sures behave similarly, and, hence, we proceed with a post-
hoc Nemenyi test, to evaluate the significance of the differ-
ences in the ranks. The wiggly line in the figure connects
all measures that do not perform statistically differently ac-
cording to the Nemenyi test. We observe that the ranks
of cDTWopt, cDTW5, and SBD do not present a signifi-
cant difference, and ED, which is ranked last, is significantly
worse than the others. In conclusion, SBD is a very com-
petitive distance measure that significantly outperforms ED
and achieves similar results to both constraint and uncon-
straint versions of DTW. Moreover, SBD is the most robust
variant of the cross-correlation measure (see Appendix A).
Efficiency: We now show that SBD is not only competi-
tive in terms of accuracy, but also highly efficient. We also



Distance
Measure > = < Better Average

Accuracy Runtime

DTW 29 2 17 3 0.788 15573x
DTWLB 6040x
cDTWopt

31 15 2 3 0.814 2873x
cDTWopt

LB
322x

cDTW5
34 3 11 3 0.809 1558x

cDTW5
LB

122x
cDTW10

33 1 14 3 0.804 2940x
cDTW10

LB
364x

SBDNoFFT

30 12 6 3 0.795
224x

SBDNoPow2 8.7x
SBD 4.4x

Table 2: Comparison of distance measures. Columns “>”,
“=”, and “<” denote the number of datasets over which a
distance measure is better, equal, or worse, respectively, in
comparison to ED. “Better” indicates that a distance mea-
sure outperforms ED with statistical significance. “Average
accuracy” denotes the accuracy achieved in the 48 datasets
whereas “Runtime” indicates the factor by which a distance
measure is slower than ED.

demonstrate that implementation choices for SBD can sig-
nificantly impact its speed. The last row of Table 2 shows
the factors by which each SBD variation is slower than ED.
The optimized version of SBD, denoted simply as SBD, is
the fastest version, performing only 4.4x slower than ED.
When we use SBD still with FFT but without the power-
of-two-length optimization discussed in Section 3.1, the re-
sulting measure, SBDNoPow2, is 8.7x slower than ED. Fur-
thermore, SBDNoFFT , the version of SBD without FFT,
is two orders of magnitude slower (224x) than ED and one
order slower (51x) than SBD. Table 2 also shows that SBD
is substantially faster than the DTW and cDTW variants.
Specifically, SBD is three orders of magnitude (3533x) faster
than DTW, two orders (652x) faster than cDTWopt, two
orders (353x) faster than cDTW5, and two orders (667x)
faster than cDTW10. Even when we speed up the search of
1-NN classification computation, by pruning time series un-
likely for a match using LBKeogh, SBD is still significantly
faster. In particular, SBD now becomes one order of mag-
nitude faster (73x) than cDTWopt

LB , one order faster (28x)
than cDTW5

LB , and one order faster (82.5x) than cDTW10
LB ,

while remaining three orders faster (1370x) than DTWLB .

5.2 k-Shape Against Other Scalable Methods
Comparison against k-AVG+ED: Having shown the

robustness of SBD, we now compare our algorithm, k-Shape,
against scalable state-of-the-art time-series clustering algo-
rithms. Table 3 reports the performance of variants of k-
means against k-AVG+ED, using their Rand Index on the
48 datasets (see Section 4). From all these variants of k-
means, only k-Shape outperforms k-AVG+ED with statis-
tical significance, and, in particular, k-Shape significantly
outperforms every other method. In most cases, replacing
ED in k-means with other distance measures not only does
not improve accuracy significantly, but in certain cases re-
sults in substantially lower performance. For example, k-
AVG+SBD achieves higher accuracy than k-AVG+ED in
67% of the datasets, but the differences in accuracy are not
statistically significant. Interestingly, when DTW is com-
bined with k-means, in k-AVG+DTW, the performance is
significantly worse than with k-AVG+ED. Even in cases
where both the distance measure and the centroid computa-
tion method of k-means are modified, the performance does
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Figure 5: Comparison of SBD, ED, and DTW over 48
datasets. Circles above the diagonal indicate datasets over
which SBD has better accuracy than the compared method.
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ED
SBD

