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ABSTRACT
Similarity search is a core analytical task, and its performance criti-
cally depends on the choice of distance measure. For time-series
querying, elastic measures achieve state-of-the-art accuracy but
are computationally expensive. Thus, fast lower bounding (LB)
measures prune unnecessary comparisons with elastic distances to
accelerate similarity search. Despite decades of attention, there has
never been a study to assess the progress in this area. In addition,
the research has disproportionately focused on one popular elastic
measure, while other accurate measures have received little or no
attention. Therefore, there is merit in developing a framework to ac-
cumulate knowledge from previously developed LBs and eliminate
the notoriously challenging task of designing separate LBs for each
elastic measure. In this paper, we perform the first comprehensive
study of 11 LBs spanning 5 elastic measures using 128 datasets. We
identify four properties that constitute the effectiveness of LBs and
propose the Generalized Lower Bounding (GLB) framework to sat-
isfy all desirable properties. GLB creates cache-friendly summaries,
adaptively exploits summaries of both query and target time series,
and captures boundary distances in an unsupervised manner. GLB
outperforms all LBs in speedup (e.g., up to 13.5× faster against the
strongest LB in terms of pruning power), establishes new state-of-
the-art results for the 5 elastic measures, and provides the first LBs
for 2 elastic measures with no known LBs. Overall, GLB enables
the effective development of LBs to facilitate fast similarity search.
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1 INTRODUCTION
The ubiquity and unprecedented growth of time-varying measure-
ments across scientific and industrial settings are responsible for
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Figure 1: Classification accuracy of 7 elastic measures on
sampled UCR datasets [26]. The triangle indicates the mea-
surewith the best accuracy: differentwinner in each dataset.

the increasing popularity of time-series analysis [35, 42, 43, 52,
59, 61, 64, 77, 79, 80]. The backbone of most time-series analytical
tasks requires the detection of similar pairs of time series [27, 78].
Specifically, identifying similarities plays a central role in querying
[24, 45, 50, 51, 55, 65, 68, 69, 87], indexing [17, 18, 21, 32, 48, 72, 91,
96, 103], motif discovery [7, 23, 57, 67, 99, 100], anomaly detection
[9–15, 60, 71, 76, 84, 98, 99], classification [4, 29, 37, 40, 58, 73, 81],
and clustering [1, 5, 6, 28, 44, 47, 56, 74, 75]. Consequently, similar-
ity search, the process of retrieving the nearest neighbors to a query
from a database under a certain distance measure, becomes one of
the most fundamental building blocks in time-series analysis.

Unfortunately, the rising volumes of time series and their high
dimensionality introduce severe challenges for similarity search
[2, 25]. Specifically, the computational and storage costs of retriev-
ing the nearest neighbors become prohibitively high even when
the Euclidean distance (ED) is used [30, 31, 93, 94]. However, there
is strong evidence that ED might not always be suitable for com-
paring time series [4, 27, 78, 95]. We often need to handle several
distortions for effective time-series comparison, such as misalign-
ments, stretching of observations, and fluctuations. To handle these
distortions, dozens of distance measures have been proposed in the
time-series literature [3, 8, 19, 20, 22, 27, 32, 33, 66, 73, 74, 83, 88, 92].

A recent study has evaluated over 70 time-series distance mea-
sures [78] and reaffirmed that elastic measures, which create a
non-linear mapping between time series to align or stretch their
points, achieve state-of-the-art performance in terms of accuracy.
Importantly, the same study has shown that the nearest neighbor
(classification) accuracy of ED may not always converge to the
high accuracy of elastic measures with increasing dataset sizes,
which contradicts the previous belief [86]. Therefore, supporting
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similarity search under different elastic measures is necessary for
enabling effective large-scale time-series analytics.

Unfortunately, elastic distance measures scale quadratically (i.e.,
O(𝐿2)) to the length 𝐿 of the time series. Compared to ED, which
has linear complexity (i.e., O(𝐿)), elastic distance measures incur
an additional runtime overhead, often between one to three orders
of magnitude [4, 78, 90]. This cost would prevent applications from
using elastic measures in large-scale settings and favor sacrificing
the high accuracy by relying on faster but less accurate measures.
To alleviate this issue, the idea of lower bounding was developed to
filter out unpromising candidates before carrying out the expensive
elastic distance measure computation [32, 48, 49]. In simple terms,
a lower bound (LB) is a fast distance measure that approximates
an expensive elastic distance measure and is computed over some
summaries of the time series instead of the actual time series.

Numerous LBs have been developed for elastic distance mea-
sures [19, 48, 49, 54, 85, 89, 90], with the goal to improve their
pruning power (i.e., tightness of LB). However, a tighter LB does not
always translate into higher speedup due to the potentially high
computational cost necessary to calculate the LB. Despite over two
decades of attention, there has never been, to the best of our knowl-
edge, a comprehensive study to assess the progress in this area.
In addition, the research effort on LBs has been disproportionally
concentrated on Dynamic Time Warping (DTW) [82, 83], which
is the oldest elastic measure with at least eight established LBs
[48, 49, 54, 85, 89, 97, 101]. In contrast, other useful elastic distance
measures, such as EDR [20] or SWALE [66], do not have any LBs
reported in the literature, to the best of our knowledge. Importantly,
as shown in Figure 1, no single elastic measure always wins on
every dataset (as confirmed by a recent study [78]). Considering
that all elastic measures are useful in practical time-series tasks,
there is merit in developing LBs for elastic distance measures that
have received relatively little attention.

Unfortunately, developing LBs is a challenging task. It took about
two decades to improve the tightness of DTW LBs to over 80%
[54, 85, 89, 90]. We believe it is unsustainable to expect a similar
research effort for each elasticmeasure. Instead, a generalized frame-
work that accumulates the knowledge from previously developed
LBs would eliminate the need for designing separate LBs for each
elastic measure. Based on our review and evaluation of existing LBs
for DTW, we identified four critical properties that constitute the
effectiveness of LBs: (P1)Query Dependence, which indicates the LB
extracts summaries only from the query time series; (P2) Data De-
pendence, which indicates the LB extracts summaries from both the
query and the target data time series; (P3) Boundary Dependence,
which indicates the LB explicitly captures distances of the first and
last elements of time series; and (P4) Reusability, which indicates
the ability to cache and reuse results in future calculations.

This paper performs the first comprehensive study of LBs for
elastic measures. Specifically, we evaluate 11 state-of-the-art LBs
spanning 5 elastic measures using 128 datasets. In addition, we
present the Generalized Lower Bounding (GLB) framework, the
first framework to create LBs to satisfy all four previously men-
tioned desirable properties and adapt to all elastic measures (see
Table 1 for comparison with baselines). LBs created within the GLB
framework are query- and data-dependent and extract summaries
(i.e., envelopes, see Section 2) from both the query and target data

Table 1: Analysis of LBs on four properties. GLBmatches all
properties, while competitors miss one or more.

Elastic
Measure

Lower
Bounds

Query
Dependent

Data
Dependent

Boundary
Dependent Reusable Year &

Reference

DTW

LB_Yi ✔ - - ✔ 1998 [101]
LB_Kim ✔ - ✔ ✔ 2001 [49]
LB_Keogh ✔ - - ✔ 2002 [46, 48]

LB_Improved ✔ ✔ - - 2009 [54]
LB_New ✔ - ✔ - 2018 [85]

LB_Enhanced ✔ - ✔ - 2019 [89]
LB_Petitjean ✔ ✔ ✔ - 2021 [97]
LB_Webb ✔ ✔ ✔ - 2021 [97]

LCSS LB_LCSS ✔ - - ✔ 2002 [62, 91, 92]

ERP
LB_Keogh-ERP ✔ - - ✔ 2004 [19]
LB_Kim-ERP ✔ - - ✔ 2004 [19]

LB_ERP ✔ - ✔ ✔ 2004 [19]
MSM LB_MSM ✔ - - ✔ 2020 [90]
TWED LB_TWED ✔ - - ✔ 2020 [90]
EDR N/A - - - - -

SWALE N/A - - - - -
Proposed Generalized Lower Bound

All Elastic
Measures GLB ✔ ✔ ✔ ✔

2023
(this work)

time series. In the GLB framework, LBs compute distances between
all envelopes and the target time series, and adaptively select the
envelopes that maximize the LB tightness for each pairwise com-
parison. To satisfy the boundary dependence, LBs under the GLB
framework avoid the need to tune parameters and focus only on
the leading and trailing time-series points, whereas existing LBs
rely on supervised solutions. GLB’s ability to reuse the extracted
envelopes also avoids the significant overhead introduced by exist-
ing solutions focusing on complex and expensive transformations
to capture characteristics from the target time series. Finally, GLB
is adaptable to all elastic measures due to its abstraction of the
different cost functions used internally in elastic distances.

We compare GLB against the 11 state-of-the-art LBs, and we
make all source codes available to ensure reproducibility.1 Com-
pared to the strongest LBs for DTW, GLB_DTW achieves state-of-
the-art pruning power and outperforms all LBs in terms of speedup.
Specifically, GLB_DTW is up to 13.5× faster (6.8× faster on average)
when compared against the strongest LB in terms of pruning power
and wins in at least 115 out of 128 (90%) datasets. For elastic mea-
sures other than DTW, GLB establishes new state-of-the-art results
in both pruning power and speedup, outperforming all baselines
significantly. Importantly, for elastic measures without known LBs,
GLB achieves performance comparable to the results for the other
elastic measures, which demonstrates the generalizability of GLB.

We present our contributions as follows:
• We provide the first thorough study of elastic measures and
LBs, summarizing two decades of progress (Section 2).

• We propose the GLB framework for developing LBs for elas-
tic measures while satisfying four properties: query, data,
and boundary dependence, and reusability (Section 3.1).

• We formally define GLB by abstracting costs and combining
elements that constitute the effective LBs (Sections 3.2-3.3).

• We prove the correctness of GLB (Section 3.4).
• We present new LBs for 7 elastic distance measures, includ-
ing two elastic measures without known LBs (Section 4).

• We conduct the most extensive evaluation of LBs until now
to demonstrate the robustness of GLB (Sections 5 and 6).

Finally, we summarize the implications of our work (Section 7).

1www.timeseries.org/glb

www.timeseries.org/glb


2 PRELIMINARIES AND RELATEDWORK
In this section, we first review the development of elastic distance
measures starting with DTW, the earliest and most popular elastic
measure. We provide a generalized formula to showcase the recur-
sive (dynamic programming) computation in all elastic measures,
which highlights the different cost functions adopted by each elastic
measure (Section 2.1). Then, we present LBs to accelerate similarity
search for elastic measures and our problem of focus (Section 2.2).

2.1 Elastic Time Series Distance Measures
We now review the development of elastic distance measures.
Dynamic Time Warping (DTW) [82, 83]: We consider a time-
series x = [𝑥1, 𝑥2, ..., 𝑥𝐿], an ordered sequence of 𝐿 datapoints. To
measure the similarity between two time series, the most com-
mon distance measure is ED, which offers a one-to-one (linear)
alignment between two time series, as shown in Figure 2(a). ED de-
fines the distance between time series x = [𝑥1, 𝑥2, ..., 𝑥𝐿x ] and y =

[𝑦1, 𝑦2, ..., 𝑦𝐿y ], with 𝐿x = 𝐿y = 𝐿, as 𝐸𝐷 (x, y) =
√︂∑︁𝐿

𝑖=1 (𝑥𝑖 − 𝑦𝑖 )2.
The disadvantage of ED is its inability to recognize the similarity
between time series that have comparable shapes but are stretched
or differ in phase or length. The need to capture shape similarity
despite these distortions inspired the development of elastic mea-
sures, which create a non-linear mapping between time series by
comparing one-to-many points in order to align or stretch points.
For example, DTW enables local alignments by permitting one-to-
many points matching, as shown in Figure 2(b), where the peaks
and troughs of two time series are aligned correspondingly. To find
the local alignments, DTW first computes a distance matrix, 𝐷 ,
using the following recursive computation:

𝐷 (𝑖, 𝑗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑥𝑖 − 𝑦 𝑗 )2 if 𝑖, 𝑗 = 1
𝐷 (𝑖 − 1, 𝑗) + (𝑥𝑖 − 𝑦 𝑗 )2 if 𝑖 ≠ 1 and 𝑗 = 1
𝐷 (𝑖, 𝑗 − 1) + (𝑥𝑖 − 𝑦 𝑗 )2 if 𝑖 = 1 and 𝑗 ≠ 1

𝑚𝑖𝑛

⎧⎪⎪⎨⎪⎪⎩
𝐷 (𝑖 − 1, 𝑗 − 1) + (𝑥𝑖 − 𝑦 𝑗 )2
𝐷 (𝑖 − 1, 𝑗) + (𝑥𝑖 − 𝑦 𝑗 )2
𝐷 (𝑖, 𝑗 − 1) + (𝑥𝑖 − 𝑦 𝑗 )2

if 𝑖, 𝑗 ≠ 1

(1)

DTW determines the alignment path,𝑊 = {𝑤1,𝑤2, ...,𝑤𝑝 }, which
starts from the bottom-left corner and ends at the top-right cor-
ner in the matrix (gray path in Figure 2) where the distance of
alignments add up to the cell in the top-right corner, or 𝐷 (𝐿x, 𝐿y) =∑︁𝑝

𝑖=1 (x𝑊𝑘
1 −y𝑊𝑘

2 )2. The warping path follows two properties [89]:
• Boundary Constraints:𝑤1 = 𝐷 (1, 1) and𝑤𝑝 = 𝐷 (𝐿x, 𝐿y),
meaning the optimal warping path has to start on the bottom-
left corner of 𝐷 and to end on the upper-right corner of 𝐷 .

