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ABSTRACT
Time-series clustering is a key task in time series analysis, enabling
unsupervised data exploration and often serving as a subroutine for
other tasks. Despite decades of active cross-disciplinary research,
benchmarking of time-series clustering methods has received lim-
ited attention. Existing studies have (i) excluded popular methods
and entire method classes; (ii) used a narrow range of distance
measures; (iii) evaluated only a few datasets; (iv) lacked statistical
validation; (v) had poor reproducibility; or (vi) relied on question-
able evaluation setups. The rise of deep learning—especially foun-
dation models claiming broad generalization—further emphasizes
the need for comprehensive evaluation, as their role in time-series
clustering remains largely untested. To address these gaps, we eval-
uate 84 time-series clustering methods across 10 method classes
from data mining, machine learning, and deep learning. Our anal-
ysis spans 128 time-series datasets and uses rigorous statistical
methods. Within a fair comparison framework, we (i) identify the
top-performing method in each class; (ii) highlight previously over-
looked, high-performing classes; (iii) challenge assumptions about
elastic distance measures; (iv) refute the claimed superiority of deep
learning methods, including foundation models; (v) expose repro-
ducibility issues; (vi) analyze performance variation across dataset
properties; and (vii) assess scalability. Our findings reveal an illusion
of progress: no method significantly outperforms the decade-old
𝑘-Shape method. Still, we highlight a deep learning-based approach
with notable promise. Our results provide a strong benchmark for
advancing time-series clustering, and we have open-sourced our
work to support future research.

PVLDB Reference Format:
John Paparrizos and Sai Prasanna Teja Reddy Bogireddy. Time-Series
Clustering: A Comprehensive Study of Data Mining, Machine Learning,
and Deep Learning Methods. PVLDB, 18(11): 4380 - 4395, 2025.
doi:10.14778/3749646.3749700
PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
www.timeseries.org/tsclusteringeval.

1 INTRODUCTION
A time series is a temporal sequence of ordered, time-indexed mea-
surements. Recent advances in data storage and processing allow
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Table 1: Summary of our experimental evaluation across 128 datasets.
The last four columns show category cardinality and distance mea-
sures (in parentheses) evaluated in previous studies.

Clustering
Class

Category
Cardinality

Distance
Measures [77] [121] [88] [72]

Partitional 6 10 3(3) 5(3) 5(3) 2(9)
Kernel-Based 2 4 ✘ 1(3) ✘ ✘

Hierarchical 2 10 1(1) 1(3) ✘ ✘

Density-Based 3 10 1(2) 2(3) ✘ ✘

Distribution-Based 2 10 ✘ ✘ ✘ ✘

Model-Based 5 - ✘ ✘ ✘ ✘

Shapelet-Based 3 - ✘ 1 1 ✘

Semi-Supervised 2 - ✘ ✘ ✘ ✘

Deep Learning 32 - ✘ ✘ 26 ✘

Foundation 3 - ✘ ✘ ✘ ✘

us to capture and analyze large data volumes, including time se-
ries [69, 78, 79, 86, 92, 93, 98, 124]. Availability of large volumes of
time-series data has led to an enormous interest in their analysis
[61, 108, 115, 129, 130] utilizing tasks such as clustering [10, 13, 47,
59, 81, 120, 121, 127, 128, 132], classification [9, 49, 67, 119], anom-
aly detection [18–23, 23–25, 38, 94–97, 116, 117, 143], and similarity
search [15, 28, 32, 45, 50, 91, 118, 123, 125, 126, 131, 153]. Applica-
tions of time-series analysis are prevalent across various domains
in everyday life, such as astronomy [75, 148], biology [11, 12], eco-
nomics [27, 106], energy sciences [8, 107], engineering [110, 111],
environmental sciences [63, 70], medicine [35, 133], and social sci-
ences [27, 109]. The remarkable growth, along with the widespread
availability of time series data, has stimulated considerable interest
in deriving insights from time series.

Clustering has emerged as a valuable technique in large-scale
data analysis, allowing for effective summarization of dataset char-
acteristics and serving as a crucial preprocessing step for various
time-series analytical tasks. The goal is to partition data into multi-
ple homogeneous groups where each group represents a character-
istic pattern or structure in the data. However, applying traditional
clustering methods to time-series data is challenging due to the
interdependence of values across different time steps in a sequence.
Consequently, the right choice of distance measure is crucial in ac-
curately distinguishing similar and dissimilar time-series sequences.
In recent decades, time-series clustering has received significant
attention [10, 39, 120, 134, 154, 156]. Despite the abundance of clus-
tering techniques and distance measures, factors such as domain
diversity of datasets, distortions in sequences, and high dimension-
ality introduce challenges in developing robust algorithms. All these
characteristics make time-series clustering a hard problem to for-
malize and solve. Therefore, it is imperative to conduct a systematic
evaluation to compare various time-series clustering algorithms
and their distance measures to gather a deeper understanding of
the components that impact the efficacy of diverse models.
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Figure 1: Taxonomy of time-series clustering methods.

Despite growing interest and numerous methods proposed, there
has been a notable lack of thorough benchmarking analyses in the
literature. Existing survey and benchmarking studies [2–4, 54, 77,
84, 88, 90, 121, 149] often suffer from limited scope regarding the
diversity of clustering methods and categories. Furthermore, most
clustering methods presented in these studies are evaluated on a
limited number of datasets and arbitrary choice of assessment met-
rics. Reproducibility issues have emerged as a significant concern.
The unavailability of original implementations for certain methods
and the inadvertent introduction of potential bugs in popular third-
party implementations hinder the ability to accurately replicate
and validate previous findings. Table 1 compares and provides a
quantitative summary of the existing benchmark studies and high-
lights the shortcomings in terms of missing classes and methods of
time-series clustering algorithms and their distance measures. As a
result, the conclusions from these studies are either incomplete or
misleading and do not reflect actual progress in the field.

Given the gaps identified in previous research and the wide-
spread interest in time-series clustering across various industries,
conducting a thorough investigation is crucial. Our study is moti-
vated by the need to address these shortcomings, aiming to provide
research insights into time-series clustering. In addition, through
our experimental evaluation of time-series clustering, we present
several popular research questions (RQ) (see RQ1−RQ3 in Section
2) in the literature concerning (i) determining which time-series
clustering methods, across the diverse classes of classical meth-
ods identified in the literature, demonstrate superior performance
on a wide range of datasets; (ii) investigating the role of distance
measures, including the effect of supervised tuning on parameter-
dependent measures, in time-series clustering tasks; and (iii) ex-
ploring how deep learning and foundation models are leveraged
in time-series clustering and assessing the impact they have on
clustering performance. There are many misconceptions and biases
in the answers to these questions, as they are derived from several
popular prior studies on time-series clustering. Many of these stud-
ies employed buggy implementations, omitted methods, provided
no or unclear parameter tuning instructions, omitted datasets, and
arbitrarily selected metrics with little or no statistical testing. There-
fore, it is imperative to address these enduring research questions.

In this study, we perform the most comprehensive analysis of
time-series clustering to date, unveiling popular research questions
in the current literature. In terms of breadth of this study, as de-
picted in Table 1, we incorporate 10 different clustering classes
and consistently exceed the number of clustering techniques and
appropriate distance measures implemented in each clustering class

compared to previous influential benchmarking studies. In addi-
tion, we present a taxonomy of time-series clustering methods
in Figure 1, which summarizes the research efforts in this field.
Regarding the depth, we compare all the clustering techniques
presented in the study by evaluating them on the UCR time-series
archive [34], comprising 128 datasets. This evaluation extends be-
yond the norm established by most individual time-series clustering
studies [52, 101, 103] and benchmarking studies [72, 77, 88, 121],
as we assess the performance of each clustering technique using
three widely recognized clustering evaluation metrics. Additionally,
two statistical tests are employed to demonstrate the statistical
significance of the performance of clustering assessment metrics
for a clustering technique relative to others, thereby contributing
to a more comprehensive understanding of time-series clustering.

In summary, this study makes several key contributions: (i)
it demonstrates that none of the time-series clustering methods
proposed in the literature significantly outperform a decade-old
method, namely, 𝑘-Shape; (ii) it offers a comprehensive evaluation
of clustering categories and techniques often omitted from baseline
comparisons in individual studies and benchmarking papers on
time-series clustering; (iii) it critically assesses recent claims con-
cerning parameter tuning and issues of reproducibility; (iv) it shows
that deep learning-based time-series clustering models, including
foundation models, do not statistically outperform leading classical
models; (v) it introduces a novel distance-based deep contrastive
time-series clustering model that exhibits promising potential; (vi)
it includes a systematic evaluation of leading clustering algorithms,
assessing performance variability across key dataset characteris-
tics, analyzing their accuracy–runtime trade-offs, and performing
a scalability analysis with respect to sequence length and dataset
size; (vii) to facilitate future research and address the challenges
identified, we are releasing a comprehensive, open-source library
for time-series clustering at [1].