Figure 6: Ranking of distance measures based on the aver-
age of their ranks across datasets. The wiggly line connects
all measures that do not perform statistically differently ac-
cording to the Nemenyi test.

not improve significantly in comparison to k-AVG+ED. k-
DBA outperforms k-AVG+DTWwith statistical significance
in 39 out of 48 datasets. Both of these approaches use DTW
as distance measure, but k-DBA also modifies its centroid
computation method. This modification significantly im-
proves the performance of k-DBA over that of k-AVG+DTW,
with an average improvement in Rand Index of 25.6%. De-
spite this improvement, k-DBA still does not perform better
than k-AVG+ED in a statistical significant manner.8 An-
other algorithm that modifies both the distance measure and
the centroid computation method of k-means is KSC. Simi-
larly to k-DBA, KSC does not outperform k-AVG+ED.
Comparison against k-DBA and KSC: Both k-DBA
and KSC are similar to k-Shape in that they all modify both
the centroid computation method and the distance measure
of k-means. Therefore, to understand the impact of these
modifications, we compare them against our k-Shape algo-
rithm (see Figure 7). k-Shape is better in 30 datasets and
worse in 18 datasets in comparison to KSC (Figure 7a), and
is better in 35 datasets and worse in 13 datasets in compar-
ison to k-DBA (Figure 7b). In both of these comparisons,
the statistical test indicates the superiority of k-Shape.
Statistical analysis: In addition to the pairwise compar-
isons performed with the Wilcoxon test, we further evaluate
the significance of the differences in algorithm performance
when considered all together. Figure 8 shows the average
rank across datasets of each k-means variant. k-Shape is
the top technique, with an average rank of 1.89, meaning
that k-Shape achieved better rank in the majority of the
datasets. The Friedman test rejects the null hypothesis that
all algorithms behave similarly, and, hence, we proceed with
a post-hoc Nemenyi test, to evaluate the significance of the
differences in the ranks. We observe that the ranks of KSC,
k-DBA, and k-AVG+ED do not present a statistically sig-
nificant difference, whereas k-Shape, which is ranked first,
is significantly better than the others. To conclude, modi-

8Even when multiple refinements of k-DBA’s centroids are performed
per iteration, k-DBA still does not outperform k-AVG+ED. In par-
ticular, performing five refinements per iteration improves the Rand
Index by 4% but runtime increases by 30%.



Algorithm > = < Better Worse Rand
Index Runtime

k-AVG+SBD 32 1 15 7 7 0.745 3.6x
k-AVG+DTW 10 0 38 7 3 0.584 3444x

KSC 22 0 26 7 7 0.636 448x
k-DBA 18 0 30 7 7 0.733 3892x

k-Shape+DTW 19 1 28 7 7 0.698 4175x
k-Shape 36 1 11 3 7 0.772 12.4x

Table 3: Comparison of k-means variants against k-
AVG+ED. Columns “>”, “=”, and “<” denote the num-
ber of datasets over which an algorithm is better, equal,
or worse, respectively, in comparison to k-AVG+ED. “Bet-
ter” indicates that an algorithm outperforms k-AVG+ED
with statistical significance whereas “Worse” indicates that
k-AVG+ED outperforms an algorithm with statistical sig-
nificance. “Rand Index” denotes the accuracy achieved in
the 48 datasets whereas “Runtime” indicates the factor by
which an algorithm is slower than k-AVG+ED.