• Continuity and Monotonicity: if 𝑤𝑘 = 𝐷 (𝑖, 𝑗) for 𝑘 ∈
[2, 𝑝 − 1], 𝑤𝑘+1 ∈ {𝐷 (𝑖 + 1, 𝑗), 𝐷 (𝑖, 𝑗 + 1), 𝐷 (𝑖 + 1, 𝑗 + 1)},
meaning that the warping path, starting from bottom-left,
only moves vertically upwards, horizontally towards the
right, or diagonally towards top-right continuously until
arriving at the top-right corner, as shown on the right side
of Figure 2(b). DTW uses the same distance function in each
matrix cell regardless of whether the optimal path arrives at
that cell horizontally, vertically, or diagonally (Formula 1).

In contrast to DTW, alternative elastic measures that we review
next have three different distance functions, each corresponding
to diagonal movements, horizontal movements, and vertical move-
ments, respectively (Figure 2(b) depicts these three costs). As we
discuss in Section 3, having different distance functions for diagonal

Three possible
cost functions

Diagonal cost

Horizontal cost

Vertical cost

Cost matrix

Time series x

Time series y

yx

Time series x

Time series y

(a) Euclidean Distance (ED) (b) Elastic Measures (e.g., DTW)
Cost matrix x y

Figure 2: Cost matrix for (a) ED and (b) elastic measures.

and horizontal/vertical movements presents a unique challenge for
proposing effective lower bounds for particular elastic measures.
GLB provides a principled solution to tackle this critical problem.
After computing distance matrix 𝐷 and optimal warping path𝑊 ,
the distance between the time series x and y of lengths 𝐿x and 𝐿y
is defined as 𝐷𝑇𝑊 (x, y) =

√︁
𝐷 (𝐿x, 𝐿y) =

√︂∑︁𝑝

𝑖=1𝑤𝑖 .
DTW is commonly used together with a locality constraint to

limit the range of warping allowed and thereby avoiding unrea-
sonably far-reaching alignments; this approach is referred to as
Constrained DTW (cDTW) [36]. cDTW is faster than DTW and
often results in higher classification accuracy [78]. The most widely
adopted locality constraint is the Sakoe-Chiba band [36], which
we refer to as the warping window. The warping window, 𝑤 , is
the maximum possible deviation of the alignment path from the
diagonal of 𝐷 , and cells further away are not computed.
Generalization of Elastic Measures: Since the development of
DTW, numerous alternative elastic measures have been proposed to
address certain limitations. Thesemeasures have employed different
distance functions for diagonal and vertical/horizontal movements
and introduced additional parameters to tackle weaknesses of DTW.

Despite the differences in parameters and distance functions, sub-
sequent elastic measures and DTW share a common goal of finding
the warping path through dynamic programming to compute 𝐷 , so
elastic measures can be generalized as follows:

𝐷 (𝑖, 𝑗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥𝑖 , 𝑦 𝑗 ) if 𝑖, 𝑗 = 1
𝐷 (𝑖 − 1, 𝑗) + 𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑦 𝑗 ) if 𝑖 ≠ 1 and 𝑗 = 1
𝐷 (𝑖, 𝑗 − 1) + 𝑑𝑖𝑠𝑡𝐻 (𝑥𝑖 , 𝑦 𝑗 ) if 𝑖 = 1 and 𝑗 ≠ 1

𝑚𝑖𝑛

⎧⎪⎪⎨⎪⎪⎩
𝐷 (𝑖 − 1, 𝑗 − 1) + 𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝑦 𝑗 )
𝐷 (𝑖 − 1, 𝑗) + 𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑦 𝑗 )
𝐷 (𝑖, 𝑗 − 1) + 𝑑𝑖𝑠𝑡𝐻 (𝑥𝑖 , 𝑦 𝑗 )

if 𝑖, 𝑗 ≠ 1

(2)

where 𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝑦 𝑗 ), 𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑦 𝑗 ), and 𝑑𝑖𝑠𝑡𝐻 (𝑥𝑖 , 𝑦 𝑗 ) are the dis-
tance functions for diagonal, vertical, and horizontal movements,
respectively, and 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥𝑖 , 𝑦 𝑗 ) is the distance function
for initial alignment in 𝐷 (1, 1). After computing 𝐷 (𝐿x, 𝐿y), each
elastic measure adopts a function, 𝑡𝑟𝑎𝑛𝑠𝐷 (𝐿x, 𝐿y), that transforms
distance in 𝐷 (𝐿x, 𝐿y) to calculate distance between x and y based
on 𝐷 (𝐿x, 𝐿y) (e.g., for DTW, 𝑡𝑟𝑎𝑛𝑠 (𝐷 (𝐿x, 𝐿y)) =

√︁
𝐷 (𝐿x, 𝐿y); for

MSM, 𝑡𝑟𝑎𝑛𝑠 (𝐷 (𝐿x, 𝐿y)) = 𝐷 (𝐿x, 𝐿y)).
Threshold-based Elastic Measures: To mitigate the dispro-

portionate impact the outlier data points have in DTW distance,
a group of elastic measures use a threshold parameter 𝜖 to decide
whether two elements should match or not. Adopting a thresh-
old restricts the relationship between two elements to be either a
match or a mismatch, regardless of how close or distant they are.



Table 2: Summary of distances (𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝑦 𝑗 ),𝑑𝑖𝑠𝑡𝐻 (𝑥𝑖 , 𝑦 𝑗 ), and
𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑦 𝑗 )), transformation functions (𝑡𝑟𝑎𝑛𝑠 (𝐷 (𝐿x, 𝐿y)), and
LBs for threshold-based elastic distances.

LCSS

𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝑦 𝑗 )
{︄
1 if |𝑥𝑖 − 𝑦 𝑗 | ≤ 𝜖
0 otherwise

𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑦 𝑗 ) 0

𝑑𝑖𝑠𝑡𝐻 (𝑥𝑖 , 𝑦 𝑗 ) 0

𝑡𝑟𝑎𝑛𝑠 (𝐷 (𝐿x, 𝐿y)) 1 - 𝐷 (𝐿x,𝐿y)
𝑚𝑖𝑛 (𝐿x,𝐿y)

LB

UE(y)𝑖 =𝑚𝑎𝑥 (𝑦𝑖−𝑤 : 𝑦𝑖+𝑤)
LE(y)𝑖 =𝑚𝑖𝑛(𝑦𝑖−𝑤 : 𝑦𝑖+𝑤)

𝐿𝐵_𝐿𝐶𝑆𝑆 (x, y) = 1 − 1
𝐿x

𝐿x∑︁
𝑖=1

{︄
1 if 𝐿𝐸 (y)𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝐸 (y)𝑖
0 otherwise

EDR

𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝑦 𝑗 )
{︄
0 if |𝑥𝑖 − 𝑦 𝑗 | ≤ 𝜖
1 otherwise

𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑦 𝑗 ) 1

𝑑𝑖𝑠𝑡𝐻 (𝑥𝑖 , 𝑦 𝑗 ) 1

𝑡𝑟𝑎𝑛𝑠 (𝐷 (𝐿x, 𝐿y) 𝐷 (𝐿x, 𝐿y)
LB No Existing Lower Bound

SWALE

𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝑦 𝑗 )
{︄
𝑟 if |𝑥𝑖 − 𝑦 𝑗 | ≤ 𝜖
𝑝 otherwise

𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑦 𝑗 ) p

𝑑𝑖𝑠𝑡𝐻 (𝑥𝑖 , 𝑦 𝑗 ) p

𝑡𝑟𝑎𝑛𝑠 (𝐷 (𝐿x, 𝐿y)) 𝐷 (𝐿x, 𝐿y)
LB No Existing Lower Bound

Such quantization makes threshold-based approaches more robust
against outliers and noisy time series than other elastic measures.
A match between a new pair of elements indicates a diagonal move-
ment in the accumulated distance matrix 𝐷 , whereas a mismatch is
associated with either a horizontal or vertical movement. Table 2
summarizes distance functions, transformation functions, and LBs
for three popular threshold-based elastic distance measures:

• Longest Common Subsequence (LCSS) [92] was origi-
nally used for pattern matching in text strings and was
adapted to measure similarity between time series. LCSS
increases similarity by 1 when two elements match and 0 in
cases of mismatch. The LCSS distance is the LCSS similarity
normalized by the length of the shorter time series.

• Edit Distance on Real Sequences (EDR) [20] is an adap-
tion of the edit distance for strings. EDR computes the dis-
tance by penalizingmismatches instead of rewardingmatches.

• Sequence Weighted Alignment (SWALE) [27] parame-
terizes EDR using a parameter 𝑟 for a match and a punish-
ment parameter 𝑝 for mismatch, instead of fixed 1 and 0.

Metric ElasticMeasures: The aforementioned elasticmeasures,
including DTW and threshold-based measures, are all non-metric,
and thus do not satisfy the triangle inequality [88]. Being a met-
ric enables elastic measures to use generic indexing methods [38,
39, 102] and clustering methods [16, 34, 41] designed for metrics.
In addition, in nearest neighbor search, triangle inequality can be
applied to efficiently prune comparisons [19]. As summarized in
Table 3, there are three popular metric elastic measures:

• Edit Distance with Real Penalty (ERP) [19] is similar to
DTW as ERP uses the squared difference ((𝑥𝑖−𝑦 𝑗 )2) between
two elements as the distance function for diagonal move-
ment. Different from DTW, ERP introduces an additional gap

Table 3: Summary of distances (𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝑦 𝑗 ),𝑑𝑖𝑠𝑡𝐻 (𝑥𝑖 , 𝑦 𝑗 ), and
𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑦 𝑗 )), transformation functions (𝑡𝑟𝑎𝑛𝑠 (𝐷 (𝐿x, 𝐿y))),
and LBs for metric elastic distances.

ERP

𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝑦 𝑗 ) (x𝑖 − 𝑦 𝑗 )2

𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑦 𝑗 ) (x𝑖 − 𝑔)2

𝑑𝑖𝑠𝑡𝐻 (𝑥𝑖 , 𝑦 𝑗 ) (y𝑗 − 𝑔)2

𝑡𝑟𝑎𝑛𝑠 (𝐷 (𝐿x, 𝐿y)) 𝐷 (𝐿x, 𝐿y)

LB
𝐿𝐵_𝐾𝑖𝑚 − 𝐸𝑅𝑃 (x, y) = max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|𝑥1 − 𝑦1 |
|𝑥𝐿x − 𝑦𝐿y |
|𝑚𝑎𝑥 (x) −𝑚𝑎𝑥 (y) |
|𝑚𝑖𝑛(x) −𝑚𝑖𝑛(y) |

𝐿𝐵_𝐸𝑅𝑃 (x, y) = |
∑︁
y −∑︁

x|
𝑈𝐸𝑖 =𝑚𝑎𝑥 (𝑔,𝑚𝑎𝑥 (𝑐𝑖−𝑤 : 𝑐𝑖+𝑤))
𝐿𝐸𝑖 =𝑚𝑖𝑛(𝑔,𝑚𝑖𝑛(𝑐𝑖−𝑤 : 𝑐𝑖+𝑤))

𝐿𝐵_𝐾𝑒𝑜𝑔ℎ − 𝐸𝑅𝑃 (x, y) =

⌜⃓⃓⃓⃓⃓⎷∑︁
𝑖=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑦𝑖 −𝑈𝐸𝑖 )2 if 𝑦𝑖 > 𝑈𝐸𝑖
(𝑦𝑖 − 𝐿𝐸𝑖 )2 if 𝑦𝑖 < 𝐿𝐸𝑖
0 otherwise

MSM

𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝑦 𝑗 ) |x𝑖 − 𝑦𝑖 |

𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑦 𝑗 )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑐 if 𝑥𝑖−1 ≤ 𝑥𝑖 ≤ 𝑦 𝑗 or 𝑥𝑖−1 ≥ 𝑥𝑖 ≥ 𝑦 𝑗