We start with the discussion on three popular research questions
(Section 2). Then, we present our contributions:
• We provide an end-to-end and open-source benchmark contain-

ing 84 clustering methods spanning 10 different classes to ensure
the reproducibility of our results (Section 3).

• We conduct a comprehensive evaluation of 8 well-known classes
of classical time-series clustering methods (Section 4).

• We review and evaluate popular deep learning time-series clus-
tering methods from the literature (Section 5.1).

• We further decompose the components of deep learning-based
models into different design choices and analyze the impact of
each component (Section 5.2 and 5.3).

• Finally, we present a comprehensive evaluation of clustering
methods, assessing performance in terms of accuracy–runtime
trade-offs, data distribution, and scalability (Section 6).

We conclude with the implications of our work and a discussion of
new directions and challenges (Section 7).

2 THE THREE RESEARCH QUESTIONS
In this section, we outline three primary research questions arising
from misconceptions and biases in time-series clustering. These
questions reflect broader misunderstandings in the field that have,
over time, been reinforced by subsequent research. Specifically,
these questions address: (1) dataset selection, (2) evaluation metrics



and statistical tests, and (3) baseline comparisons and reproducibil-
ity. One major issue is the arbitrary selection of datasets for eval-
uation, as observed in [52, 77, 101, 103]. Often, researchers offer
insufficient rationale for dataset choices, which may compromise
claims of generalizability. Similarly, the choice of evaluation met-
rics and statistical tests can appear discretionary; applying these
consistently would improve research objectivity and transparency.
A further concern is the selection of baselines for comparisons.
Some studies [52, 72, 77, 88, 101, 103] include a limited set of base-
lines, potentially omitting key methods that would provide a more
comprehensive benchmark. Reproducibility also emerges as a sig-
nificant challenge: the unavailability of original implementations
complicates efforts to replicate and validate results in many pub-
lished studies. Moreover, certain methods conceal critical evalua-
tion parameters. For example, [72] evaluated popular parameter-
dependent measures using default parameter values, thus obscuring
their true potential. Similarly, [71] tested baseline models under
parameter settings that appear suboptimal compared to those of the
proposed approach. In particular, some baselines were restricted to
50 iterations, whereas the proposed model ran for 300 iterations;
baseline centroids were initialized randomly, while the proposed
model used 𝑘-Means++ initialization, a well-established enhance-
ment that improves clustering quality. This reliance on additional
iterations and 𝑘-Means++ initialization provided a performance
advantage that baseline models did not leverage, raising concerns
about fairness. Such disparities can mask the baseline methods’ ca-
pabilities and complicate assessment of individual contributions in
the proposed model. These issues continue to hinder the ability to
draw definitive conclusions in the field, underscoring the persistent
nature of these misconceptions across the literature.

Before framing our research questions, we must clarify that
we do not suggest the discussed misconceptions were deliberately
created or maliciously fabricated. Instead, we acknowledge they
might arise from resource limitations, honest misinterpretations, or
oversight. To address these misconceptions, we will use a question-
and-answer format in our discussion to provide clarity and insight.
RQ 1:Which classical time-series clustering methods exhibit
superior performance across datasets?
Discussion: Literature lacks consensus on the most effective clas-
sical time-series clustering technique, as studies present conflicting
results. For example, [77] evaluated nine partitional, hierarchical,
and density-basedmethods, concluding that nomethod consistently
outperforms others, since results depend on datasets and evaluation
metrics. Similarly, [88] compared partitional methods and found
no significant differences among 𝑘-AVG, 𝑘-Shape, and 𝑘-DBA. This
ambiguity arises from two factors. First, many studies omit entire
categories of methods, yielding incomplete evaluations. Second,
methodological inconsistencies, such as variations in algorithm im-
plementations (e.g., the tslearn implementation of 𝑘-Shape differs
from the original authors) and differences in dataset selection or
evaluation metrics, hinder reliable comparison. These limitations
preclude definitive conclusions regarding the relative efficacy of
classical clustering approaches.
RQ 2: What is the role of distance measures in time-series
clustering tasks, andhowdoes supervised tuning of parameter-
dependent measures affect their clustering performance?

Discussion:Distancemeasures are pivotal in time-series clustering,
as they quantify the degree of similarity or dissimilarity between se-
quences, influencing clustering outcomes and the algorithm’s ability
to discern patterns. Given the sequential nature of time-series data,
often exhibiting variations in timing, amplitude, and shape, select-
ing an appropriate measure is essential. Traditionally, Euclidean Dis-
tance (ED) has been deemed inadequate for capturing shifts within
sequences, leading to the belief in Dynamic TimeWarping (DTW) as
the superior approach due to its capacity to handle temporal distor-
tions. However, Holder et al. [72] challenged this view by claiming
ED’s superiority in clustering tasks and reporting that parameter-
free measures outperform many parameter-dependent measures.
We contend that their study did not adequately explore parameter
tuning for parameter-dependent measures, potentially overlooking
their full capability, since the performance of parameter-dependent
measures is highly sensitive to parameter settings. These conflict-
ing findings underscore the need for a comprehensive evaluation
of distance measures and the impact of supervised tuning. The lack
of consensus on optimal distance measures and tuning procedures
can lead practitioners to make suboptimal decisions.
RQ 3:Do deep learning-basedmethods, including foundation
models, outperform SOTA classical clustering methods?
Discussion: While the prevailing consensus suggests that deep
learning-based methods for time-series clustering surpass classical
approaches, reflecting their success in domains such as computer
vision [65, 147] and natural language processing [114, 155] the
evidence supporting their superiority in time-series clustering is
not definitive. Foundation models, such as large pre-trained neu-
ral networks and transformers, have introduced new possibilities
for time-series clustering. Though successful in other domains,
their application to time-series clustering is still largely unexplored
and lacks comprehensive evaluation. Studies asserting that deep
learning-based techniques surpass traditional algorithms often en-
counter several methodological challenges [88, 101, 103].

First, the choice of datasets, assessment metrics, and baselines
can be arbitrary, lacking comprehensive evaluation and rendering
the results difficult to generalize. Additionally, some studies [101]
rely on baseline comparisons derived from previous research with-
out actually re-running the original methods, which raises concerns
about fairness in these settings. Others use highly tuned training
parameters, such as learning rate and batch size, tailored to each
dataset. Moreover, the absence of documentation for both the pa-
rameters and the tuning procedures impedes the generalizability
of the approach and, in some instances, makes it impossible to
reproduce the reported findings. This lack of transparency also
calls into question the purportedly unsupervised nature of these
methods, given the considerable degree of manual intervention
involved. There is also a lack of surveys or benchmarks focusing on
deep learning-based methods. Previous reviews [72, 77, 121] have
predominantly excluded deep learning-based methods, leaving a
gap in the comparative understanding of these approaches. The
sole benchmark study on deep learning-based time-series cluster-
ing [88] reports significant performance improvements attributable
to deep learning. However, despite its extensive evaluation, this
study introduces too many variables to draw rigorous conclusions
and overlooks a substantial portion of classical methods in its base-
line comparisons. Moreover, among the classical methods selected



as baselines, we identified several implementation bugs. For in-
stance, the tslearn implementation of 𝑘-Shape is inconsistent with
the original author’s implementation and was erroneously applied
to multivariate data by using only the first channel.