fying k-means with inappropriate distance measures or cen-
troid computation methods might lead to unexpected re-
sults. The same holds for k-Shape, where the use of DTW as
its distance measure, in k-Shape+DTW, significantly drops
its performance (i.e., k-Shape outperforms k-Shape+DTW
with statistical significance in 36 out of 48 datasets).
Efficiency: k-Shape is the only algorithm that outperforms
all k-means variants, including the simple, yet robust, k-
AVG+ED. We now investigate whether k-Shape’s superior-
ity in terms of accuracy has an associated penalty in effi-
ciency. Table 3 shows the factors by which each algorithm
is slower than k-AVG+ED. Our approach, k-Shape, is one
order of magnitude faster (36x) than KSC, two orders of
magnitude faster (313x) than k-DBA, and 12.4x slower than
k-AVG+ED.

5.3 k-Shape Against Non-Scalable Methods
Comparison against k-AVG+ED: Up to now, we have

focused our evaluation on scalable clustering algorithms. In
order to show the robustness of k-Shape in terms of accu-
racy beyond scalable approaches, we now ignore scalability
and compare k-Shape against clustering methods that scale
quadratically with the number of time series, namely, hierar-
chical, spectral, and k-medoids methods. Table 4 reports the
performance of non-scalable methods against k-AVG+ED.
Among all existing state-of-the-art methods that use ED
or cDTW as distance measures, only partitional methods
perform similarly to or better than k-AVG+ED. In partic-
ular, PAM+cDTW is the only method that outperforms k-
AVG+ED with statistical significance. PAM+ED achieves
better performance in 63% of the datasets in comparison
to k-AVG+ED; however, this difference is not statistically
significant. Moreover, PAM+cDTW performs better in 33
datasets, equal in 1 dataset, and worse in 14 datasets rela-
tive to PAM+ED. For this comparison, the statistical sig-
nificance test indicates the superiority of PAM+cDTW.
All combinations of hierarchical clustering, with all dif-

ferent linkage criteria, perform poorly in comparison to k-
AVG+ED. Interestingly, k-AVG+EDoutperformsall of them
with statistical significance. We observe that the major dif-
ference in performance among hierarchical methods is the
linkage criterion and not the distance measure. This high-
lights the importance of the clustering method and not only
of the distance measure for time-series clustering. Simi-
larly to hierarchical methods, spectral methods also per-
form poorly against k-AVG+ED. S+cDTW performs better
in more datasets than S+ED in comparison to k-AVG+ED:
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Figure 7: Comparison of k-Shape, KSC, and k-DBA over 48
datasets. Circles above the diagonal indicate datasets over
which k-Shape has better Rand Index.
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Figure 8: Ranking of k-means variants based on the average
of their ranks across datasets. The wiggly line connects
all techniques that do not perform statistically differently
according to the Nemenyi test.

comparing S+cDTW with S+ED, S+cDTW achieves sim-
ilar or better accuracy in 27 datasets, but this difference
is not significant. Importantly, k-AVG+ED is significantly
better than both S+ED and S+cDTW. Therefore, for hier-
archical and spectral methods, these distance measures have
a small impact on their performance.
k-Shape against PAM+cDTW: Among all methods that
we evaluated, only PAM+cDTW outperforms k-AVG+ED
with statistical significance. Therefore, we compare this ap-
proach with k-Shape. PAM+cDTW is better in 31, equal
in 1, and worse in 16 datasets in comparison to k-Shape,
but this difference is not significant. For completeness, we
also evaluate SBD with hierarchical, spectral, and k-medoids
methods. For hierarchical methods, H-C+SBD is better
than H-A+SBD, and, in turn, H-A+SBD is better than
H-S+SBD, all with statistical significance. For each link-
age option, there is no significance in the accuracy between
ED, SBD, and cDTW. S+SBD, in contrast to S+ED and
S+cDTW, outperforms k-AVG+ED in 38 out of 48 datasets,
with statistical significance. S+SBD is also significantly bet-
ter than S+ED and S+cDTW, but S+SBD does not outper-
form k-Shape. Similarly, PAM+SBD performs equally to or
better than k-AVG+ED in 36 out of 48 datasets. The sta-
tistical test suggests that PAM+SBD is significantly better
than k-AVG+ED but not better than k-Shape.
Statistical analysis: We evaluate the significance of the
differences in algorithm performance for all algorithms that
significantly outperform k-AVG+ED. The Friedman test re-
jects the null hypothesis that all algorithms behave simi-
larly, and, hence, as before, we proceed with a post-hoc
Nemenyi test. Figure 9 shows that k-Shape, PAM+SBD,
PAM+cDTW, and S+SBD do not present a significant dif-
ference in accuracy, whereas k-AVG+ED, which is ranked
last, is significantly worse than the others.
From our extensive evaluation of existing scalable and