𝑐 +𝑚𝑖𝑛
{︄
|𝑥𝑖 − 𝑥𝑖−1 |
|𝑥𝑖 − 𝑦 𝑗 |

otherwise

𝑑𝑖𝑠𝑡𝐻 (𝑥𝑖 , 𝑦 𝑗 )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑐 if 𝑦 𝑗−1 ≤ 𝑦 𝑗 ≤ 𝑥𝑖 or 𝑦 𝑗−1 ≥ 𝑦 𝑗 ≥ 𝑥𝑖

𝑐 +𝑚𝑖𝑛
{︄
|𝑦 𝑗 − 𝑦 𝑗−1 |
|𝑦 𝑗 − 𝑥𝑖 |

otherwise

𝑡𝑟𝑎𝑛𝑠 (𝐷 (𝐿x, 𝐿y)) 𝐷 (𝐿x, 𝐿y))

LB 𝐿𝐵_𝑀𝑆𝑀 (x, y) = |x1 − 𝑦1 | +
𝐿𝑌∑︁
𝑖=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝑖𝑛( |𝑦𝑖 −𝑚𝑎𝑥 (x) |, 𝑐) if 𝑦𝑖−1 ≥ 𝑦𝑖 > 𝑚𝑎𝑥 (x)
𝑚𝑖𝑛( |𝑦𝑖 −𝑚𝑖𝑛(x) |, 𝑐) if 𝑦𝑖−1 ≤ 𝑦𝑖 < 𝑚𝑖𝑛(x)
0 otherwise

TWED

𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝑦 𝑗 ) (x𝑖 − 𝑦 𝑗 )2 + (𝑥𝑖−1 − 𝑦 𝑗−1)2 + 𝜈 ( |𝑡𝑥𝑖 − 𝑡𝑥𝑖−1 | + |𝑡𝑦 𝑗
− 𝑡𝑦 𝑗−1 |)

𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑦 𝑗 ) (x𝑖 − 𝑥𝑖−1)2 + 𝜈 ( |𝑡𝑥𝑖 − 𝑡𝑥𝑖−1 |) + 𝜆

𝑑𝑖𝑠𝑡𝐻 (𝑥𝑖 , 𝑦 𝑗 ) (y𝑗 − 𝑦 𝑗−1)2 + 𝜈 ( |𝑡𝑦 𝑗
− 𝑡𝑦 𝑗−1 |) + 𝜆

𝑡𝑟𝑎𝑛𝑠 (𝐷 (𝐿x, 𝐿y)) 𝐷 (𝐿x, 𝐿y)

LB 𝐿𝐵_𝑇𝑊𝐸𝐷 (x, y) = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑥1 − 𝑦1)2

𝑥21 + 𝑣 + 𝜆
𝑦21 + 𝑣 + 𝜆

+
𝐿𝑌∑︁
𝑖=2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚𝑖𝑛(𝑣, (𝑦𝑖 −𝑚𝑎𝑥 (𝑚𝑎𝑥 (x), 𝑦𝑖−1))2

if 𝑦𝑖 > 𝑚𝑎𝑥 (𝑚𝑎𝑥 (x), 𝑦𝑖−1)
𝑚𝑖𝑛(𝑣, (𝑦𝑖 −𝑚𝑖𝑛(𝑚𝑖𝑛(x), 𝑦𝑖−1))2

if 𝑦𝑖 < 𝑚𝑖𝑛(𝑚𝑖𝑛(x), 𝑌𝑖−1)
0 otherwise

value parameter, 𝑔, to compute the distance for horizontal
and vertical movements. A drawback of ERP is the inability
to handle vertically shifted time series.

• Move-Split-Merge (MSM) [88] combines advantages of
several elastic measures. MSM is a translation-invariant met-
ric. A constant distance 𝑐 is associated with 𝑠𝑝𝑙𝑖𝑡 (replicating
the previous element) and𝑚𝑒𝑟𝑔𝑒 (merging two identical ele-
ments into a single one) operations, which correspond to the
horizontal and vertical movements in the distance matrix.
The𝑚𝑜𝑣𝑒 operation is a diagonal movement in the distance
matrix, where the distance is |𝑥𝑖 − 𝑦 𝑗 |.

• Time Warp Edit Distance (TWED) [63] penalizes the dif-
ference in timestamps in addition to the difference in nu-
merical values. TWED penalizes timestamp difference with
parameter 𝑣 in all three types of movements. TWED also
employs an additional stiffness parameter 𝜆 in horizontal
and vertical movements to control warping.

2.2 Lower Bounds for Elastic Measures
As described in the previous section, all elastic measures compute a
distancematrix containing 𝐿2 cells where 𝐿 is the length of two-time
series, resulting in 𝑂 (𝐿2) complexity (we ignore the constrained
variants as in the worst case they also have similarly high complex-
ity). This runtime complexity is rather time-consuming for simi-
larity search, considering that even for moderate-size databases,
millions of such comparisons have to be performed. As a result,



Algorithm 1: LB-Accelerated Nearest Neighbor Search
Require: y, a query series
Require: X, a set of data time series
Require: L, labels of data time series L
Ensure: 𝑙𝑎𝑏𝑒𝑙_y, label of query time series
1: for x in X do
2: 𝑙𝑏_𝑙𝑖𝑠𝑡 [𝑖 ] = LowerBound(x, y)
3: end for
4: 𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓 𝑎𝑟 = +∞
5: 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 = sort(lb_list)
6: X = X[𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔]
7: for x in X do
8: if lb_list[x] < best_so_far then
9: actual_dist = ElasticMeasure(x, y)
10: if actual_dist < best_so_far then
11: 𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓 𝑎𝑟 = 𝑎𝑐𝑡𝑢𝑎𝑙_𝑑𝑖𝑠𝑡
12: 𝑙𝑎𝑏𝑒𝑙_y = 𝐿 [x]
13: end if
14: end if
15: end for

𝑤 = 5

𝑤 = 5
Upper Envelope (UE)

Take min

Take max

Lower Envelope (LE)

Figure 3: Construction of upper and lower envelopes: the
solid line represents the original time series, and two dashed
lines represent the upper and lower envelopes, respectively.

similarity search under elastic measures becomes orders of magni-
tude slower than when ED is used [78]. The most popular approach
to accelerate elastic measures is through lower bounding. LB ap-
proximates the elastic measure distance without computing the full
distance matrix. Specifically, LB uses the approximated value to
filter out unpromising candidates in tasks such as nearest neighbor
search. Algorithm 1 illustrates how LB is applied to accelerate the
1-NN classification of time series 𝑦. First, the list of time series is re-
ordered based on their LB distance to the query time series 𝑦 (lines
1-6). Then, going through the list, the actual elastic measure dis-
tance is only computed for promising time series whose LB distance
with query time series 𝑦 is less than the actual distance between
𝑦 and the current nearest neighbor (lines 7-9). Finally, if the ac-
tual distance is less than the 𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓 𝑎𝑟 distance, the 𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓 𝑎𝑟
distance and the nearest neighbor are updated (lines 10-12).

Research efforts in lower bounds for elastic measures have con-
centrated on developing tighter lower bounds of DTW due to its
popularity. LB_Kim [49] is a cheap DTW LB with 𝑂 (1) complexity,
which takes the maximum among {|𝑋1 − 𝑌1 |, |𝑋𝐿 − 𝑌𝐿 |, |𝑋𝑚𝑎𝑥 −
𝑌𝑚𝑎𝑥 |, |𝑋𝑚𝑖𝑛 − 𝑌𝑚𝑖𝑛 |}. Although LB_Kim is fast to compute, its
looseness makes it ineffective in filtering out less obvious candi-
dates. LB_Yi exploits the fact all points in x that are either larger
than𝑚𝑎𝑥 (y) or smaller than𝑚𝑖𝑛(y) necessarily contribute to the
final DTW distance. Subsequent to LB_Yi, LB_Keogh [48] obtains
a much higher tightness than LB_Yi and LB_Kim by utilizing en-
velopes and a warping window𝑤 (Table 4, Equation 4). As shown in
Figure 3, LB_Keogh first constructs the upper and lower envelopes
of the query time series and computes the distance between these
query envelopes and the target (candidate) time series.

LB_Improved [54] computes the ordinary LB_Keogh as well as
the LB_Keogh between the query time series and the projection of
target time series on the query envelopes (Table 4, Equations 6 and
7). This makes LB_Improved tighter than LB_Keogh but also adds

Table 4: Key existing LBs for DTW.

𝑂 (1) Complexity 𝐿𝐵_𝐾𝑖𝑚(x, y) = max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|𝑥1 − 𝑦1 |
|𝑥𝐿x − 𝑦𝐿x |
|𝑚𝑎𝑥 (x) −𝑚𝑎𝑥 (y) |
|𝑚𝑖𝑛(x) −𝑚𝑖𝑛(y) |

(3)

DTW
Based on
envelopes

UE(y)𝑖 =𝑚𝑎𝑥 (𝑦𝑖−𝑤 : 𝑦𝑖+𝑤)
LE(y)𝑖 =𝑚𝑖𝑛(𝑦𝑖−𝑤 : 𝑦𝑖+𝑤)

𝐿𝐵_𝐾𝑒𝑜𝑔ℎ(x, y) =

⌜⃓⃓⃓⃓⃓⎷∑︁𝐿x
𝑖=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑥𝑖 −𝑈𝐸 (y)𝑖 )2 if 𝑥𝑖 > 𝑈𝐸 (y)𝑖
(𝑥𝑖 − 𝐿𝐸 (y)𝑖 )2 if 𝑥𝑖 < 𝐿𝐸 (y)𝑖
0 otherwise

(4)

𝐿𝐵_𝑌𝑖 (x, y) = ∑︁𝐿
𝑖=1

{︄
(𝑥𝑖 −𝑚𝑎𝑥 (y))2 if 𝑥𝑖 > 𝑚𝑎𝑥 (y)
(𝑥𝑖 −𝑚𝑖𝑛(y))2 if 𝑥𝑖 < 𝑚𝑖𝑛(y)

(5)

𝐻 (x, y)𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑈𝐸 (y)𝑖 if 𝑥𝑖 ≥ 𝑈𝐸 (y)𝑖
𝐿𝐸 (y)𝑖 if 𝑥𝑖 ≤ 𝐿𝐸 (y)𝑖
𝑥𝑖 otherwise

(6)

𝐿𝐵_𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 (x, y) = 𝐿𝐵_𝐾𝑒𝑜𝑔ℎ(x, y) + 𝐿𝐵_𝐾𝑒𝑜𝑔ℎ(y, 𝐻 (x, y)) (7)

Others
𝛿 (𝑥, y) =𝑚𝑖𝑛(𝑥 − 𝑦)2 for 𝑦 ∈ y(8)

𝐿𝐵_𝑁𝑒𝑤 (x, y) =
√︂
(𝑥1 − 𝑦1)2 + (𝑥𝐿x − 𝑦y)2 +

∑︁𝐿𝑥−1
𝑖=2 𝛿 (𝑥𝑖 , y)(9)

overhead. In addition, the projection of candidate queries on query
envelopes cannot be computed in a pre-processing step. LB_New
[85] (Table 4, Equations 8 and 9) also obtains higher pruning power
than LB_Keogh. However, instead of constructing envelopes and
considering only elements outside of envelopes, LB_New pairs
each candidate element, 𝑥𝑖 , with the closest query element, 𝑦 𝑗 ,
where 𝑦 𝑗 ∈ 𝑌𝑖 = (𝑦𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑦𝑚𝑖𝑛 ( 𝑗+𝑤,𝐿𝑦 ) ). Differently from
the previous two approaches, LB_Enhanced [89] constructs alter-
nating bands around the upper-left corner (i.e., Left Bands) and
bottom-right corner (i.e., Right Bands), where each band captures
one cell in the warping path. The number of bands is decided by
a parameter 𝑉 , which requires a tuning process. LB_Keogh is ap-
plied for the remaining portion of the time series not covered by
the two bands. LB_Petitjean [97] improves the projection strategy
in LB_Improved and incorporates the bands from LB_Enhanced,
which translates into increased pruning power. LB_Webb [97] ap-
proximates LB_Petitjean without directly computing envelopes or
projections, resulting in improved performance over LB_Petitjean.
Due to space limitations, we omit the definitions of LB_Enhanced,
LB_Petitjean, and LB_Webb in Table 4, which require introducing
new notation and concepts not shared with the key existing LBs.