3 BACKGROUND
In this section, we review the relevant background necessary for
our benchmarking study of time-series clustering methods.
Datasets: We conduct our evaluation using the UCR Time Se-
ries Archive [40], which is currently the largest publicly avail-
able collection of labeled time series datasets. The archive consists
of 128 datasets collected from a diverse range of application do-
mains, including biosignals, motion-capture data, image-based data,
spectral and audio data, and device and power readings, among
others. The datasets contain between 40 and 24,000 time series,
with sequence lengths ranging from 15 to 2,844. All datasets are
z-normalized, and each time series is associated with a single class
label. A small subset of the datasets contains missing values and
varying sequence lengths. Following the recommendations of the
archive’s authors [34], we apply linear interpolation to impute
missing values and resample shorter time series.
Statistical Analysis: We used the Wilcoxon signed-rank test [14,
43, 60, 150] with a 99% confidence level to perform analysis on
pairwise comparison of results over multiple datasets. To control
the family-wise error rate resulting from multiple pairwise compar-
isons, we adjusted the obtained p-values using theHolm–Bonferroni
correction [73]. This reduces the likelihood of false positives while
maintaining greater statistical power. We also apply the Friedman
test [56] followed by the Nemenyi test [48] with a 90% confidence
level to compare results across multiple methods and datasets as
pairwise testing is not always adequate since null hypotheses are
rejected because of random chance.
Platform: We conduct experiments on a cluster of 3 servers with
identical configuration: Dual Intel(R) Xeon(R) Platinum 8168 (96-
core with 2-way SMT), 2.70 GHz, 2TB RAM. Each server has an 8
NVIDIA Tesla V100-32GB with Ubuntu 18.04.3 LTS (64-bit) system.
Implementation: We have compiled a Python library containing
state-of-the-art time-series clustering approaches evaluated in our
study to ensure that all the comparisons are performed under the
same framework for a consistent evaluation in terms of both per-
formance and efficiency. For reproducibility purposes, we make all
datasets, source codes, and results publicly available at [1].
Experimental Settings: To ensure the robustness of our findings,
each algorithm evaluated in this study was executed independently
10 times. The resulting metrics were averaged prior to reporting
and subsequent statistical analysis. To facilitate a fair comparison
among clustering algorithms, common parameters were consis-
tently set across all methods, unless explicitly stated otherwise. The
number of clusters 𝑘 was set equal to the true number of classes
in each dataset; the number of iterations was fixed at 100; and the
initialization strategy was specified as ”𝑟𝑎𝑛𝑑𝑜𝑚”.
Evaluation Framework: We evaluate the clustering performance
using the following evaluation criteria: Rand Index (RI) [136], Ad-
justed Rand Index (ARI) [74] and Normalized Mutual Informa-
tion (NMI) [157]. RI is a popular evaluation criterion in the lit-
erature [64, 101, 120, 151, 156, 159]. It ranges from 0 to 1, where 1
indicates perfect clustering and 0 indicates complete disagreement.

Table 2: Pair-wise comparison of scalable partitional clustering algo-
rithms with 𝑘-AVG + ED as the baseline.

Clustering
Algorithm

Distance
Measure

Better
(Adj. P Val) RI ARI NMI > = <

𝑘-Shape SBD ✔ (1.02e-6) 0.7335 0.2610 0.3444 86 4 38
KASBA MSM ✘ (3.60e-3) 0.7223 0.2487 0.3345 81 0 47
𝑘-DBA DTW ✘ (1.00e-0) 0.6791 0.2021 0.2776 47 0 81
𝑘-SC STID ✘ (9.99e-1) 0.6282 0.1788 0.2492 38 0 90
k-AVG ED - 0.7160 0.2152 0.2994 - - -

However, the expected RI of two random clustering results is not
constant. ARI assumes a generalized hyper-geometric distribution
where ground-truth and predicted clusters are randomly chosen,
while the number of clusters and objects remains constant. NMI
compares ground-truth to predicted clusters by quantifying mutual
information. For the remainder of the evaluation, tabular results
for all methods are presented in the following format. The "Better
(Adj P Val)" column indicates whether an algorithm significantly
outperforms the baseline based on the Wilcoxon test, with statisti-
cal significance determined using the Holm–Bonferroni-adjusted
p-values. The symbol ✔ signifies that the algorithm exhibits statis-
tically significant improvement relative to the baseline. Conversely,
✘ denotes statistically inferior performance compared to the base-
line. The "RI," "ARI," and "NMI" columns display the mean values
for the Rand Index, Adjusted Rand Index, and Normalized Mutual
Information across 128 datasets. The last three columns show the
number of datasets where an algorithm’s RI is better (" > "), equal
(" = "), or worse (" < ") compared to the baseline. To assess the
statistical differences in performance across multiple methods, we
apply the Friedman-Nemenyi test to obtain the average rank of
methods across all datasets, using the results to generate the critical
difference (CD) diagrams. The solid line in the CD diagram indicates
the group of methods that show no statistical significance.

4 CLASSICAL TIME-SERIES CLUSTERING
In this section, we will discuss time-series clustering methods, cat-
egorized into two approaches by data utilization, as shown in Fig-
ure 1. The first includes methods that operate on raw data, adapting
algorithms with novel distance measures or centroid computations.
The second approach involves feature or model based methods
that transform raw sequential data into representations suitable
for Euclidean space, enabling conventional clustering algorithms.
Our evaluation examines five categories within the raw-data based
domain: partitional, kernel, density, hierarchical, and distribution-
based techniques. Additionally, we investigate three categories
within the model and feature based domain: shapelet-based, semi-
supervised, and model-based techniques.
4.1 Partitional Clustering
𝑘-AVG [102] and Partition Around Medoids (PAM) [82] are two
popular partitional clustering methods. 𝑘-AVG minimizes intra-
cluster distances by iteratively updating centroids, computed as
the average of all points in a cluster, which may not correspond
to actual samples. In contrast, PAM selects representative data
points—medoids—as cluster centers, ensuring that all centers are
real samples. Although PAM offers robustness against outliers and
accommodates a variety of distance measures beyond Euclidean,
its scalability is limited in comparison to 𝑘-AVG, which demon-
strates linear scalability with dataset size. Shape-based clustering



Figure 2: CD diagrams of (a) Partitional, (b) Semi-Supervised, (c)
Model, (d) Hierarchical, (e) Kernel, (f) Density, (g) Distribution, and
(h) Shapelet clustering algorithms based on their average ranks
across datasets. The solid lines indicate groups of methods whose
differences are not statistically significant.

algorithms, which utilize distance measures invariant to scaling,
translation, and shifting, represent another approach within par-
titional clustering. Among these, 𝑘-Shape [120] emerges as the
leading 𝑘-AVG-like algorithm due to its scalability and accuracy
in effective distance measure and centroid computation. Addition-
ally, 𝑘-DBA [134] extends the 𝑘-AVG by incorporating DTW as
the distance measure and employing DTW Barycenter Averaging
(DBA) for centroid update, offering a more representative average
of sequential data sets than simple averaging. Similarly, 𝑘-SC [154]
adapts 𝑘-AVG to accommodate a scaling and translation invari-
ant distance measure (STID), further refining the centroid update
through the spectral norm of a matrix. KASBA [71] extends 𝑘-AVG
with MSM distance measure and an alternative elastic 𝑘-Means++
centroids. The distance calculation can be pruned using the triangle
inequality, and centroids are updated via stochastic subgradient
descent for elastic barycenter averaging.
Evaluation of Partitional Clustering: For the first set of ex-
periments, we performed an analysis of several widely recognized
scalable partitional clustering algorithms. For these comparisons,
we selected 𝑘-AVG as the baseline method due to its simplicity and
widespread usage in clustering benchmarks. The results, presented
in Table 2, demonstrate that 𝑘-Shape and KASBA surpass the base-
line algorithm, k-AVG, in 86 and 81 out of 128 datasets, respectively,
whereas, 𝑘-DBA and 𝑘-SC do so on only 47 and 38 datasets, respec-
tively. Wilcoxon test (as presented in the “Better” column of Table
2) indicates that only 𝑘-Shape significantly outperforms 𝑘-AVG.
Furthermore, the Friedman-Nemenyi test from Figure 2(a) reveals
that 𝑘-Shape significantly outperforms both KASBA and 𝑘-AVG.

Consequently, we focus our subsequent analyses on 𝑘-Shape, as
it is the only method that surpasses the baseline. We have identi-
fied that the widely used 𝑘-Shape implementation from tslearn
contains critical bugs. To address these issues, we employed the
original implementation provided by the 𝑘-Shape authors to gener-
ate our results, thereby resolving reproducibility concerns observed
in recent literature. Given that 𝑘-Shape outperforms all scalable
partitional methods, we will adopt 𝑘-Shape as the new baseline for
subsequent analyses until a new method is found that statistically
outperforms 𝑘-Shape. Subsequently, we evaluated the efficacy of

Table 3: Pair-wise comparison of PAM across various popular dis-
tance measures using 𝑘-Shape as the baseline. For each parameter-
dependent elastic measure, the first row in the "Parameters" column
indicates the best parameters obtained with supervision [125], while
the second row shows the unsupervised parameters.