non-scalable clustering approaches for time series that use
ED, cDTW, or DTW as distance measures, PAM+cDTW is
the only approach that achieves similar — but not better —
results to k-Shape. In contrast to k-Shape, PAM+cDTW
has two drawbacks that make it an unrealistic choice for
time-series clustering: (i) its distance measure, cDTW, re-



Algorithm > = < Better Worse Rand
Index

H-S+ED 3 1 44 7 3 0.328
H-S+cDTW 7 0 41 7 3 0.371

H-S+SBD 6 1 41 7 3 0.349
H-A+ED 3 1 44 7 3 0.599

H-A+cDTW 9 0 39 7 3 0.617
H-A+SBD 8 0 40 7 3 0.541
H-C+ED 8 0 40 7 3 0.690

H-C+cDTW 15 0 33 7 3 0.699
H-C+SBD 17 0 31 7 3 0.697

S+ED 7 1 40 7 3 0.602
S+cDTW 18 1 29 7 3 0.563

S+SBD 38 0 10 3 7 0.769
PAM+ED 30 1 17 7 7 0.762

PAM+cDTW 38 1 9 3 7 0.772
PAM+SBD 35 1 12 3 7 0.780

Table 4: Comparison of hierarchical, spectral, and k-
medoids variants against k-AVG+ED. Columns “>”, “=”,
and “<” denote the number of datasets over which an algo-
rithm is better, equal, or worse, respectively, in comparison
to k-AVG+ED. “Better” indicates that an algorithm out-
performs k-AVG+ED with statistical significance whereas
“Worse” indicates that k-AVG+ED outperforms an algo-
rithm with statistical significance. “Rand Index” denotes
the accuracy achieved in the 48 datasets.

quires tuning to improve its performance and reduce the
computation cost; and (ii) the computation of the dissimi-
larity matrix that PAM+cDTW requires as input makes it
unable to scale in both time and space. For example, the ma-
trix computation alone is already two orders of magnitude
slower than the computation required by k-Shape. Thus,
k-Shape emerges as a domain-independent, highly accurate,
and scalable approach for time-series clustering.

5.4 Summary of Results
In short, our experimental evaluation suggests that: (1)

cross-correlation measures (e.g., SBD), which are not widely
adopted as time-series distance measures, are as competitive
as state-of-the-art measures, such as cDTW and DTW, but
significantly faster; (2) the k-means algorithm with ED, in
contrast to what has been reported in the literature, is a
robust approach for time-series clustering, but inadequate
modifications of its distance measure and centroid computa-
tion can reduce its performance; (3) the choice of clustering
method, which was believed to be less important than that
of distance measure, is as important as the choice of distance
measure; and overall (4) k-Shape is a highly accurate and
efficient method for time-series clustering.