In addition to DTW lower bounds, a few lower bounds have
been developed for other elastic measures as well. For example, in
efforts to develop ERP LBs, LB_Keogh and LB_Kim were adapted to
form the LB_Keogh-ERP and LB_Kim-ERP, respectively. In particu-
lar, LB_Keogh-ERP adjusted the original LB_Keogh envelopes by
adding another parameter 𝑔 (Table 3). LB_Kim-ERP also adds a pa-
rameter 𝑔 to LB_Kim to incorporate possible gaps in the alignment.
In addition to adaptation from DTW, authors of ERP also developed
LB_ERP specifically for ERP. However, LB_ERP is only applicable
for 𝑔 = 0, which limits the usability. In addition to adaptation to
ERP, LB_Keogh was also modified to LB_LCSS by replacing DTW’s
Euclidean Distance with reward parameter of 1 and penalty param-
eter of 0 in cases of match and mismatch. Recently, [90] defined LBs
for TWED and MSM based on their distance functions to capture
their initial boundary distance and query characteristics (Table 3).

After reviewing the literature, we observe that (i) multiple LBs
focus on improving the tightness of LB_Keogh, which does not
always translate into higher speed up; and (ii) different distances
for different movements make the development of LBs challenging.



3 THE GLB FRAMEWORK
Until now, we have thoroughly reviewed the state-of-the-art elastic
measures and their corresponding LB distances. It becomes evident
there is merit in developing a framework to ease the process of
deriving LBs for all elastic measures. By studying the development
of LBs in the past two decades, we identified four critical properties
(i.e., P1−4, Section 1) necessary for the effectiveness of LBs.We aim
to develop a generalized framework to satisfy all four properties.
Next, we introduce GLB, our innovative framework to facilitate the
creation of efficient LBs for elastic measures that can be mapped
into the generalization of elastic measures described in Section 2.1
(Equation 2). The GLB framework attains its generalizability by
introducing a novel abstraction of the various distance functions
defined between elements of time series across elastic measures.

3.1 Main Ideas
GLB aims to satisfy four critical properties (i.e., P1 − 4): query de-
pendence, data dependence, boundary dependence, and reusability.
Query and Data Dependence: To consider characteristics of
both the query time series and the target time series while being
cache-friendly, GLB constructs envelopes for each query time series
y and data time series x. Since y and x have different numerical
values and, therefore, different envelopes, the distance between
the data time series and the query envelope is different from the
distance between the query time series and the data envelope. GLB
adaptively selects between the two envelopes to maximize the LB
tightness for each pairwise comparison.
Boundary Dependence: One deficiency we observed in the con-
struction of LB_Enhanced is the need for a time-consuming param-
eter tuning process to decide the appropriate value for its tightness
parameter 𝑉 , which significantly reduces the speedup in the over-
all process. To build on top of LB_Enhanced and take advantage
of the boundary distances, GLB includes only the distances for
aligning leading elements, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥1, 𝑦1), and distances
for aligning ending elements, 𝑒𝑛𝑑𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥𝐿x , 𝑦𝐿y ). In partic-
ular, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥1, 𝑦1) depends on how each elastic measure
computes the distance for the first cell 𝐷 (1, 1) of the accumulated
distance matrix. Such distance function varies across each elastic
measure; for instance, in DTW and ERP, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥1, 𝑦1) =
(𝑥1 − 𝑦1)2, while 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥1, 𝑦1) = |𝑥1 − 𝑦1 | in MSM. By
abstracting the internal costs of elastic measures, GLB adapts the
LB computation to different elastic measures, as we will see later.
Reusability: As introduced in [54], calculating a data-dependent
envelope in addition to the query envelope in LB_Keogh allows
a tighter lower bound. [54] demonstrated this idea by developing
LB_Improved, which computes the query envelope as well as the
envelope of a projection time series (see Table 4, Eq. 6). However, we
observed that computing the projection time series relies on both
the query and data time series, making envelopes of projection time
series not reusable. In fact, according to our evaluation across 128
datasets (see Table 7), despite LB_Improved’s impressive pruning
power of 84.71% (avoided 84.71% of calls to the DTW distance) over
LB_Keogh’s 70.19%, LB_Improved is only able to reduce runtime
by 63%, whereas LB_Keogh could reduce runtime by 76%. The
inconsistency between LB_Improved’s strong pruning power and
less impressive speedup suggests that reusability is a key factor. As
a result, reusability is a core design principle of GLB.
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(a) DTW matrix and distance captured by GLB components

distance between time series y and envelopes 
of time series x (see blue shaded area)

(b) GLB components represented by shaded area 

distance between time series x and envelopes of 
time series y (see red shaded area)

distance between the initial elements and ending 
elements from time series x and time series y

x
UE of y

y

Time series x

Time Series y Time series x

LE of y

UE of x

x

LE of x y

Time series of y

Figure 4: GLB_DTW for two time series with warping win-
dow=3. In the distance matrix: the red column represents
query time series y; the blue row represents data time series
x; gray cells represent the DTW alignment path; blue rectan-
gles are distances between query time series y and envelope
of data time series x; red rectangles are distances between
data time series x and envelope of query time series y; green
rectangles represent the boundary distances.

3.2 Adaptable Distance Functions
In addition to the four aforementioned properties, GLB aims to
provide a generalized framework to ease the process of developing
new LBs. From our extensive evaluation (see Sections 5 and 6), we
observe that it took about two decades to improve the tightness of
DTW’s LB to over 80% today. Unfortunately, the tightness of the
state-of-the-art LBs for other elastic measures, such as for MSM
and TWE, are still below 20%. We believe it is unsustainable to
expect similar research efforts dedicated to each elastic measure
individually. Contrary to the isolated development of different LBs
for different elastic measures, we observe that all elastic measures
share the same dynamic programming construct, and their only
differences lie in the distance functions used to capture movements
along the accumulated distance matrix. Thus, for GLB, we aim
to leverage this shared structure (see Section 2.1, Equation 2, on
how elastic measures can be generalized into the same framework).
An important advantage of such a generalized LB is the ability to
transfer the research effort devoted to the development of LBs for
one elastic measure to the others.

To develop a generalized framework, we need to account for the
difference between DTW and other elastic measures. Specifically,
when moving horizontally and vertically through the accumulated
distance matrix, DTW uses the same distance function as moving
diagonally; by contrast, other elastic measures use different distance
functions for horizontal, vertical, and diagonal movements. For
instance, in ERP, the distance for diagonal movement is 𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 −
𝑦 𝑗 ) = (𝑥𝑖 − 𝑦 𝑗 )2, but the distance for horizontal movement is
𝑑𝑖𝑠𝑡𝐻 (𝑥𝑖−𝑦 𝑗 ) = (𝑥𝑖−𝑔)2. Sincewe are unsurewhether each element
is involved in a diagonal or horizontal or vertical movement in the
optimal alignment, GLB takes theminimum of the three alternatives.
Similarly, when calculating the distance of the last cell, 𝐷 (𝐿x, 𝐿y),
in the accumulated distance matrix, we need to take the minimum
among three alternative movements to 𝐷 (𝐿x, 𝐿y).



3.3 Mathematical Formulation
Having introduced the main ideas behind GLB, we now provide
a formal definition. GLB includes the pairwise distances between
the first and last pairs of elements of two time series and then the
maximum of query and data characteristics captured by query and
data envelopes. A warping window can also be applied to GLB in
cases when the warping windows are used for computing distances
in elastic measures. GLB is formally defined as:

GLB(x, y,𝑤 ) = initial_distance(x, y) + ending_distance(x, y) + max

{︄
𝛿 (x, y,𝑤)
𝛿 (y, x,𝑤)

𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and 𝑒𝑛𝑑𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 are incorporated in the GLB
framework so that GLB improves the tightness of LBs developed
within the GLB framework (See Boundary Dependence in Section
3.1). 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the distance between the first elements from
two time series as defined by the elastic measure. For instance, in the
case of DTW, the distance between the first element of time series x
and y is (𝑥1−𝑦1)2, so 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥1, 𝑦1) = (𝑥1−𝑦1)2 for DTW.
𝑒𝑛𝑑𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 represents the distance function for alignment of
the last elements of two time series. 𝑒𝑛𝑑𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 takes the
minimum of the three movements:

𝑒𝑛𝑑𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (x, y) =𝑚𝑖𝑛

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑𝑖𝑠𝑡𝐷 (𝑥𝐿x , 𝑦𝐿y )
𝑑𝑖𝑠𝑡𝑉 (𝑥𝐿x−1 , 𝑦𝐿y )
𝑑𝑖𝑠𝑡𝐻 (𝑥𝐿x , 𝑦𝐿y−1 )

(10)

where 𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝑦𝑖 ), 𝑑𝑖𝑠𝑡𝐻 (𝑥𝑖 , 𝑦𝑖 ), 𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑦𝑖 ) represent distance
functions for diagonal, horizontal, and vertical movements. For
instance, in the case of ERP with parameter 𝑔 = 0, there are three
possible distances from the alignment between the ending ele-
ment of time series x and y: {(𝑥𝐿x − 𝑦𝐿y )2, (𝑥𝐿x − 𝑔)2, (𝑦𝐿y − 𝑔)2}.
Then the 𝑒𝑛𝑑𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 in GLB_ERP is𝑚𝑖𝑛({(𝑥𝐿x −𝑦𝐿y )2, (𝑥𝐿x −
𝑔)2, (𝑦𝐿y − 𝑔)2}). 𝛿 (x, y,𝑤) and 𝛿 (y, x,𝑤) illustrate how GLB com-
putes query and data envelopes and capture the distance between
the envelopes and the other time series. In the calculation of such
distance, the abstracted distance functions 𝛿 (x, y,𝑤) and 𝛿 (y, x,𝑤)
were utilized to allow for the use of any elastic measure’s cus-
tom distance functions. This is a departure from previous LBs in
the literature, which required a different LB for each elastic mea-
sure. Instead, by specifying the distance functions (𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝑦 𝑗 ),
𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑥𝑖−1), 𝑑𝑖𝑠𝑡𝐻 (𝑦𝑖 , 𝑦𝑖−1)), each elastic measure can calculate
its own LB within the GLB framework. This approach offers greater
flexibility and adaptability in computing the distance between time
series. 𝛿 (x, y,𝑤) and 𝛿 (y, x,𝑤) are defined as:

𝛿 (x, y,𝑤) = ∑︁𝐿y−1
𝑗=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝑖𝑛(𝑑𝑖𝑠𝑡𝐷 (𝑦 𝑗 ,𝑈 𝐸 (x) 𝑗 ), 𝑑𝑖𝑠𝑡𝐻 (𝑦 𝑗 , 𝑦 𝑗−1)) for 𝑦 𝑗 ≥ 𝑈𝐸 (x) 𝑗
𝑚𝑖𝑛(𝑑𝑖𝑠𝑡𝐷 (𝑦 𝑗 , 𝐿𝐸 (y) 𝑗 ), 𝑑𝑖𝑠𝑡𝐻 (𝑦 𝑗 , 𝑦 𝑗−1)) for 𝑦 𝑗 ≤ 𝐿𝐸 (x) 𝑗
0 otherwise

where𝑈𝐸 (x) 𝑗 =𝑚𝑎𝑥 (𝑥𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑥𝑚𝑖𝑛 (𝐿x, 𝑗+𝑤) )
and 𝐿𝐸 (x) 𝑗 = 𝑚𝑖𝑛(𝑥𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑥𝑚𝑖𝑛 (𝐿x, 𝑗+𝑤) ), and 𝑤 is the win-
dow.

𝛿 (y, x,𝑤) = ∑︁𝐿x−1
𝑖=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝑖𝑛(𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 ,𝑈 𝐸 (y)𝑖 ), 𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑥𝑖−1)) for 𝑥𝑖 ≥ 𝑈𝐸 (y)𝑖
𝑚𝑖𝑛(𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝐿𝐸 (y)𝑖 ), 𝑑𝑖𝑠𝑡𝑉 (𝑥𝑖 , 𝑥𝑖−1)) for 𝑥𝑖 ≤ 𝐿𝐸 (y)𝑖
0 otherwise

where𝑈𝐸 (y)𝑖 =𝑚𝑎𝑥 (𝑦𝑚𝑎𝑥 (1,𝑖−𝑤) : 𝑦𝑚𝑖𝑛 (𝐿y,𝑖+𝑤) )
and 𝐿𝐸 (y)𝑖 =𝑚𝑖𝑛(𝑦𝑚𝑎𝑥 (1,𝑖−𝑤) : 𝑦𝑚𝑖𝑛 (𝐿y,𝑖+𝑤) ), and window is𝑤 .

An implementation of GLB applied to accelerate the nearest
neighbor search is provided in Algorithm 2. Firstly, envelopes of
query and data time series are computed and stored in a cache-
friendly approach (lines 1-11, 21-22) and serve as inputs to compute

GLB. The GLB function computes and returns the sum of bound-
ary distances and delta functions (lines 13-19). Finally, the GLB
distances are used to accelerate the 1-NN Search (lines 21-41).