Similarity
Measure Parameters Better

(Adj. P Val) RI ARI NMI > = <

MSM LOOCV ✘ (1.00e-0) 0.7235 0.2335 0.3563 47 0 81
c = 0.5 ✘ (1.00e-0) 0.7209 0.2311 0.3532 46 0 82

TWED LOOCV ✘ (1.00e-0) 0.7225 0.2335 0.3567 48 0 80
𝜆, 𝑣 = 1, 0.0001 ✘ (1.00e-0) 0.7185 0.2195 0.3429 38 0 90

ERP - ✘ (1.00e-0) 0.7222 0.2299 0.3541 43 0 85
SBD - ✘ (1.00e-0) 0.7173 0.2180 0.3393 37 0 91

SWALE LOOCV ✘ (1.00e-0) 0.7089 0.2072 0.3265 44 0 84
𝜖 = 0.2 ✘ (1.00e-0) 0.7060 0.1927 0.3101 41 0 87

DTW LOOCV ✘ (1.00e-0) 0.7117 0.2076 0.3378 40 0 88
𝛿 = 0.1 ✘ (1.00e-0) 0.7087 0.2008 0.3284 44 0 84

EDR LOOCV ✘ (1.00e-0) 0.7074 0.1919 0.3099 40 0 88
𝜖 = 0.1 ✘ (1.00e-0) 0.7034 0.1732 0.2898 36 0 92

LCSS LOOCV ✘ (1.00e-0) 0.7060 0.1980 0.3156 41 0 87
𝛿, 𝜖 = 5, 0.2 ✘ (1.00e-0) 0.6998 0.1637 0.2855 33 0 95

ED - ✘ (1.00e-0) 0.7012 0.1752 0.2988 31 0 97
k-Shape - - 0.7335 0.2610 0.3444 - - -

PAM, employing seven different elastic measures, namely, MSM
[141], TWED [105], ERP [30], SWALE [112], DTW [16], EDR [31],
and LCSS [5, 146] as well as the most effective lock-step and sliding
measures from existing literature, Euclidean (ED) and SBD [120], re-
spectively. We evaluated the performance of parameter-dependent
elastic measures in both supervised and unsupervised settings,
using parameter values drawn from [125]. Although utilizing su-
pervised parameter selection may confer an inherent advantage,
potentially bordering on bias, it was deemed necessary to fully
ascertain the capabilities of these measures. From the ’Better’ col-
umn in Table 3, it is evident that none of these measures, under
both supervised and unsupervised settings, statistically outperform
𝑘-Shape according to the Wilcoxon test. The observed (1.00e-0)
values in Table 3 can be attributed to the adjustment provided by
the Holm–Bonferroni correction, which substantially reduces the
likelihood of false positives while maintaining greater statistical
power. Similarly, the upper portion of Figure 3(a) indicates that
elastic measures employed with supervision on parameter tuning
have no significant difference in performance compared to 𝑘-Shape,
as indicated by the Friedman-Nemenyi test. In contrast, the lower
section of Figure 3(a) provides compelling evidence of 𝑘-Shape’s
superior performance over these measures in unsupervised settings.
4.2 Kernel-based Clustering
Kernel 𝑘-AVG (KKM) and Spectral Clustering (SC) offer distinct
advantages for identifying clusters that are non-linearly separable
within the original input space. KKM leverages a kernel function to
project sequences into a higher-dimensional feature space, thereby
facilitating the partitioning of data that becomes linearly sepa-
rable in this new space [44]. In contrast, SC employs a different
approach by computing eigenvectors from the affinity matrix and
subsequently using these eigenvectors for clustering the data with
𝑘-AVG [113]. Our evaluation of these kernel-based methods incor-
porates four prominent kernel functions. Initially, we utilize the
Radial Basis Function (RBF) [36], which effectively extends the Eu-
clidean measure to a high-dimensional space, making sequences
linearly separable. We also explore a sliding kernel, SINK [122],
which assesses all possible alignments between two time-series



Figure 3: (a) CD diagrams of the top three Elastic measures with both
supervised and unsupervised parameter settings [125], with 𝑘-Shape
clustering (a strong baseline) across 128 datasets. (b) CD diagrams
of the top three elastic measures with supervised and unsupervised
parameter settings [125], along with DTW and ED, based on their
average ranks across datasets. The solid lines indicate groups of
methods whose differences are not statistically significant.

Table 4: Pair-wise comparison of Kernel-based clustering algorithms
with 𝑘-Shape as the baseline.

Clustering
Algorithm

Distance
Measure

Better
(Adj. P Val) RI ARI NMI > = <

Kernel
𝑘-AVG

SINK ✘ (1.00e-0) 0.7287 0.2553 0.3461 56 0 72
GAK ✘ (1.00e-0) 0.7119 0.2237 0.3499 42 0 86
KDTW ✘ (1.00e-0) 0.6825 0.1020 0.2125 37 0 91
RBF ✘ (1.00e-0) 0.6643 0.0241 0.1368 21 0 107

SC

SINK ✘ (1.00e-0) 0.7321 0.2661 0.3513 61 0 59
GAK ✘ (1.00e-0) 0.6871 0.2421 0.3546 49 0 79
KDTW ✘ (1.00e-0) 0.5681 0.1721 0.2896 30 0 98
RBF ✘ (1.00e-0) 0.4863 0.0104 0.1182 14 0 114

k-Shape - - 0.7335 0.2610 0.3444 - - -

sequences, thus providing a nuanced analysis of their similarities.
Additionally, we investigate two kernels, GAK [37] and KDTW
[105], designed to extend elastic measures, offering a sophisticated
means of comparing the dissimilarity of time-series data.
Evaluation of Kernel-based Clustering: From the previous sec-
tion, we adopted 𝑘-Shape as the new baseline for our subsequent
analyses, given its strong performance, until we encounter a new
method that statistically outperforms it. Now, we focus on evalu-
ating the performance of KKM and SC, using four representative
kernel measures: RBF, SINK, GAK, and KDTW. Our findings, pre-
sented in Table 4, juxtapose the clustering efficacy of these kernel
measures against 𝑘-Shape. The comparative analysis reveals that,
even under supervised conditions, none of the kernel measures
statistically outperform 𝑘-Shape, as determined by the Wilcoxon
test. Specifically, KKM’s performance with SINK, GAK, KDTW,
and RBF kernels under supervised settings outperforms 𝑘-Shape
in 56, 42, 37, and 21 instances, respectively. Similarly, SC’s efficacy
with the same kernels outperforms 𝑘-Shape in 61, 49, 30, and 14
datasets, respectively. Poor performance of the RBF kernel under-
scores that Euclidean based measures underperform relative to
elastic or alignment-based similarities in time-series clustering. As
depicted in Figure 2(e), the Friedman-Nemenyi test suggests that
none of the kernel-based methods outperform 𝑘-Shape.
4.3 Density-based Clustering
DBSCAN [51] is a leading density-based clustering algorithm that
identifies densely packed, non-spherical clusters while isolating
sparse outliers. It relies on the concept of reachability, wherein
clusters are expanded by including neighboring data points within
a specified radius. OPTICS [6] extends DBSCAN by producing an
ordered traversal of points to detect clusters across regions of vary-
ing density; however, both methods require careful selection of
parameters such as the neighborhood radius and minimum point

Table 5: Pair-wise comparison of Hierarchical clustering algorithms
with 𝑘-Shape as the baseline.

Clustering
Algorithm

Distance
Measure

Better
(Adj. P Val) RI ARI NMI > = <

BIRCH - ✘ (1.00-e0) 0.7123 0.2305 0.3483 47 0 81

AGG-C
MSM ✘ (1.00-e0) 0.7058 0.2415 0.3712 51 0 77
SBD ✘ (1.00-e0) 0.6828 0.1962 0.3370 35 0 93
ED ✘ (1.00-e0) 0.6820 0.1705 0.3006 32 0 96

AGG-A
MSM ✘ (1.00-e0) 0.6450 0.2152 0.3515 36 0 92
SBD ✘ (1.00-e0) 0.6210 0.1577 0.2909 29 1 99
ED ✘ (1.00-e0) 0.5959 0.1584 0.3010 30 0 98