6. RELATED WORK
This paper focused on efficient and domain-independent

time-series clustering. Section 2 provided an in-depth dis-
cussion of the state of the art for time-series clustering,
which we will not repeat for brevity. Specifically, Section 2.1
summarized the relevant theoretical background, Section 2.2
reviewed common distortions in time series, and Section 2.3
discussed the most popular state-of-the-art distance mea-
sures for time series. (We refer the reader to [19, 81] for
a thorough review and evaluation of the alternative time-
series distance measures.) Section 2.4 highlighted existing
approaches for clustering time series. (We refer the reader to
[83] for a more detailed view of these approaches.) Finally,
Section 2.5 discussed the methods for centroid computation
that are part of many time-series clustering algorithms.
As argued throughout the paper, we focus on shape-based

clustering of time series. Beyond shape-based clustering
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k-Shape
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Figure 9: Ranking of methods that outperform k-AVG+ED
based on the average of their ranks across datasets. The
wiggly line connects all techniques that do not perform sta-
tistically differently according to the Nemenyi test.

algorithms, statistical-based approaches use measures that
summarize characteristics [82], coefficients of models [38], or
portions of time series (i.e., shapelets) [89] as descriptive fea-
tures to cluster time series. Unfortunately, statistical-based
approaches frequently require the non-trivial tuning of mul-
tiple parameters, which often leads to ad-hoc decisions, or
their effectiveness has been established only for isolated do-
mains and not in a domain-independent manner. Instead,
shape-based approaches are general and leverage the vast
literature on distance measures.
The best performing shape-based approaches from the lit-

erature are partitional methods combined with scale- and
shift-invariant distance measures. Among partitional meth-
ods, k-medoids [40] is the most popular method as it enables
the easy adoption of any shape-based distance measure [19,
81]. However, k-medoids requires the computation of the
full dissimilarity matrix among all time series, which makes
it particularly slow and unable to scale. Recent alternative
approaches [32, 53, 59, 64, 87] have focused on k-means [50],
which is scalable but requires the modification of the cen-
troid computation method when the distance measure is al-
tered, in order to support the same properties (e.g., scaling,
translation, and shifting). Because DTW is the most promi-
nent shape-based distance measure [19, 81], the majority of
the k-means approaches have proposed new centroid com-
putation methods to be used in conjunction with DTW [32,
53, 59, 64]. k-DBA has been shown to be the most robust
of these approaches [64]. Another approach worth mention-
ing is KSC [87], which focuses on a different shape-based
distance measure that offers simultaneously pairwise scaling
and shifting of time series. Unfortunately, the effectiveness
of such pairwise scaling and shifting, and, hence, KSC, has
not been established beyond a limited number of datasets.
For completeness, we note that [28] used cross-correlation

as distance measure and the arithmetic mean property for
centroid computation for fuzzy clustering of fMRI data. (In
Section 5 we showed that k-AVG+SBD is not competitive
for our non-fuzzy setting.) Finally, cross-correlation was
used to transform fMRI data into features for clustering [31],
as well as for stream mining, pattern extraction, and time-
series monitoring [61, 73, 85, 90].

7. CONCLUSIONS
We presented k-Shape, a partitional clustering algorithm

that preserves the shapes of time series. k-Shape compares
time series efficiently and computes centroids effectively un-
der the scaling and shift invariances. Our extensive eval-
uation shows that k-Shape outperforms all state-of-the-art
partitional, hierarchical, and spectral clustering approaches,
with only one method achieving similar performance. Inter-
estingly, this method is two orders of magnitude slower than
k-Shape and its distance measure requires tuning, unlike
that for k-Shape. Overall, k-Shape is a domain-independent,
accurate, and scalable approach for time-series clustering.
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Figure 10: Comparison of SBD, NCCb, and NCCu over
48 datasets under the OptimalScaling normalization. Cir-
cles above the diagonal indicate datasets over which SBD
has better accuracy than the compared method.
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Figure 11: Comparison of SBD, NCCb, and NCCu over 48
datasets under the ValuesBetween0-1 normalization. Circles
above the diagonal indicate datasets over which SBD has
better accuracy than the compared method.