3.4 Proof of Lower Bounding Property
Having formally introduced GLB, in this section, we provide proof
of the LB property of GLB. Due to this property, GLB ensures its
correctness and no false positives exist (i.e., ignored comparisons
with time series are correctly avoided), which ensures the utility of
elastic measures in practice. For example, when GLB is used in clas-
sification tasks, the classification accuracy remains unaffected when
LBs are applied. The LB property is formally defined as follows:

For any two time series x and y of length 𝐿x and 𝐿y respectively, an
optimal alignment path𝑊 = 𝑤1,𝑤2, ...,𝑤𝑝 where 𝑤𝑘 = (𝑖, 𝑗) indi-
cates 𝑥𝑖 is aligned to 𝑦 𝑗 , following inequality holds: 𝐺𝐿𝐵_𝐸𝐸 (x, y) ≤
𝐸𝐸 (x, y)) where 𝐸𝐸 represents an aforementioned elastic measure.

Proof Firstly, we observe the actual distance between two time
series, 𝐸𝐸 (x, y), can be generally defined as:

EE(x, y) = initial_distance(x1, 𝑦1) +
𝑃−1∑︁
𝑘=2

𝑑𝑖𝑠𝑡 (𝑋𝑊𝑘
1 , 𝑌𝑊𝑘

2 ) +𝑚𝑖𝑛

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑𝑖𝑠𝑡𝐷 (𝑥𝐿𝑥 , 𝑦𝐿𝑦 )
𝑑𝑖𝑠𝑡𝑉 (𝑥𝐿x−1, 𝑦𝐿y )
𝑑𝑖𝑠𝑡𝐻 (𝑥𝐿x , 𝑦𝐿x−1 )

Since the first and last components of 𝐸𝐸 (x, y) are exactly the
same as the first and second term of GLB, proving𝐺𝐿𝐵_𝐸𝐸 (x, y) ≤
𝐸𝐸 (x, y) is the same as proving:

𝑚𝑎𝑥

{︄
𝛿 (x, y,𝑤)
𝛿 (y, x,𝑤)

≤
𝑃−1∑︂
𝑘=2

𝑑𝑖𝑠𝑡 (x𝑊𝑘
1 , y𝑊𝑘

2 ) (11)

where 𝛿 (x, y,𝑤) and 𝛿 (y, x,𝑤) are defined in Section 3.3. To prove

this statement, we first show 𝛿 (x, y,𝑤) ≤
𝑃−1∑︁
𝑘=2

𝑑𝑖𝑠𝑡 (x𝑊𝑘
1 , y𝑊𝑘

2 )

and then 𝛿 (y, x,𝑤) ≤
𝑃−1∑︁
𝑘=2

𝑑𝑖𝑠𝑡 (x𝑊𝑘
1 , y𝑊𝑘

2 ). Suppose the optimal

alignment for 𝑥𝑖 is 𝑦 𝑗∗, following must hold: if 𝑥𝑖 > 𝑚𝑎𝑥 (y),
then 𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝑦 𝑗∗) ≥ 𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 ,𝑚𝑎𝑥 (y)); if 𝑥𝑖 < 𝑚𝑖𝑛(y), then
𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 , 𝑦 𝑗∗) ≥ 𝑑𝑖𝑠𝑡𝐷 (𝑥𝑖 ,𝑚𝑖𝑛(y)). Thus, regardless of whether
the alignment distance for particular 𝑥 is produced by distance
function 𝑑𝑖𝑠𝑡𝐷 or 𝑑𝑖𝑠𝑡𝑉 or 𝑑𝑖𝑠𝑡𝐻 (depending on whether the op-
timal alignment path arrives at that cell diagonally or horizon-
tally/vertically), we have:

dist(x𝑊𝑘
1 , y𝑊𝑘

2 ) ≥ 𝑚𝑖𝑛(𝑑𝑖𝑠𝑡𝐷 (𝑦 𝑗 ,𝑈 𝐸 (x) 𝑗 ), 𝑑𝑖𝑠𝑡𝐻 (𝑦 𝑗 , 𝑦 𝑗−1)) for 𝑦 𝑗 ≥ 𝑈𝐸 (x) 𝑗
dist(x𝑊𝑘

1 , y𝑊𝑘
2 ) ≥ 𝑚𝑖𝑛(𝑑𝑖𝑠𝑡𝐷 (𝑦 𝑗 , 𝐿𝐸 (x) 𝑗 ), 𝑑𝑖𝑠𝑡𝐻 (𝑦 𝑗 , 𝑦 𝑗−1)) for 𝑦 𝑗 ≤ 𝐿𝐸 (x) 𝑗

which indicates that 𝛿 (x, y,𝑤) ≤
𝑃−1∑︁
𝑘=2

𝑑𝑖𝑠𝑡 (x𝑊𝑘
1 , y𝑊𝑘

2 ). The same

reasoning applies to 𝛿 (y, x,𝑤) ≤
𝑃−1∑︁
𝑘=2

𝑑𝑖𝑠𝑡 (x𝑊𝑘
1 , y𝑊𝑘

2 ), we know:

max

{︄
𝛿 (x, y,𝑤)
𝛿 (y, x,𝑤)

≤
𝑃−1∑︁
𝑘=2

𝑑𝑖𝑠𝑡 (x𝑊𝑘
1 , y𝑊𝑘

2 ).

4 NEW LOWER BOUNDS BASED ON GLB
In this section, we present the new LBs based on GLB. First, we
present the design and formal definition of GLB_DTW, the GLB vari-
ant for DTW (Section 4.1); then, we showcase the formal definition
of GLB variants for other elastic measures (Section 4.2).

4.1 GLB for Dynamic Time Warping
Improvements of GLB_DTW over LB_Keogh, are two-fold: (1)
GLB_DTW incorporates the distances for aligning the first and



Algorithm 2: Nearest Neighbor Search with GLB
Require: X is a 𝑛 × 𝐿x matrix of 𝑛 data time series
Require: 𝐿 is an 𝑛 × 1 vector with labels of data time series
Require: Y is an𝑚 × 𝐿x matrix of𝑚 query time series
Require: 𝑤 is the warping window
Ensure: 𝑞𝑢𝑒𝑟𝑦_𝑙𝑎𝑏𝑒𝑙 is an𝑚 × 1 vector containing labels of the𝑚 time series in Y
1: function make_envelopes(X, 𝑤)
2: 𝑈𝐸 = []
3: 𝐿𝐸 = []
4: for 𝑖 = 1 to Number_of_Rows(X ) do
5: for 𝑗 = 1 to Number_of_Columns(X ) do
6: 𝑈𝐸 [𝑖, 𝑗 ]= max(X [𝑖, 𝑗 − 𝑤 ] : X [𝑖, 𝑗 + 𝑤 ])
7: 𝐿𝐸 [𝑖, 𝑗 ]= min(X [𝑖 ] 𝑗−𝑤 : X [𝑖 ] 𝑗+𝑤 )
8: end for
9: end for
10: return 𝑈𝐸, 𝐿𝐸
11: end function
12:
13: function GLB(x, y, yue, xle, yue, yle)
14: 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = initial_distance(x, y) + ending_distance(x, y)
15: 𝑞𝑢𝑒𝑟𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = delta(𝑥 , 𝑦𝑢𝑒 , 𝑦𝑙𝑒)
16: 𝑑𝑎𝑡𝑎_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = delta(𝑦, 𝑥𝑢𝑒 , 𝑥𝑙𝑒)
17: 𝐺𝐿𝐵_𝑑𝑖𝑠𝑡 = 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + max(𝑞𝑢𝑒𝑟𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , 𝑑𝑎𝑡𝑎_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
18: return 𝐺𝐿𝐵_𝑑𝑖𝑠𝑡
19: end function
20:
21: 𝑋𝑈𝐸,𝑋𝐿𝐸 = make_envelopes(X, window)
22: 𝑌𝑈𝐸,𝑌𝐿𝐸 = make_envelopes(Y, window)
23: 𝑞𝑢𝑒𝑟𝑦_𝑐𝑙𝑎𝑠𝑠 = []
24: for 𝑖 = 1to𝑚 do
25: 𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓 𝑎𝑟 =∞
26: 𝑙𝑏_𝑙𝑖𝑠𝑡 = []
27: for 𝑗 = 1to 𝑛 do
28: 𝑙𝑏_𝑙𝑖𝑠𝑡 𝑗 =𝐺𝐿𝐵 (𝑋𝑖 , 𝑌𝑗 , 𝑋𝑈𝐸𝑖 , 𝑋𝐿𝐸𝑖 , 𝑌𝑈𝐸 𝑗 , 𝑌𝐿𝐸 𝑗 )
29: end for
30: 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 = 𝑠𝑜𝑟𝑡 (𝑙𝑏_𝑙𝑖𝑠𝑡 )
31: 𝑋 =𝑋 [𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔]
32: for 𝑗 = 1to 𝑛 do
33: if 𝑙𝑏_𝑑𝑖𝑠𝑡 < 𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓 𝑎𝑟 then
34: 𝑎𝑐𝑡𝑢𝑎𝑙_𝑑𝑖𝑠𝑡 = 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (𝑋 𝑗 , 𝑌𝑖 )
35: if 𝑎𝑐𝑡𝑢𝑎𝑙_𝑑𝑖𝑠𝑡 < 𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓 𝑎𝑟 then
36: 𝑏𝑒𝑠𝑡_𝑠𝑜_𝑓 𝑎𝑟 = 𝑎𝑐𝑡𝑢𝑎𝑙_𝑑𝑖𝑠𝑡
37: 𝑞𝑢𝑒𝑟𝑦_𝑐𝑙𝑎𝑠𝑠𝑖 = 𝐿𝑗
38: end if
39: end if
40: end for
41: end for

last elements from two sequences (the first two terms of Equation
14), whereas LB_Keogh will only include these distances if the first
and/or last element of the candidate series is outside of envelopes
of query series; (2) whereas LB_Keogh only computes envelopes for
query series, GLB_DTW computes envelopes for both data series
(Equation 12) and query series (Equation 13), finds the distances
arising from their respective distance to the other time series and
then takes the maximum between the two.

𝛿𝐷𝑇𝑊 (x, y, 𝑤) =
𝐿y−1∑︂
𝑗=2

⎧⎪⎪⎨⎪⎪⎩
(𝑦 𝑗 −𝑈𝐸 (x) 𝑗 )2 for 𝑦 𝑗 ≥ 𝑈𝐸 (x) 𝑗
(𝑦 𝑗 − 𝐿𝐸 (x) 𝑗 )2 for 𝑦 𝑗 ≤ 𝐿𝐸 (x) 𝑗
0 otherwise

(12)

𝛿𝐷𝑇𝑊 (y, x, 𝑤) =
𝐿x−1∑︂
𝑖=2

⎧⎪⎪⎨⎪⎪⎩
(𝑥𝑖 −𝑈𝐸 (y)𝑖 )2 for 𝑥𝑖 ≥ 𝑈𝐸 (y)𝑖
(𝑥𝑖 − 𝐿𝐸 (y)𝑖 )2 for 𝑥𝑖 ≤ 𝐿𝐸 (y)𝑖
0 otherwise

(13)

Figure 4 shows the LB distance captured by LB_Keogh (Figure
4(b-1)) and GLB_DTW.We observe that by computing envelopes for
the data time series and by considering initial and ending boundary
distances, GLB_DTW improves the tightness of the LB (i.e., includes
more distances than LB_Keogh). Formally defined in Equation 14,
GLB_DTW consists of distances captured by a boundary distance
function, query envelope, and data envelope:

𝐺𝐿𝐵_𝐷𝑇𝑊 =

√︄
(𝑥𝑖 − 𝑦𝑖 )2 + (𝑥𝐿x − 𝑦𝐿y )2 +𝑚𝑎𝑥

{︃
𝛿𝐷𝑇𝑊 (y, x, 𝑤)
𝛿𝐷𝑇𝑊 (x, y, 𝑤) (14)

Table 5: Summary of GLB variants for ERP, MSM, TWED,
LCSS, EDR, and SWALE.