AGG-S
MSM ✘ (1.00-e0) 0.4421 0.0841 0.1859 21 0 107
SBD ✘ (1.00-e0) 0.4222 0.0660 0.1638 18 0 110
ED ✘ (1.00-e0) 0.4222 0.0635 0.1600 18 0 110

k-Shape - - 0.7335 0.2610 0.3444 - - -

count. In contrast, the Density Peaks algorithm [137] obviates ex-
plicit parameter specification by selecting cluster centers whose
neighbors have lower local density and are maximally distant from
points of higher density, then assigning remaining points to their
nearest high-density neighbor.
Evaluation of Density-based Clustering: For this set of ex-
periments, we evaluate the performance of various density-based
clustering methods. For this evaluation, we incorporated the ED
measure alongside two of the most effective sliding and elastic
measures, SBD and MSM, identified as top performers in Section
4.1. To ensure a fair comparison:minPts was chosen via grid search
over {5, 10, 15}; the 𝜀 parameter in DBSCAN and the distance-cutoff
parameter in Density Peaks were both determined using knee-point
detection. Although density-based approaches are designed to ro-
bustly handle outliers, none of these methods consistently outper-
formed 𝑘-Shape on more than 30 datasets, thereby underscoring the
superior performance of 𝑘-Shape. Moreover, as evidenced by the
Friedman-Nemenyi test shown in Figure 2(f), 𝑘-Shape significantly
outperforms density methods.
4.4 Hierarchical Clustering
In our evaluation study, we selected Agglomerative Clustering
(AGG) [82] and BIRCH [160] as representative hierarchical clus-
tering methods due to their widespread adoption. AGG employs
a bottom-up strategy, initially treating each sequence within the
dataset as a cluster. This approach progressively merges clusters
based on their similarity, culminating in a unified cluster that en-
compasses all sequences. To ascertain the proximity between clus-
ters, we employed recognized linkage criteria: single, average, and
complete linkage. BIRCH is notable for its scalability and robustness
in managing outliers. It constructs a cluster-feature tree that encap-
sulates the data’s essential cluster configurations while optimizing
memory usage. Subsequent global clustering leverages summaries
derived from the cluster-feature tree, employing agglomerative clus-
tering techniques to ultimately achieve comprehensive clustering.
Evaluation of Hierarchical Clustering: Akin to the evaluation
from the previous section, we performed an assessment of AGG
methods using the ED, SBD, andMSMmeasures. Our findings reveal
a clear performance hierarchy among the agglomerative clustering
strategies. Specifically, complete linkage consistently outperformed
average linkage, which in turn showed significant superiority over
single linkage across all evaluated distance measures. As summa-
rized in Table 5, even the best-performing hierarchical methods,
such as the agglomerative clustering with complete linkage, only



Table 6: Pair-wise comparison of Distribution-based clustering algo-
rithms with 𝑘-Shape as the baseline.

Clustering
Algorithm

Distance
Measure

Better
(Adj. P Val) RI ARI NMI > = <

AP
MSM ✘ (6.85-e1) 0.7289 0.2204 0.4269 70 0 58
SBD ✘ (1.00-e0) 0.7284 0.2180 0.4001 66 0 62
ED ✘ (1.00-e0) 0.7137 0.1662 0.3731 57 0 71

GMM - ✘ (1.00-e0) 0.7165 0.2193 0.3067 49 0 79
k-Shape - - 0.7335 0.2610 0.3444 - - -

outperformed 𝑘-Shape in 51 out of the 128 datasets. The "Better"
column in Table 5 and the corresponding Figure 2(d) provide further
statistical evidence from Wilcoxon and Friedman-Nemenyi tests
that none of the hierarchical methods outperform 𝑘-Shape.

4.5 Distribution based Clustering
Affinity Propagation (AP) [55] identifies exemplars within datasets,
around which clusters of data points are formed. Furthermore, this
process entails treating all data points as potential exemplars and
facilitating a message exchange among them until a consensus on
the exemplars is reached. Gaussian Mixture Models (GMMs), as
discussed in the works of [42, 142], offer a sophisticated framework
for distribution-based clustering. Moreover, GMM posits that the
data are generated from a finite mixture of Gaussian distributions,
each corresponding to a cluster. These distributions, characterized
by unknown parameters, are unraveled through the Expectation-
Maximization algorithm, enabling the clustering of unlabeled data
by estimating the parameters of the Gaussian mixture.
Evaluation of Distribution based Clustering: In line with our
previous analysis, we selected the ED, SBD, and MSM measures.
Our findings, detailed in Table 6, indicate that AP using MSM, SBD,
and ED, as well as GMM, outperforms 𝑘-Shape clustering in 70, 66,
57, and 49 out of 128 datasets, respectively. However, despite the
robust performance of the APmethods, statistical analysis using the
Wilcoxon test and the Friedman-Nemenyi test indicates that none
of the distribution-based methods decisively outperform 𝑘-Shape.

4.6 Shapelet and Semi-Supervised Clustering
Unlike methods that use entire time-series sequences for cluster-
ing, U-Shapelets [156] utilize subsequences with pronounced pat-
terns, shapelets, to identify outliers. However, this approach is
confined to smaller datasets and does not scale with increasing data
size. To mitigate this limitation, we employ a scalable U-Shapelets
variant [145], which sustains clustering quality without signifi-
cant compromise. Dynamic Time Warping (DTW) is renowned
for its precision in quantifying similarity between time-series se-
quences, yet its application is hindered by the high computational
cost associated with longer sequences. The Learning DTW Pre-
serving Shapelets (LDPS) [99] framework approximates DTW dis-
tance using ED between shapelets, preserving the integrity of the
original sequences. Additionally, the Unsupervised Shapelet Learn-
ing Model (USLM) [158] presents a shapelet-based clustering algo-
rithm that employs an iterative learning process, leveraging pseudo-
labels, spectral analysis, shapelet regularization, and regularized
least-squares to derive shapelets and define decision boundaries
effectively. In the semi-supervised category, FeatTS [144] lever-
ages graph encoding and community detection to construct a co-
occurrence matrix from extracted statistical features. SS-DTW [41]

Table 7: Pair-wise comparison of Shapelet-based clustering algo-
rithms with 𝑘-Shape as the baseline. An asterisk (*) indicates that
somemethods are evaluated on a subset of datasets due to unfeasible
runtimes.

Clustering
Algorithm

Shapelet
Length

Better
(Adj. P Val) RI ARI NMI > = <

UShapelet
50% ✘ (1.00e-0) 0.5718 0.1510 0.2385 26 0 102
35% ✘ (1.00e-0) 0.5227 0.1081 0.2014 24 0 104
15% ✘ (1.00e-0) 0.4976 0.0885 0.1715 23 0 105

k-Shape - - 0.7335 0.2610 0.3444 - - -
𝐿𝐷𝑃𝑆∗ - - 0.6849 0.2835 0.3248 - - -
𝑈𝑆𝐿𝑀∗ - - 0.5008 0.1213 0.1532 - - -
k-Shape∗ - - 0.6925 0.2943 0.3420 - - -

Table 8: Pair-wise comparison of Semi-Supervised clustering algo-
rithms with 𝑘-Shape as the baseline.

Clustering
Algorithm

Better
(Adj. P Val) RI ARI NMI > = <

FeatTS ✘ (1.00-e0) 0.7203 0.2823 0.3229 59 0 69
SS-DTW ✘ (1.00-e0) 0.6307 0.1383 0.2427 28 1 99
k-Shape - 0.7335 0.2610 0.3444 - - -

addresses the critical task of selecting an optimal DTW warping-
window width, a parameter essential for clustering performance
across diverse domains of datasets.
Evaluation of Shapelet-based and Semi-Supervised Cluster-
ing: We conducted an evaluation of the UShapelet model using
three distinct shapelet lengths: 50%, 35%, and 15%. The results, sum-
marized in Table 7, indicate that the U-Shapelet methods do not
surpass the performance of the 𝑘-Shape algorithm in more than
26 of the 128 datasets. Other shapelet-based clustering techniques,
such as USLM and LDPS, were evaluated on a smaller subset of
25 datasets due to prohibitive computational runtimes. Further-
more, both the "Better" column in Table 7 and Figure 2 (h) provide
compelling evidence of 𝑘-Shape’s superiority over shapelet-based
clustering methods, as demonstrated by Wilcoxon and Friedman-
Nemenyi statistical tests. Shapelet-based clustering, although con-
ceptually promising, as it captures localized patterns, did not yield
robust results. One possible explanation is that the unsupervised dis-
covery of shapelets is inherently challenging and susceptible to over-
fitting noise or irrelevant patterns. Within the semi-supervised clus-
tering category, as shown in Table 8, the FeatTS method emerged as
the most effective, outperforming 𝑘-Shape in 59 of the 128 datasets.
However, as illustrated in Figure 2(b), while FeatTS significantly
outperforms SS-DTW, it demonstrates no substantial performance
difference when compared with the 𝑘-Shape approach. For both
categories, all parameters were set as in original implementations.
4.7 Model and Feature based Clustering:
Model-based clustering assumes each sequence in a cluster is gen-
erated by a model following a probability distribution. Piccola [135]
introduced complete linkage agglomerative clustering on autore-
gressive coefficients using Euclidean similarity. Kalpakis [81] ap-
plied 𝑘-Medoids clustering to Linear Predictive Coding Cepstra
(LPCC), employing Euclidean similarity derived from autoregres-
sive coefficients. This approach, emphasizing cepstral coefficients,
distinguishes time series more effectively than coefficients from
the Discrete Fourier Transform (DFT), Discrete Wavelet Transform
(DWT), or Principal Component Analysis (PCA). The Chi-Square



Table 9: Pair-wise comparison of Model-based clustering algorithms
with 𝑘-Shape as the baseline.