APPENDIX
A. CROSS-CORRELATION VARIANTS UN-

DER TIME-SERIES NORMALIZATIONS
As discussed in Section 3.1, the choice of normalizations

for the data and the cross-correlation measure can signifi-
cantly impact the cross-correlation sequence produced. To
understand the sensitivity of cross-correlation variants to
data normalizations we evaluate their performance using all
48 datasets from the UCR time-series collection [1]. This
collection contains z-normalized datasets but the unnormal-
ized versions are not available. Therefore, to experiment
with unnormalized versions of these datasets and ensure
that the initial sequences differ in amplitude, we first mul-
tiply each sequence with a random number chosen individ-
ually for that sequence. Then, we perform and study three
common time-series normalizations: (1) OptimalScaling: to
match two time series ~x and ~y, we compute their optimal
scaling coefficient c= ~x·~yT

~y·~yT , which is used for every pairwise
comparison (e.g., SBD(~x,~y) is computed as SBD(~x,c · ~y));
(2) ValuesBetween0-1 : we normalize each sequence ~x such
that its values fall between 0 and 1, by transforming it into
~x
′

= ~x−min(~x)
max(~x)−min(~x) ; and (3) z-normalization: we normal-

ize each sequence ~x such that its mean is 0 and its standard
deviation is 1, by transforming it into ~x

′
= ~x−mean(~x)

std(~x) .
We evaluate the 1-NN classification accuracy of each cross-

correlation variant, namely, SBD, NCCu, and NCCb, on
each dataset for the three common time-series normalization
scenarios. Figure 10 presents the results for the OptimalScal-
ing normalization. In particular, SBD significantly outper-
forms both NCCu (Figure 10a) and NCCb (Figure 10b) in
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Figure 12: Runtime of k-AVG+ED and k-Shape as a func-
tion of (a) the number of time series n and (b) the time
series length m.

all 48 datasets, and, in turn, NCCb outperforms NCCu in
40 datasets, with statistical significance.
Similarly, for ValuesBetween0-1 data normalization, SBD

significantly outperforms NCCu (Figure 11a) and NCCb (Fig-
ure 11b) in all 48 datasets. NCCb performs similarly to or
better than NCCu in 41 datasets and the Wilcoxon test sug-
gests this difference in accuracy is statistically significant.
Finally, for z-normalization, SBD and NCCb achieve similar
performance and both significantly outperform NCCu.
Therefore, we can conclude that SBD is the most ro-

bust cross-correlation variant as it achieves better perfor-
mance across multiple different time series normalizations.
On average, SBD achieves accuracy values of 0.699, 0.779,
and 0.795, for OptimalScaling, ValuesBetween0-1, and z-
normalization normalizations, respectively.

B. SCALABILITY OF K-SHAPE
As discussed in Section 3.3, k-Shape requires O(max{n ·

k ·m · log(m), n ·m2, k ·m3}) time per iteration to cluster n
time series of length m into k clusters. The majority of the
computational cost of our algorithm depends on the time-
series length m, whereas its dependence on the number n
of time series is linear. To better understand the scalability
of k-Shape, we use the synthetic CBF dataset [71] because
it enables experiments with varying values of both n and
m without changing any of its general properties. Figure 12
reports the results of our scalability experiments where both
n and m are up to one order of magnitude larger than the
biggest dataset in the UCR archive [1]. We report the av-
erage CPU runtime of 5 runs. Specifically, in Figure 12a,
we vary n while we set m = 128 as in the original CBF
dataset: k-Shape, similarly to k+AVG+ED, scales linearly
with the number of time series without any loss in accuracy
for both methods. Importantly, k-Shape, remains signifi-
cantly faster than k-AVG+ED with the increasing number
of time series because k-Shape requires 45% fewer iterations
to converge than k+AVG+ED does. Then, in Figure 12b,
we vary m while we set n= 18K: k-Shape still outperforms
k-AVG+ED for m� n but k-Shape becomes slower, as ex-
pected, when the time-series length is large and approaches
the total number of time series in the dataset. Similarly
to the previous experiment, there is no loss in accuracy for
either technique.