ERP

Boundaries (x𝑖 − 𝑦 𝑗 )2

UE UE(x)𝑗 =𝑚𝑎𝑥 (𝑥𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑥𝑚𝑖𝑛 (𝐿x, 𝑗+𝑤) );𝑈𝐸 (y)𝑖 =𝑚𝑎𝑥 (𝑦𝑚𝑎𝑥 (1,𝑖−𝑤) : 𝑦𝑚𝑖𝑛 (𝐿y,𝑖+𝑤) )
LE LE(x)𝑗 =𝑚𝑖𝑛(𝑥𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑥𝑚𝑖𝑛 (𝐿x, 𝑗+𝑤) );𝐿𝐸 (y)𝑖 =𝑚𝑖𝑛(𝑦𝑚𝑎𝑥 (1,𝑖−𝑤) : 𝑦𝑚𝑖𝑛 (𝐿y,𝑖+𝑤) )

𝛿 (y, x,𝑤) ∑︁𝐿x−1
𝑖=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝑖𝑛((𝑥𝑖 −𝑈𝐸 (y)𝑖 )2, (𝑥𝑖 − 𝑔)2) for 𝑥𝑖 ≥ 𝑈𝐸 (y)𝑖
𝑚𝑖𝑛((𝑥𝑖 − 𝐿𝐸 (y)𝑖 )2, (𝑥𝑖 − 𝑔)2) for 𝑥𝑖 ≤ 𝐿𝐸 (y)𝑖
0 otherwise

𝛿 (x, y,𝑤) ∑︁𝐿𝑦−1
𝑗=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝑖𝑛((𝑦 𝑗 −𝑈𝐸 (x) 𝑗 )2, (𝑦 𝑗 − 𝑔)2) for 𝑦 𝑗 ≥ 𝑈𝐸 (x) 𝑗
𝑚𝑖𝑛((𝑦 𝑗 − 𝐿𝐸 (x) 𝑗 )2, (𝑦 𝑗 − 𝑔)2) for 𝑦 𝑗 ≤ 𝐿𝐸 (x) 𝑗
0 otherwise

MSM

Boundaries

|x1 − 𝑦1 | +𝐶 (𝑥𝐿x , 𝑥𝐿x−1, 𝑦𝐿y , 𝑦𝐿y−1)𝑤ℎ𝑒𝑟𝑒

C(x𝐿x , 𝑥𝐿x−1, 𝑦𝐿y , 𝑦𝐿y−1) =𝑚𝑖𝑛

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚𝑖𝑛( |𝑥𝐿𝑋 − 𝑦𝐿𝑌 |, 𝑐) if

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥𝐿x−1 ≥ 𝑥𝐿x ≥ 𝑦𝐿y
𝑥𝐿x−1 ≤ 𝑥𝐿x ≤ 𝑦𝐿y
𝑦𝐿y−1 ≥ 𝑦𝐿y ≥ 𝑥𝐿x
𝑦𝐿y−1 ≤ 𝑦𝐿y ≤ 𝑥𝐿x

𝑚𝑖𝑛

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|𝑥𝐿x − 𝑦𝐿y |
𝑐 + |𝑥𝐿x − 𝑥𝐿x−1 |
𝑐 + |𝑦𝐿y − 𝑦𝐿y−1 |

otherwise

UE UE(x)𝑗 =𝑚𝑎𝑥 (𝑥𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑥𝑚𝑖𝑛 (𝐿x, 𝑗+𝑤) );𝑈𝐸 (y)𝑖 =𝑚𝑎𝑥 (𝑦𝑚𝑎𝑥 (1,𝑖−𝑤) : 𝑦𝑚𝑖𝑛 (𝐿y,𝑖+𝑤) )
LE LE(x)𝑗 =𝑚𝑖𝑛(𝑥𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑥𝑚𝑖𝑛 (𝐿x, 𝑗+𝑤) );𝐿𝐸 (y)𝑖 =𝑚𝑖𝑛(𝑦𝑚𝑎𝑥 (1,𝑖−𝑤) : 𝑦𝑚𝑖𝑛 (𝐿y,𝑖+𝑤) )

𝛿 (y, x,𝑤) ∑︁𝐿𝑥−1
𝑖=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝑖𝑛( |𝑥𝑖 −𝑈𝐸 (y)𝑖 |, 𝑐) for 𝑥𝑖 ≥ 𝑈𝐸 (y)𝑖
𝑚𝑖𝑛( |𝑥𝑖 − 𝐿𝐸 (y)𝑖 |, 𝑐) for 𝑥𝑖 ≤ 𝐿𝐸 (y)𝑖
0 otherwise

𝛿 (x, y,𝑤) ∑︁𝐿𝑦−1
𝑗=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝑖𝑛( |𝑦 𝑗 −𝑈𝐸 (x) 𝑗 |, 𝑐) for 𝑦 𝑗 ≥ 𝑈𝐸 (x) 𝑗
𝑚𝑖𝑛( |𝑦 𝑗 − 𝐿𝐸 (x) 𝑗 |, 𝑐) for 𝑦 𝑗 ≤ 𝐿𝐸 (x) 𝑗
0 otherwise

TWED

Boundaries (x1 − 𝑦1)2 +𝑚𝑖𝑛

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑥𝐿x − 𝑦𝐿y )2 + (𝑥𝐿x−1 − 𝑦𝐿y−1)2

(𝑥𝐿x − 𝑥𝐿x−1)2 + 𝜆
(𝑦𝐿y − 𝑦𝐿y−1)2 + 𝜆

UE UE(x)𝑗 =𝑚𝑎𝑥 (𝑥𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑥𝑚𝑖𝑛 (𝐿x, 𝑗+𝑤) );𝑈𝐸 (y)𝑖 =𝑚𝑎𝑥 (𝑦𝑚𝑎𝑥 (1,𝑖−𝑤) : 𝑦𝑚𝑖𝑛 (𝐿y,𝑖+𝑤) )
LE LE(x)𝑗 =𝑚𝑖𝑛(𝑥𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑥𝑚𝑖𝑛 (𝐿x, 𝑗+𝑤) );𝐿𝐸 (y)𝑖 =𝑚𝑖𝑛(𝑦𝑚𝑎𝑥 (1,𝑖−𝑤) : 𝑦𝑚𝑖𝑛 (𝐿y,𝑖+𝑤) )

𝛿 (y, x,𝑤) ∑︁𝐿𝑋−1
𝑖=2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚𝑖𝑛((𝑥𝑖 −𝑈𝐸 (y)𝑖 )2 + (𝑥 𝑗−1 −𝑈𝐸 (y)𝑖−1)2)
for 𝑥𝑖 ≥ 𝑈𝐸 (y)𝑖 , 𝑥𝑖−1 ≥ 𝑈𝐸 (y)𝑖
𝑚𝑖𝑛((𝑥𝑖 − 𝐿𝐸 (y)𝑖 )2 + (𝑥𝑖−1 − 𝐿𝐸 (y)𝑖−1)2)
for 𝑥𝑖 ≤ 𝐿𝐸 (y)𝑖 , 𝑥𝑖−1 ≤ 𝐿𝐸 (y)𝑖
0 otherwise

𝛿 (x, y,𝑤) ∑︁𝐿𝑌−1
𝑗=2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚𝑖𝑛((𝑦 𝑗 −𝑈𝐸 (x) 𝑗 )2 + (𝑦 𝑗−1 −𝑈𝐸 (x) 𝑗−1)2)
for 𝑦 𝑗 ≥ 𝑈𝐸 (x) 𝑗 , 𝑦 𝑗−1 ≥ 𝑈𝐸 (x) 𝑗
𝑚𝑖𝑛((𝑦 𝑗 − 𝐿𝐸 (x) 𝑗 )2 + (𝑦 𝑗−1 − 𝐿𝐸 (x) 𝑗−1)2)
for 𝑦 𝑗 ≤ 𝐿𝐸 (x) 𝑗 , 𝑦 𝑗−1 ≤ 𝐿𝐸 (x) 𝑗
0 otherwise

LCSS

Boundaries
M𝐿𝐶𝑆𝑆 (𝑥1, 𝑦1, 𝜖) +𝑀𝐿𝐶𝑆𝑆 (𝑥𝐿x , 𝑦𝐿y , 𝜖)𝑤ℎ𝑒𝑟𝑒

M𝐿𝐶𝑆𝑆 (𝐴, 𝐵, 𝜖) =
{︄
1 if |𝐴 − 𝐵 | ≤ 𝜖
0 otherwise

UE UE(x)𝑗 =𝑚𝑎𝑥 (𝑥𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑥𝑚𝑖𝑛 (𝐿x, 𝑗+𝑤) );𝑈𝐸 (y)𝑖 =𝑚𝑎𝑥 (𝑦𝑚𝑎𝑥 (1,𝑖−𝑤) : 𝑦𝑚𝑖𝑛 (𝐿y,𝑖+𝑤) )

LE LE(x)𝑗 =𝑚𝑖𝑛(𝑥𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑥𝑚𝑖𝑛 (𝐿x, 𝑗+𝑤) );𝐿𝐸 (y)𝑖 =𝑚𝑖𝑛(𝑦𝑚𝑎𝑥 (1,𝑖−𝑤) : 𝑦𝑚𝑖𝑛 (𝐿y,𝑖+𝑤) )

𝛿 (y, x,𝑤) ∑︁𝐿𝑥−1
𝑖=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑀𝐿𝐶𝑆𝑆 (𝑥𝑖 ,𝑈 𝐸 (y)𝑖 ) for 𝑥𝑖 ≥ 𝑈𝐸 (y)𝑖
𝑀𝐿𝐶𝑆𝑆 (𝑥𝑖 , 𝐿𝐸 (y)𝑖 ) for 𝑥𝑖 ≤ 𝐿𝐸 (y)𝑖
0 otherwise

𝛿 (x, y,𝑤) ∑︁𝐿𝑦−1
𝑗=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑀𝐿𝐶𝑆𝑆 (𝑦 𝑗 ,𝑈 𝐸 (x) 𝑗 ) for 𝑦 𝑗 ≥ 𝑈𝐸 (x) 𝑗
𝑀𝐿𝐶𝑆𝑆 (𝑦 𝑗 , 𝐿𝐸 (x) 𝑗 ) for 𝑦 𝑗 ≤ 𝐿𝐸 (x) 𝑗
0 otherwise

GLB Variants for Elastic Measures without Existing Lower Bounds

EDR

Boundaries 0 + min

{︄
1
𝑀𝐸𝐷𝑅 (𝑥𝐿x , 𝑦𝐿y , 𝜖)

, where M𝐸𝐷𝑅 (𝐴, 𝐵, 𝜖) =
{︄
0 if |𝐴 − 𝐵 | ≤ 𝜖
1 otherwise

UE UE(x)𝑗 =𝑚𝑎𝑥 (𝑥𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑥𝑚𝑖𝑛 (𝐿x, 𝑗+𝑤) );𝑈𝐸 (y)𝑖 =𝑚𝑎𝑥 (𝑦𝑚𝑎𝑥 (1,𝑖−𝑤) : 𝑦𝑚𝑖𝑛 (𝐿y,𝑖+𝑤) )
LE LE(x)𝑗 =𝑚𝑖𝑛(𝑥𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑥𝑚𝑖𝑛 (𝐿x, 𝑗+𝑤) );𝐿𝐸 (y)𝑖 =𝑚𝑖𝑛(𝑦𝑚𝑎𝑥 (1,𝑖−𝑤) : 𝑦𝑚𝑖𝑛 (𝐿y,𝑖+𝑤) )

𝛿 (x, y,𝑤) ∑︁𝐿𝑌−1
𝑗=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑀𝐸𝐷𝑅 (𝑦 𝑗 ,𝑈 𝐸 (x) 𝑗 , 𝜖) for 𝑦 𝑗 ≥ 𝑈𝐸 (x) 𝑗
𝑀𝐸𝐷𝑅 (𝑦 𝑗 , 𝐿𝐸 (x) 𝑗 , 𝜖) for 𝑦 𝑗 ≤ 𝐿𝐸 (x) 𝑗
0 otherwise

𝛿 (y, x,𝑤) ∑︁𝐿𝑋−1
𝑖=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑀𝐸𝐷𝑅 (𝑥 𝑗 ,𝑈 𝐸 (y)𝑖 , 𝜖) for 𝑥 𝑗 = 𝑖 ≥ 𝑈𝐸 (y)𝑖
𝑀𝐸𝐷𝑅 (𝑥𝑖 , 𝐿𝐸 (y)𝑖 , 𝜖) for 𝑥𝑖 ≤ 𝐿𝐸 (y)𝑖
0 otherwise

SWALE

Boundaries M𝑆𝑊𝐴𝐿𝐸 (𝑥𝐿x , 𝑦𝐿y , 𝜖), where𝑀𝑆𝑊𝐴𝐿𝐸 (𝐴, 𝐵, 𝜖) =
{︄
𝑟 if |𝐴 − 𝐵 | ≤ 𝜖
𝑝 otherwise

UE UE(x)𝑗 =𝑚𝑎𝑥 (𝑥𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑥𝑚𝑖𝑛 (𝐿x, 𝑗+𝑤) );𝑈𝐸 (y)𝑖 =𝑚𝑎𝑥 (𝑦𝑚𝑎𝑥 (1,𝑖−𝑤) : 𝑦𝑚𝑖𝑛 (𝐿y,𝑖+𝑤) )
LE LE(x)𝑗 =𝑚𝑖𝑛(𝑥𝑚𝑎𝑥 (1, 𝑗−𝑤) : 𝑥𝑚𝑖𝑛 (𝐿x, 𝑗+𝑤) );𝐿𝐸 (y)𝑖 =𝑚𝑖𝑛(𝑦𝑚𝑎𝑥 (1,𝑖−𝑤) : 𝑦𝑚𝑖𝑛 (𝐿y,𝑖+𝑤) )

𝛿 (y, x,𝑤) ∑︁𝐿𝑌−1
𝑗=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑀𝑆𝑊𝐴𝐿𝐸 (𝑦 𝑗 ,𝑈 𝐸 (x) 𝑗 , 𝜖) for 𝑦 𝑗 ≥ 𝑈𝐸 (x) 𝑗
𝑀𝑆𝑊𝐴𝐿𝐸 (𝑦 𝑗 , 𝐿𝐸 (x) 𝑗 , 𝜖) for 𝑦 𝑗 ≤ 𝐿𝐸 (x) 𝑗
0 otherwise

𝛿 (x, y,𝑤) ∑︁𝐿𝑋−1
𝑖=2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑀𝑆𝑊𝐴𝐿𝐸 (𝑥 𝑗 ,𝑈 𝐸 (y)𝑖 , 𝜖) for 𝑥 𝑗 = 𝑖 ≥ 𝑈𝐸 (y)𝑖
𝑀𝑆𝑊𝐴𝐿𝐸 (𝑥𝑖 , 𝐿𝐸 (y)𝑖 , 𝜖) for 𝑥𝑖 ≤ 𝐿𝐸 (y)𝑖
0 otherwise

4.2 GLB Variants of Other Elastic Measures
Having introduced GLB for DTW, we now focus on six alternative
elastic measures. Table 5 summarizes all LBs produced by GLB.