Clustering
Algorithm Parameters Better

(Adj. P Val) RI ARI NMI > = <

𝑘-AVG

AR - COEFF ✘ (1.00e-0) 0.6885 0.1159 0.1881 32 0 96
Catch22 ✘ (1.00e-0) 0.6870 0.1409 0.2247 29 0 99
LPCC ✘ (1.00e-0) 0.6851 0.1126 0.1820 33 0 95

AR - P VAL ✘ (1.00e-0) 0.6502 0.0489 0.1135 17 0 111
ES - COEFF ✘ (1.00e-0) 0.5839 0.0803 0.1557 26 0 102

k-Shape - - 0.7335 0.2610 0.3444 - - -
test assesses significant differences between stationary time se-
ries. Maharaj [104] proposed agglomerative hierarchical clustering
based on Chi-Square p-values. A major limitation of model-based
methods is their reliance on assumptions that may not hold, limit-
ing applicability. catch22 [100] selects 22 features from the hctsa
suite’s 4,791 features, capturing diverse time-series characteristics
and providing a feasible solution for time-series signatures.
Evaluation of Model and Feature based Clustering: Tech-
niques such as AR-COEFF, LPCC, AR - P VAL, and ES-COEFF uti-
lize the coefficients from various time-series modeling methods
for clustering, whereas Catch22 employs 22 meticulously selected
time-series features for clustering purposes. Table 9 reveals that
none of these methods outperform 𝑘-Shape in more than 33 out
of 128 datasets. Similarly, "Better" column in Table 9 and Figure 2
(c) indicate that 𝑘-Shape statistically outperforms all model-based
time-series clustering methods.
4.8 Addressing RQ1 and RQ2
The results of our comprehensive evaluation of classical time-series
clustering methods challenge several claims in the literature. For
example, [72] report that 𝑘-Shape does not outperform 𝑘-AVG, yet
Section 4.1 demonstrates this finding arises from unfair parameter
settings (as discussed in Section 2). Similarly, [77, 88] reported un-
derwhelming 𝑘-Shape performance in the literature, largely due to
bugs in the tslearn implementation. However, using the original
implementation shows that 𝑘-Shape, a decade-old approach, still
outperforms all scalable partitional methods, establishing it as a
robust baseline. Employing 𝑘-Shape as our benchmark, we eval-
uated other classical methods and found that none significantly
surpassed it, thus providing critical insights into RQ1.

Addressing RQ2, our empirical results provide key insights that
help resolve some ambiguities regarding distance measures in time-
series clustering. Contrary to [72]’s assertion of the inefficacy of
DTW compared to ED, our empirical evaluation (see Figure 3(b))
provides compelling evidence that DTW consistently outperforms
ED with statistical significance across both supervised and unsu-
pervised settings. This finding effectively addresses the first part of
RQ2. The choice of parameters for parameter-dependent distance
measures, such as MSM, TWED, SWALE, DTW, EDR, LCSS, SINK,
GAK, KDTW, and RBF, is arbitrary in the literature. From Figure
3(a), we observe that, in the unsupervised setting, 𝑘-Shape outper-
forms the top elastic measure with statistical significance; in the
supervised setting, there is no significant difference in performance.
Likewise, TWED outranks all other elastic measures in the super-
vised context, whereas in the unsupervised setting it is outranked
by parameter-free measures such as ERP. Similarly, kernel measures
perform better in supervised than unsupervised settings. These re-
sults underscore the variability of distance-measure efficacy across
contexts. It is notable that the right parameter choice significantly

Table 10: Pair-wise comparison of Deep Learning-based clustering
algorithms with 𝑘-Shape as the baseline.

Clustering
Algorithm

Better
(Adj. P Val) RI ARI NMI > = <

IDEC ✘ (1.00-e0) 0.7159 0.2150 0.2967 46 0 82
DEPICT ✘ (1.00-e0) 0.7111 0.1900 0.2743 42 0 86
SDCN ✘ (1.00-e0) 0.7104 0.2000 0.2884 45 0 83
DEC ✘ (1.00-e0) 0.7090 0.1935 0.2790 43 0 85
DTC ✘ (1.00-e0) 0.7085 0.2123 0.2985 43 1 85

ClusterGAN ✘ (1.00-e0) 0.7082 0.2100 0.2965 41 0 87
VADE ✘ (1.00-e0) 0.7027 0.1734 0.2605 33 0 95
DTCR ✘ (1.00-e0) 0.6832 0.1392 0.2184 28 0 100

SOM-VAE ✘ (1.00-e0) 0.6457 0.0976 0.1804 21 0 107
DCN ✘ (1.00-e0) 0.5716 0.0444 0.1097 15 0 113

k-Shape - 0.7335 0.2610 0.3444 - - -

influences distance-measure performance. Hence, there is a serious
need to explore methods that can determine accurate parameters
in an unsupervised fashion. Therefore, there is clear evidence that
parameter selection is crucial for parameter-dependent measures
to reach fullest potential, thus addressing the second part of RQ2.

5 DEEP LEARNING BASED TIME-SERIES
CLUSTERING

This section presents our investigation into deep learning-based
clusteringmethods for time series, structured in two parts, as shown
in Figure 1. First, we examine the efficacy of deep learning models,
including foundation models, for time-series clustering in the lit-
erature. Then, we perform a comparative analysis to evaluate the
impact of architectural elements and loss function choices on model
performance. This approach offers a detailed understanding of how
individual components affect overall clustering performance.
5.1 Existing Work
Most deep learning-based time-series clustering algorithms have
predominantly adhered to a structured methodology, with minor
variations in handling representation vectors. DCN [152] jointly op-
timizes representation learning via a deep autoencoder and𝑘-Means
clustering. DEC [151] iteratively optimizes a Kullback–Leibler di-
vergence objective on an auxiliary target distribution to refine
cluster assignments. IDEC [64] extends DEC by jointly optimizing
clustering and autoencoder reconstruction losses, preserving local
data structure. DTCR [101] integrates the 𝑘-Means objective with
temporal reconstruction and an auxiliary classification task that
distinguishes genuine and synthetic samples, enriching encoder
representations with contextual depth. DTC [103] expanded on [64]
by incorporating amore sophisticated autoencoder and various tem-
poral similarity metrics to assess the Kullback-Leibler divergence
between predicted and target distributions. SOM-VAE [52] intro-
duced a framework employing a gradient-based self-organizing
map alongside a Markov model, enabling discrete representation
of time series sequences and probabilistic interpretation of tem-
poral transitions. DEPICT [58] extends [64] by applying multi-
reconstruction for pretext loss and cross-entropy for clustering
loss, whereas SDCN [17] integrates a graph convolutional network
to preserve local neighborhood structures within the latent space.
VADE [80] extends variational autoencoders by learning distinct
distributions for each cluster, and ClusterGAN [57] introduces a
GAN-based framework that incorporates a clusterer network to



Figure 4: (a) CD diagrams of deep learning models proposed in lit-
erature. (b) CD diagrams of the top five deep learning models from
literature, along with our proposed contrastive approach. (c) CD
diagrams of the best deep learning models in our evaluation, versus
𝑘-Shape. (d) CD diagrams of the top three deep learningmodels from
literature, along with foundation models. The solid lines indicate
groups of methods whose differences are not statistically significant.

generate latent features and a discriminator to differentiate the
joint distribution of samples and features.