4.2.1 Edit Distance with Real Penalty (ERP). Similar to GLB_DTW,
GLB_ERP uses (𝑥𝑖 − 𝑦 𝑗 )2 as 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (x, y). On the other
hand, as shown in Table 4, while DTW has the same distance
functions for diagonal and horizontal/vertical movements, ERP
has (𝑥𝑖 − 𝑔)2 or (𝑦 𝑗 − 𝑔)2 for horizontal/vertical movements, but
(𝑥𝑖 − 𝑦 𝑗 )2 for diagonal movements; having different distance func-
tions results in two differences of GLB_ERP from GLB_DTW: (1)
GLB_ERP takes the minimum of the two possible distance functions
in the construction of 𝛿 (y, x,𝑤) and 𝛿 (x, y,𝑤), as shown in Table
5 (2) GLB_ERP takes the minimum of possible distance functions
when computing the ending boundary distance.
4.2.2 Longest Common Subsequence (LCSS). As a threshold-based
elastic measure, LCSS employs a matching function𝑀𝐿𝐶𝑆𝑆 (See Ta-
ble 2) to determine if two elements are close enough to be "matched".
GLB_LCSS uses the same matching function 𝑀𝐿𝐶𝑆𝑆 to compute
boundary distances by checking if the two initial elements and
two ending elements from two time series "match" with each other
(see Table 5). In constructing 𝛿 (y, x,𝑤) and 𝛿 (x, y,𝑤) (see Table 5),
the same matching function 𝑀𝐿𝐶𝑆𝑆 is used to compute distances
arising from the distance between one time series and envelopes of
the other time series. A unique feature of LCSS is that LCSS first
calculates similarity and computes distance based on similarity; ac-
cordingly, GLB_LCSS also calculates similarity (𝐿𝐶𝑆𝑆_𝑆𝑖𝑚) before
converting similarity to distance (see Table 5).
4.2.3 Move-Split-Merge (MSM). As shown in Table 3, the align-
ment distance between each pair of elements 𝑥𝑖 and 𝑦𝑖 using MSM
depends on both distance between 𝑥𝑖 and 𝑦𝑖 and 𝑥𝑖−1 and 𝑦𝑖−1,
GLB_MSM defines a new distance function𝐶 to capture the distance
for ending boundary alignment (see Table 5). Since the distance
associated with each movement to the next cell in the distance
matrix can be either |𝑥𝑖 − 𝑦𝑖 | or 𝑐 , GLB_MSM takes the minimum
of the two to ensure the distance is less than the actual distance.
4.2.4 TimeWarp Edit Distance (TWED). Since the distance function
for diagonal movements includes pairwise comparison between 𝑥𝑖
and𝑦 𝑗 as well as 𝑥𝑖−1 and𝑦 𝑗−1 in TWED, GLB_TWED only captures
the distance associated with cases when two consecutive elements
both fall outside of envelopes. Since there are three possible dis-
tances associated with ending boundary alignment, GLB_TWED
takes the minimum among the three alternatives.
4.2.5 EDR. Similar to LCSS, EDR is a threshold-based elastic mea-
sure that employs a match function𝑀𝐸𝐷𝑅 (see Table 5) to decide if
two elements mismatch and add to distance between time series.
As shown in Table 5, GLB_EDR adopts the same𝑀𝐸𝐷𝑅 in defining
the distance when computing 𝛿 (y, x,𝑤) and 𝛿 (x, y,𝑤).
4.2.6 SWALE. Similar to LCSS and EDR, SWALE is a threshold-
based elastic measure that employs a match function𝑀𝐸𝐷𝑅 , with
the difference being SWALE parameterizes the penalty for a mis-
match and the reward for a match with 𝑝 and 𝑟 respectively, instead
of using 1 and 0 for match and mismatch. GLB_SWALE uses the
same matching function to compute the initial and ending bound-
ary distances, as well as in 𝛿 (x, y,𝑤) and 𝛿 (y, x,𝑤) to compute the
distance between one time series and envelopes of the other.

5 EXPERIMENT SETTINGS
In this section, we report our experimental settings. We aim to
provide the first comprehensive study of LBs for a diverse set of

elastic measures. We aim to show in each case how GLB improves
the current state of the art. Therefore, first, we evaluate the per-
formance of GLB against state-of-the-art LBs for DTW, which is
the most widely used elastic measure. Then, we compare GLB with
state-of-the-art LBs of alternative elastic measures. Finally, for elas-
tic measures without known LBs, we present the performance of
GLB, which could serve as the baseline for further research.
Datasets: Our experiments are performed on 128 datasets from
the UCR archive [26]. The UCR archive includes datasets from
various domains and is the largest public collection of labeled time
series datasets. Datasets are normalized and split into training and
test sets. For datasets with varying lengths and missing values, we
resort to pre-processed versions in [70], which used standardized
resampling and interpolation methods to fix these issues.
Platforms: We ran our experiments on a server with the following
configuration: Dual Intel(R) Xeon(R) Silver 4116 (12-corewith 2-way
SMT), 2.10 GHz, 196GB RAM. The server ran Ubuntu 18.04.3 LTS
(64-bit) with Python 3.7.5, Numba 0.53.1, and GCC 8.4.0 compiler.
Implementations: We implemented all methods in Python for
consistency. We employ Numba [53], which translates Python func-
tions to optimized machine code at runtime to accelerate the com-
putation of lower bounds and elastic measures. For reproducibility
purposes, we make our source code available.2
Choice of Parameters:We choose parameters that demonstrated
optimal performance in empirical evaluation [78] or recommended
by authors who proposed these elastic measures (Table 6). For the
choice of warping window,𝑤 , searching for the optimal window
size would require a laborious process [90]. For consistency with
previous evaluation efforts (see references in Table 1), we use a
window size of 5% for all lower bounds and elastic measures. This
window size has also achieved state-of-the-art 1-NN classification
accuracy [74, 78] for unsupervised settings.
Baselines: We compare GLB variants against state-of-the-art LBs
for elastic time series distances. For DTW, we compare GLB_DTW
against the following strong LBs:

• LB_Yi: a simple LB that compares every element of the data
with the min and max values of the query time series

• LB_Kim: a boundary-dependent LB with 𝑂 (1) complexity
• LB_Keogh: the LB that introduced query envelopes
• LB_New: a tight LB with boundary dependence
• LB_Improved: a LB that builds on LB_Keogh and exploits
data time series characteristics to increase its tightness

We focus on key existing LBs for DTW (as identified in Sec-
tion 2, Table 4) and omit comparisons with variants that combine
techniques or introduce adaptations to trade off pruning power for
efficiency. These combinations or adaptations are often orthogonal
contributions that can be incorporated into GLB as well with simi-
lar effects. Instead, we include comparisons with state-of-the-art
LBs of 4 additional elastic measures, namely, ERP, MSM, TWED,
and LCSS, overall 11 LBs spanning 5 elastic measures (see Table
1 for references and Tables 2, 3, and 4 for their exact mathemati-
cal formulations). More specifically, we omitted LB_Enhanced [89]
because it requires a time-consuming parameter tuning process
and, therefore, it is not directly comparable. Similarly, we omitted
LB_Petitjean and LB_Webb, which are variants of LB_Improved.

2www.timeseries.org/glb
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Table 6: Parameters for all elastic measures evaluated.

Elastic Measures Parameters
Dynamic Time Warping (DTW) -

Edit Distance on Real Sequences (EDR) 𝜖 = 0.1
Longest Common Subsequence (LCSS) 𝜖 = 0.2
Sequence Weighted Alignment (SWALE) 𝜖 = 0.2, 𝑝 = 5, 𝑟 = 1
Edit Distance with Real Penalty (ERP) 𝑔𝑎𝑝 = 0

Move-Split-Merge (MSM) 𝑐 = 0.5
Time Warp Edit Distance (TWE) 𝜆 = 1, 𝜈 = 0.0001

Tighter lower bounds, like LB_Improved and LB_New, typically
involve higher costs, resulting in poor speedup relative to their
impressive pruning power. Therefore, we evaluate LBs in isolation
but also, as noted in [54], in a cascade, where the expensive LBs are
only computed for the cases that cannot be pruned by cheaper LBs.
To take advantage of such property, we evaluate the performance
of LB_Improved and LB_New running together with LB_Keogh.
Metrics: We compare the effectiveness lower bounds on (1) prun-
ing power and (2) speedup. Pruning power is the percentage of
the true distance computation avoided in the 1-NN search due to
adopting a lower bound. Speedup is calculated by dividing the run-
time of traditional 1-NN search by the runtime of 1-NN search
using a lower bound. We compute all reusable components of lower
bounds as a pre-processing step to avoid repetitive calculation and
include pre-processing time in our runtime measurement.

6 EXPERIMENTAL RESULTS
In this section, we report the results of our experiments. First,
we evaluate GLB_DTW against existing lower bounds for DTW,
which is the most widely used and studied elastic measure (Section
6.1). Then, we compare GLB variants for elastic measures other
than DTW (including LCSS, ERP, MSM, and TWED) with their
existing lower bounds (Section 6.2). Additionally, we showcase the
performance of novel lower boundswe propose for EDR and SWALE
(Section 6.3). Next, we present an exploratory breakdown analysis of
GLB_DTW to understand the contributions of its three components
to its performance (Section 6.4). Finally, we demonstrate trade-offs
for GLB by varying relevant parameters (Sections 6.5 and 6.6).

6.1 Evaluation of GLB_DTW
To understand if GLB_DTW (Section 3) is an effective LB for DTW,
we evaluate it against existing DTW LBs using their pruning power
and speedup in 1-NN classification task across 128 datasets. Table 7
reports the performance of GLB_DTW against DTW LBs.
Comparison against LB_Kim, LB_Yi, LB_Keogh: As shown in
Table 7, GLB_DTW’s pruning power is higher than LB_Keogh by
11.7%, LB_Kim by 58.5%, and LB_Yi by 22.2% on average. Across
128 datasets, the difference in pruning power between GLB_DTW
and LB_Keogh goes up to 62.3% and for LB_Kim up to 99.0%. The
advantage in pruning power is consistent as out of a total of 128
datasets, GLB_DTW obtains higher pruning power than LB_Kim,
LB_Keogh in 127 datasets (Figure 6, Part (a)) and higher than LB_Yi
in 110 datasets. GLB’s high pruning power shows the effectiveness
of query/data dependencies and boundary distances in establishing
a tighter lower bound. In terms of speedup, GLB_DTW outperforms
LB_Kim in 127 datasets, LB_Keogh in 115 datasets (Figure 6 Part (b)),

Figure 5: Average pruning power and speedup of DTW LBs.

and LB_Yi in 109 datasets. As summarized in Table 6, GLB_DTW’s is
faster than LB_Keogh by 1.6x, faster than LB_Kim by 8x on average,
and faster than LB_Yi by 4.14x. The advantage of GLB_DTW over
LB_Keogh goes up to 3.4x, for LB_Kim up to 36.6x, and for LB_Yi
up to 17.44x. GLB_DTW’s superior speedup results from its higher
tightness over LB_Kim, LB_Keogh, and LB_Yi.
Comparison against LB_New and LB_Improved :We compare
the pruning power and speedup of GLB_DTW against LB_New
and LB_Improved both when they are used in isolation and run-
ning in cascade (with LB_Keogh). Firstly, we compare the pruning
power and speedup of GLB_DTW, LB_New, and LB_Improvedwhen
used in isolation. Table 7 shows the GLB_DTW’s pruning power is
slightly better than LB_New by 0.6%, and worse than LB_Improved
by 2.8% on average. Interestingly, despite the similarity in prun-
ing power among three lower bounds, LB_Improved and LB_New
achieved significantly less speedup than GLB_DTW. Across 128
datasets, GLB_DTW outperforms LB_New in 127 datasets and
LB_Improved in all 128 datasets in terms of speedup. It is worth
noting that the fact that GLB_DTW has less pruning power than
LB_Improved is a result of purposeful design. As we mentioned
in Section 3, GLB can integrate LB_Improved into GLB_DTW by
replacing current envelopes with the tighter LB_Improved and thus
achieve higher pruning power. Nonetheless, the inability to pre-
compute and reuse LB_Improved results in a drastic increase in
runtime. In rare situations where even a slight increase in prun-
ing power would compensate for large overheads, GLB_DTW can
integrate LB_Improved and meet the needs.

Now we focus on the comparison between GLB_DTW running
in a cascade of two envelopes against the cascade of LB_Keogh +
LB_New and the cascade of LB_Keogh + LB_Improved. This set-
ting is important for cases where the precomputation of the GLB
envelopes is not possible or parameters may need to change dy-
namically and, therefore, caching of envelopes is not useful. In



Table 7: Summary of pruning power and speedup for exist-
ing DTW lower bounds and GLB_DTW.

Evaluation of DTW Lower Bounds
Metrics Pruning Power Speedup
LBs Average Max Std Average Max Std

LB_Kim 23.41% 87.44% 0.1166% 2.456x 7.591x 1.0752x
LB_Yi 59.72% 83.28% 21.28% 1.321x 4.331x 0.5325x

LB_Keogh 70.19% 98.49% 27.37% 6.314x 25.071x 6.0849x
LB_New 81.27% 99.42% 22.12% 1.110x 2.696x 0.5178x

LB_Improved 84.71% 99.69% 20.02% 1.492x 3.077x 0.6814x
GLB_DTW 81.93% 99.69% 22.44% 10.176x 41.725x 10.3284x

LBs when running in a cascade
LB_New
(Cascade) 80.70% 99.29% 21.92% 4.779x 19.838x 4.8138x

LB_Improved
(Cascade) 84.0% 99.61% 20.10% 7.393x 32.192x 8.1032x

GLB_DTW
(Cascade) 80.35% 99.62% 23.08% 10.381x 43.491x 10.1959x

terms of speedup, GLB_DTW enjoys a significant advantage by
outperforming LB_Keogh + LB_New in 123 datasets and LB_Keogh
+ LB_Improved in 124 datasets. On average, GLB_DTW is 1.4x faster
than LB_Keogh + LB_Improved and 2.1x faster than LB_Keogh +
LB_New. The evaluation of GLB_DTW, LB_New, and LB_Improved
highlights the fact that high pruning power doesn’t necessarily
translate into high speedup. As "HandOutlines", "AllGestureWi-
imoteX" and "ScreenType" datasets in Figure 5 demonstrate, al-
though LB_Keogh + LB_Improved has higher pruning power than
GLB_DTW, their speedups are significantly less GLB_DTW.

6.2 Evaluation of GLB on Elastic Measures
other than DTW

Having demonstrated the advantage of GLB_DTW over existing
DTW LBs, we now turn our attention to the comparison between
GLB and state-of-the-art LBs of other common elastic measures,
including LCSS, ERP, MSM, and TWED, in terms of pruning power
and speedup. Next, we report the performance of GLB against three
ERP LBs and the LBs of LCSS, MSM, and TWED, respectively.
Comparison against LB_Kim-ERP, LB_ERP, and LB_Keogh-
ERP: Out of a total of 128 datasets, GLB_ERP obtains higher
pruning power than LB_Kim-ERP, LB_ERP, and LB_Keogh-ERP
in 127 datasets, as shown in Figure 6 Part (a). As shown in Table
8, GLB_ERP’s pruning power is higher than LB_Keogh-ERP by
66.9%, LB_Kim-ERP by 53.7%, and LB_Keogh-ERP by 11.7% on av-
erage. In terms of speedup, GLB_DTW outperforms LB_Kim-ERP
in 124 datasets, LB_ERP in 126 datasets, and LB_Keogh-ERP in
118 datasets, as shown in Figure 6 Part (b). As summarized in Ta-
ble 8, GLB_DTW’s is faster by LB_Keogh-ERP by 1.3x, faster than
LB_Kim-ERP by 4.3x on average, and faster than LB_ERP by 4.8x.
GLB_ERP outperforms all ERP lower bounds in speedup.
Comparing with LB_Keogh-LCSS, LB_MSM, and LB_TWED:
Now we focus on LBs of LCSS, MSM, and TWED, which only
have one respective LB reported in the literature. For LCSS, Fig-
ure 6 part (a) shows that GLB_LCSS significantly outperforms
LB_Keogh-LCSS in pruning power: out of a total of 128 datasets,
GLB_LCSS achieves higher pruning power than LB_Keogh-LCSS in
119 datasets. In terms of speedup, GLB_LCSS outperforms LB_Keogh-
LCSS in 76 datasets, as shown in Figure 6 part (b). For MSM,

Table 8: Summary of average pruning power and speedup
for existing LBs andGLBvariants. The last column, “win,” in-
dicates the number of datasets where the corresponding LB
is winning out of a total of 128 datasets in terms of speedup.

Evaluation of Lower Bounds of Other Elastic Measures
Metrics Pruning Power Speedup Win
LBs Average Max Std Average Max Std -

Edit Distance with Real Penalty (ERP)
LB_ERP 0.61% 36.99% 3.66% 0.967x 1.469x 0.0953x 1
LB_Kim 13.87% 76.50% 16.57% 1.134x 3.536x 0.3153x 1

LB_Keogh-ERP 55.84% 96.23% 29.15% 3.222x 10.784x 2.4601x 9
GLB_ERP 67.55% 97.56% 26.67% 4.780x 19.191x 4.4416x 117

Move-Split-Merge (MSM)
LB_MSM 18.97% 92.92% 23.01% 1.358x 7.495x 0.8324x 15
GLB_MSM 42.09% 95.90% 30.82% 2.302x 10.217x 1.9056x 113

Time Warp Edit Distance (TWED)
LB_TWED 2.42% 56.36% 6.8% 0.988x 2.082x 0.1182x 9

GLB_TWED 69.75% 99.78% 31.94% 6.517x 26.285x 6.227x 119
Longest Common Subsequence (LCSS)

LB_Keogh-LCSS 43.72% 100% 29.48% 2.291x 14.257x 2.0396x 52
GLB_LCSS 53.58% 100% 31.19% 2.541x 11.775x 2.1548x 76

(a) Pruning Power Comparison

(b) Speedup Comparison

Figure 6: Comparison of GLB variants and state-of-the-art
LBs for DTW, ERP, LCSS, andMSM. Part(a) and Part(b) show
the pruning power and speedup over 128 datasets, respec-
tively. The blue dots above the diagonal indicate datasets
over which GLB outperforms the state of the art.

we illustrate that GLB_MSM significantly outperforms LB_MSM.
GLB_MSM achieves higher pruning power than LLB_MSM in 120
out of 128 datasets, as shown in Figure 6 Part (a). GLB_MSM prun-
ing power is higher than LB_MSM by 23.13% on average. In terms
of speedup, GLB_MSM outperforms LB_MSM in 113 datasets, as
shown in Figure 6 Part (b), and GLB_MSM is faster than LB_MSM by
1.57x on average. For TWED, we also see that GLB_TWED signifi-
cantly outperforms LB_TWED. GLB_TWED’s achieves higher prun-
ing power than LB_TWED in 125 out of 128 datasets. GLB_TWED
pruning power is higher than LB_TWED by 67.32% on average.
In terms of speedup, GLB_TWED outperforms LB_TWED in 119
datasets, and GLB_TWED is faster than LB_TWED by 6.56x on
average. Based on GLB’s consistent advantage in pruning power
and speedup over existing baselines, we conclude that GLB vari-
ants have established new state-of-the-art performance in popular
elastic measures, including LCSS, MSM, and TWED.



Table 9: Summary of average pruning power and speedup
for GLB_EDR and GLB_SWALE

Evaluation of Novel EDR and SWALE Lower Bounds
Metrics Pruning Power Speedup
LBs Average Max Std Average Max Std

Edit Distance for Real Sequences (EDR)
GLB_EDR 52.55% 97.26% 31.99% 4.096x 28.909x 4.6569x

Sequence Weighted Alignment (SWALE)
GLB_SWALE 85.07% 99.996% 24.66% 10.684x 46.764x 9.9162x

Table 10: Summary of pruning power and speedup for exist-
ing DTW lower bounds and GLB_DTW

Lower Bounds Pruning Power Speedup
Query Only 69.08% 6.260x

Query + Boundary 74.40% 6.737x
Query + Data 79.89% 9.437x

Query + Data + Boundary (GLB) 81.93% 10.17x

6.3 Case Studies of EDR and SWALE LBs
Having shown the comparison between GLB and existing lower
bounds for various elastic measures, we now demonstrate the per-
formance of the novel lower bounds we propose for EDR and
SWALE based on GLB. Table 9 shows the pruning power and
speedup for EDR and SWALE. We observe that GLB_EDR and
GLB_SWALE achieve high pruning power and speed up comparable
to that of state-of-the-art lower bounds for other elastic measures.

6.4 Break Down Analysis
To understand the contribution of various GLB components to
its superior performance, we performed a breakdown analysis of
GLB_DTW to find the contributions of four different component
combinations: query envelopes only, query envelopes and boundary
distances, query envelopes and data envelopes, as well as GLB itself.

As shown in Table 10, adopting data envelopes is the driving
force behind the improvement in pruning power and speedup. To
further understand the contributions of data envelopes, we have
kept a record of the percentage of instances when GLB uses data
envelopes and query envelopes. We found that GLB chooses the
query envelope 50.63% of the time and the data envelope 49.37% of
the time. Such results indicate that using only query envelopes, as in
the case of LB_Keogh, is suboptimal half of the time, and accounting
for both data envelopes and query envelopes is essential.

6.5 Varying Window and other Parameters
In order to assess the effect of varying parameters and changingwin-
dow sizes on the performance of elastic measure LBs, we conduct
a comprehensive evaluation of their impact on the performance
of MSM LBs, which produced exceptional results in recent studies
[78]. In the first experiment, we held the parameter 𝑐 constant at 0.5
while systematically increasing the window size from 5% to 100% of
the length of the original time series. As the window size increases,
the performance of the LBs deteriorates. The results, depicted in
Figure 7(b), indicate a declining speedup of LBs as the window size
increases. Despite this trend, it is evident that GLB_MSM consis-
tently outperforms LB_MSM across all window sizes.

In the second experiment, we maintained a fixed 5% window
size and evaluated ten different parameter values ranging from
0.01 to 500. The results, depicted in Figure 7(a), demonstrate that

(a) Varying elastic measure parameter (b) Varying warping window size
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Figure 7: Average speedup of LB_MSM and GLB_MSM with
varying parameter and warping window size.

variations in this parameter of MSM have limited influence on the
performance of MSM LBs with respect to speedup. Furthermore, it
is evident that GLB_MSM consistently surpasses LB_MSM.

6.6 Varying Pre-computed Envelopes
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Figure 8: Trade-off of precomputation vs. speedup.

In order to evaluate the trade-off between precomputation of data
envelopes and speedup of GLB, we conducted a comprehensive
analysis of GLB_DTW in a cascade with varying degrees of precom-
putation: 0%, 25%, 50%, 75%, and 100%. As precomputation increases,
speedup increases at the cost of higher storage requirements. Our
results, as illustrated in Figure 8, confirm this hypothesis, showing
a positive correlation between increased precomputation from 0%
to 100% and increased speedup.

7 CONCLUSION
In this paper, we presented GLB, a generalized framework for de-
riving lower bounds for elastic measures. Motivated by the dis-
proportionate attention of the research effort to a single elastic
measure, we designed an LB to extract cache-friendly summary
characteristics, adaptively exploit summaries of both query and tar-
get data time series, capture boundary distances in an unsupervised
and parameter-free manner, and achieve high LB tightness with
low computational cost, resulting in substantial speedup. Based on
GLB, we propose new LBs for all elastic measures, including those
without existing LBs in the literature. We extensively evaluate GLB
against existing LBs, resulting in one of the most comprehensive
experimental studies in this area. In particular, we included 11 state-
of-the-art lower bounds spanning 5 elastic measures and used 128
datasets in our evaluation. Our findings show that GLB outperforms
all existing baseline LBs in terms of speedup. GLB LBs for elastic
measures without existing LBs obtain comparable performance to
state-of-the-art LBs of other elastic measures. Overall, GLB is a
generalizable framework for developing efficient LBs that facilitate
accurate and fast time series similarity search.
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