A new class of deep learning models, termed foundation models,
leverages large-scale time-series data to pretrain transformer archi-
tectures akin to large language and vision models. CHRONOS [7]
is a framework for pretrained probabilistic time series models, tok-
enizing time-series values through scaling and quantization into
a fixed vocabulary, and using transformer-based language models
with cross-entropy loss. OFA [161] leverages Frozen Pretrained
Transformers where pretrained language and computer vision mod-
els are adapted to time series tasks without altering self-attention
and feedforward layers. MOMENT [62] segments a time series into
fixed-length patches, mapping each to a D-dimensional embedding.
During pretraining, patches are randomly masked and replaced by
a MASK embedding, aiming to learn patch embeddings that enable
accurate time series reconstruction with a lightweight head.
Evaluation of Existing Work: Now, we present a comparative
analysis of clustering assessment metrics between deep learning-
based clustering methods from the literature and 𝑘-Shape, a scalable
partitional clustering method that has demonstrated superior per-
formance over other classical methods, as detailed in Section 4.
From Table 10, we pick five top-performing deep learning models:
IDEC, DEPICT, SDCN, DEC, and DTC to compare against 𝑘-Shape.
These models surpass 𝑘-Shape only on 46, 42, 45, 43, and 43 out
of 128 datasets, respectively. Results from the Wilcoxon test in
the "Better" column show that all our deep learning-based cluster-
ing baselines are significantly worse than 𝑘-Shape. The findings
in Figure 4(a), according to the Friedman–Nemenyi test, none of
the deep learning methods reported in the literature outperform
𝑘-Shape with statistical significance, aligning with our results in
the table. A critical risk with foundation models is the potential
overlap between pretraining and evaluation data. Our analysis from
Table 11 reveals that, although the MOMENT model demonstrates
robust performance, its pretraining on the UCR dataset compro-
mises the integrity of the evaluation. Accordingly, MOMENT has
been excluded from further consideration. By contrast, neither
CHRONOS nor OFA incurs this form of data contamination; nev-
ertheless, they each outperform the 𝑘-Shape baseline on only 52
and 48 datasets, respectively. Similarly, Wilcoxon test in Table 11
and Friedman-Nemenyi test indicate that none of the foundation
models outperform 𝑘-Shape. Furthermore, as depicted in, Figure
4(d), the Friedman-Nemenyi test comparing foundation models

Table 11: Pair-wise comparison of Foundation Models for clustering
algorithms with 𝑘-Shape as the baseline. An asterisk (*) denotes
Foundation Models that utilized the UCR dataset in training.

Clustering
Algorithm

Better
(Adj. P Val) RI ARI NMI > = <

MOMENT* ✘ (1.00e-0) 0.7304 0.2551 0.3436 66 1 61
CHRONOS ✘ (1.00e-0) 0.7172 0.2066 0.2925 47 0 81

OFA ✘ (1.00e-0) 0.7103 0.1949 0.2817 38 0 90
k-Shape - 0.7335 0.2610 0.3444 - - -

Table 12: Comparison of Pretext and Clustering Loss combinations.

Pretext Loss
CNRV MREC REC VAE TRPLT

C
lu
st
er
in
g
Lo

ss RI 0.7337 0.7209 0.7187 0.7007 0.6908
IDEC ARI 0.2565 0.2480 0.2331 0.2236 0.1969

NMI 0.3709 0.3366 0.3194 0.3012 0.2821
RI 0.7393 0.7183 0.7181 0.7174 0.6901

None ARI 0.2702 0.2474 0.2319 0.2367 0.1813
NMI 0.3832 0.3389 0.3184 0.2579 0.2921

with existing deep learning time-series models show that there is
no significant difference in performance between them. Our find-
ings indicate that, despite the advancements in deep learning for
time-series clustering, none of these methods substantially surpass
traditional models like 𝑘-Shape across all metrics and statistical
tests. Unlike previous studies that report impressive results, our
findings suggest a different outcome. Moreover, these studies have
often used 𝑘-Shape implementations from popular libraries like
tslearn, known to contain bugs affecting performance. We attribute
the relatively low performance of deep learning methods to their
predominantly singular structures derived from general-purpose
clustering, often lacking adaptation to time series.
5.2 Comparative Study
Thus far, we have employed standalone deep learning methods as
recommended in the literature, following their suggested parame-
ters. However, each method comprises several distinct components
and it is hard to discern the individual contributions of loss function
and architectural design choices. To address this complexity, we
adopted and extended the insightful analysis of [88], categorizing
the deep learning-based approaches into three primary components:
neural network architecture, pretext loss (including the introduc-
tion of a new contrastive loss) and clustering loss.
• Neural Network Architecture:We implemented autoencoder
models from three popular classes of neural network architectures:
(a) Fully Connected Network (FCN): We have implemented a
Multi-Layer Perceptron (MLP) [138] model. (b) Recurrent Neural
Network (RNN):We implemented Bi-Directional RNN (BI-RNN)
[140], BI-Gated Recurrent Unit (BI-GRU) [101], Dilated-RNN [29],
BI-Long Short Term Memory [101], and BI-RNN + Attention (BI-
RNN + ATTN) [76] models. (c) Convolutional Neural Network
(CNN):We implemented Simple CNN (S-CNN) [89], Dilated CNN
(D-CNN) [53], and Residual CNN (RES-CNN) [66] models.
• Pretext Loss:We utilize five pretext losses from the literature. (a)
Reconstruction Loss (REC) [68]: It is a loss function for training
an autoencoder and is computed by themean squared error between
the input and the reconstructed output. (b) Multi-Reconstruction
Loss (MREC) [68]: It is an extension of reconstruction loss where
the autoencoder network is required to have symmetry between



Table 13: Pair-wise comparison of Deep Learning Architectures.

Model
Architecture

Architecture
Type

Clustering
Algorithm RI ARI NMI

RES-CNN Convolution REC + None 0.7201 0.2359 0.3207
S-CNN Convolution REC + None 0.7122 0.2262 0.3164
MLP Fully Connected REC + None 0.7102 0.2234 0.3089

BI-RNN Recurrent REC + None 0.7060 0.1983 0.2877
BI-GRU Recurrent REC + None 0.6959 0.1818 0.2681

BI-GRU + ATTN Recurrent REC + None 0.6935 0.1916 0.2763
D-CNN Convolution REC + None 0.6845 0.2282 0.3115
D-RNN Recurrent REC + None 0.6823 0.1752 0.2526
BI-LSTM Recurrent REC + None 0.6687 0.1781 0.2831

encoder and decoder, and the mean squared error is computed be-
tween each layer in the decoder and the corresponding reflected
layer in the encoder. (c) Variational Autoencoder Loss (VAE)
[85]: Unlike regular autoencoder model, variational autoencoder
maps input data to a multivariate latent distribution. Encoder and
decoder are trained jointly to minimize reconstruction loss and
converge expected and observed distributions. (d) Triplet Loss
(TRPLT) [139]: It is a supervised method that pulls encoder repre-
sentations from same class closer to the input while pushing away
representations from other classes. Triplet loss in clustering uti-
lizes a time-based sampling strategy to generate same and different
classes samples in an unsupervised manner. (e) Contrastive Loss
(CNRV) [33]: It learns representations by maximizing agreement
between the input time-series and closest time-series to the input
in the dataset by Euclidean (ED) metric.
• Clustering Loss: We employ seven popular clustering losses
from the literature (a) DEC [151]: It improves object assignment
confidence to its cluster using KL divergence between the soft as-
signment distribution and a target distribution from current cluster
assignments. (b) IDEC [64]: An extension of DEC, combining re-
construction loss and KL divergence, with weight 𝛾 set to 0.1. (c)
DEPICT [58]: It extends the IDEC with multi-reconstruction loss
for pretext phase and standard cross-entropy loss for clustering
phase. (d) SDCN [17]: It trains graph convolutional networks with
the encoder to preserve local data relations using DTW distance
based KNN-graph. (e) VADE [80]: It modifies variational autoen-
coder loss to better fit the clustering task by learning K (number
of clusters) expected and observed distributions for each cluster.
(f) DTCR [101]: It is a weighted combination of three training
objectives where the first component is reconstruction loss, second
component is 𝐾-Means loss and the final component is an auxiliary
classification loss that can identify real and fake time-series data. (g)
ClusterGAN [57]: It modifies regular GAN by adding an additional
clusterer network 𝐶 along with a discriminator network 𝐷 and a
generator network 𝐺 . The clusterer network 𝐶 : 𝑥 → 𝑧 generates
the representation vectors from real input data and the generator
network 𝐺 : 𝑧 → 𝑥 generates the realistic input data from rep-
resentation vectors. The discriminator network discriminates to
identify if the joint distributions of samples and features (𝐶 (𝑥), 𝑥)
and (𝑧,𝐺 (𝑧)) belong to generator or clusterer.
Evaluation of Comparative Study:We conduct a comparative
analysis to elucidate performance variances among components
of deep learning models for time-series clustering. Our evalua-
tion focuses on three elements: architectures, pretext losses, and
clustering losses. First, we assess the performance of various ar-
chitectures using reconstruction loss as the pretext loss without

Table 14: Pair-wise comparison of Architectural, Pretext Loss, and
Clustering Loss combinations, with 𝑘-Shape as the baseline.

Clustering
Algorithm

Model
Architecture

Better
(Adj. P Val) RI ARI NMI > = <

CNRV + NONE RES-CNN ✘ (1.00e-0) 0.7393 0.2702 0.3832 64 0 64
CNRV + IDEC RES-CNN ✘ (1.00e-0) 0.7337 0.2565 0.3709 55 0 73
MREC + IDEC RES-CNN ✘ (1.00e-0) 0.7209 0.2480 0.3366 48 0 80
REC + IDEC RES-CNN ✘ (1.00e-0) 0.7187 0.2331 0.3194 52 0 76

MREC + NONE RES-CNN ✘ (1.00e-0) 0.7183 0.2474 0.3389 54 0 74
REC + NONE RES-CNN ✘ (1.00e-0) 0.7181 0.2319 0.3184 53 0 75
CNRV + NONE FCN ✘ (1.00e-0) 0.7201 0.1994 0.3191 56 0 72
CNRV + IDEC FCN ✘ (1.00e-0) 0.7198 0.1932 0.3094 54 0 74
MREC + IDEC FCN ✘ (1.00e-0) 0.7110 0.2227 0.3083 55 0 73
REC + IDEC FCN ✘ (1.00e-0) 0.7098 0.2218 0.3075 52 0 76

MREC + NONE FCN ✘ (1.00e-0) 0.7089 0.2205 0.3062 52 0 76
REC + NONE FCN ✘ (1.00e-0) 0.7102 0.2215 0.3069 55 0 73
CNRV + NONE BI-RNN ✘ (1.00e-0) 0.7187 0.2026 0.3182 51 0 77
CNRV + IDEC BI-RNN ✘ (1.00e-0) 0.7147 0.1918 0.3080 46 0 82
MREC + IDEC BI-RNN ✘ (1.00e-0) 0.6959 0.1830 0.2692 48 0 80
REC + IDEC BI-RNN ✘ (1.00e-0) 0.6956 0.1825 0.2681 37 0 91

MREC + NONE BI-RNN ✘ (1.00e-0) 0.6967 0.1846 0.2700 37 0 91
REC + NONE BI-RNN ✘ (1.00e-0) 0.6951 0.1811 0.2667 39 0 89
k-Shape - - 0.7335 0.2610 0.3444 - - -

any clustering loss. The findings, summarized in Table 13, indicate
that convolution-based architectures, particularly the RES-CNN,
surpass others in performance. Among fully-connected and recur-
rent architectures, the MLP and BI-RNN emerge as top performers,
respectively. However, Friedman-Nemenyi test finds no statisti-
cally significant differences across architectures. In the subsequent
phase, we investigate the effectiveness of various pretext losses
in conjunction with IDEC and None clustering losses, employing
the RES-CNN architecture. The findings, as detailed in Table 12,
identify CNRV, MREC, and REC as the most effective pretext losses
for both clustering frameworks. Using Friedman-Nemenyi tests, we
gather compelling evidence that CNRV significantly outperforms
the other pretext losses, while MREC and REC exhibit similar per-
formance levels with no substantial differences. We select the best
architectures, pretext losses, and clustering losses based on prior
findings. The RES-CNN, MLP, and BI-RNN are designated as the
premier models across convolutional, fully-connected, and recur-
rent architectural categories, respectively. Among pretext losses,
CNRV, MREC, and REC are recognized for their superior perfor-
mance. For clustering losses, both IDEC and None are identified as
the most effective. An examination of these selected components,
as depicted in Table 14, unveils intriguing observations. RES-CNN
consistently outperforms other architectures across all pretext and
clustering loss combinations. In the context of pretext losses, CNRV
consistently outperforms alternatives, improving performance irre-
spective of architecture or clustering loss. Figure 4(b) shows that
combining RES-CNN with CNRV and None clustering loss yields
statistically significant improvements over other deep learning-
based methods from literature. Finally, comparing IDEC and None
clustering losses reveals no significant performance difference.
5.3 Addressing RQ3
The perceived advancements within the research community re-
garding the impact of deep learning on time-series clustering ap-
pear somewhat illusory. Many studies that introduce deep learning-
based methods for time-series clustering typically adapt general-
purpose deep clustering models or extend existing frameworks.



Additionally, there are significant issues with the evaluation frame-
works used in these studies. For example, DTCR uses only 36
datasets. Additionally, DTCR uses only a few baselines and relies on
baseline results borrowed from various studies, which carries the
risk of adopting potential implementation flaws from those earlier
works. Similarly, DTC’s evaluation is limited to only 13 datasets and
relies on the ROCmetric, which may not be the most suitable choice
for clustering tasks. Additionally, DTC compares against just two
baselines and lacks statistical testing, which considerably weakens
the reliability of its results. SOM-VAE utilizes image data instead of
time-series data. Similar to the other methods, it does not include
statistical testing and overlooks several important techniques from
the literature in its baseline comparisons. The absence of thorough
statistical testing raises questions about whether the proposed ad-
vancements are statistically significant when compared against
both classical state-of-the-art methods and earlier deep learning
methods. Our analysis, as illustrated in Figure 4(a), demonstrates
that the performance differences among deep learning-based clus-
tering models are negligible, with none surpassing 𝑘-Shape.

A recent comparative study [88] exhaustively evaluates the core
components of deep learning-based time-series clustering meth-
ods, but we identified several concerns. It introduces too many
variables, making it difficult to draw rigorous conclusions, and
fails to include foundational models or many classical methods
in its baseline comparisons. We also discovered multiple imple-
mentation errors among the baselines; for example, the tslearn
implementation of the 𝑘-Shape algorithm—deviating from the orig-
inal author’s implementation was incorrectly applied. In response,
our study aims for a more streamlined evaluation, focusing on the
architectural decisions, pretext loss, and clustering loss choices
to provide clarity. Our findings, detailed in Figure 4(b), identify
contrastive learning based models like RES-CNN architecture com-
bined with CNRV pretext loss and NONE clustering loss as the sole
configuration demonstrating superior performance over other deep
learning-based methods documented in the literature. We attribute
this to its ability to adeptly integrate time-series domain features to
optimize contrastive loss. However, from Figure 4(c), we find that
even this model does not exhibit a significant performance differ-
ence when compared to the 𝑘-Shape. Similarly, while foundation
models have demonstrated exceptional performance in image and
language tasks, they have failed to outperform classical methods in
the time-series domain. This discrepancy prompts a critical reeval-
uation of the application of deep learning techniques to time-series
data, suggesting the need for domain-specific adaptations rather
than the uncritical replication of architectures designed for image
and language domains. Therefore, the experiments demonstrate
that deep learning-based time-series clustering methods, including
foundation models, as described in existing literature, do not sta-
tistically surpass the performance of established classical methods.
This insight critically addresses RQ3, shedding light on the actual
impact of deep learning innovations in this field.

6 EXPERIMENTAL ANALYSIS
We present a detailed analysis of each clustering method’s perfor-
mance under various conditions, including accuracy-to–runtime
trade-offs (Section 6.1), sensitivity to data distribution characteris-
tics (Section 6.2), and scalability on large-scale datasets (Section 6.3).

Figure 5: Performance-to-runtime comparison.

6.1 Accuracy-to-Runtime Analysis
We perform an in-depth analysis of the runtime expenses asso-
ciated with various time-series clustering algorithms, juxtaposed
with their performance metrics. Figure 5 presents the runtime costs
of key algorithms explored in this study, as reported in the existing
literature. We define runtime performance as the cumulative dura-
tion required by a method for fitting and inference. Our analysis
reveals that BIRCH emerges as the fastest algorithm, demonstrating
commendable efficiency while maintaining satisfactory clustering
performance. BIRCH’s memory-efficient, online-learning optimiza-
tion for large-scale datasets contrasts sharply with the substantially
longer runtimes of other hierarchical methods. Furthermore, we
identify 𝑘-Shape as the sole traditional algorithm that offers an
advantageous balance between runtime efficiency and clustering
efficacy. Deep learning based approaches also show potential by
leveraging GPU acceleration to achieve speed and accuracy im-
provements unattainable by CPU only processing. For example,
fitting models such as DEC and IDEC on a CPU requires up to five
and eight times longer, respectively. Despite these gains, no deep
learning method significantly surpasses classical strategies like 𝑘-
Shape. However, contrastive methods like RES-CNN framework,
using CNRV pretext loss and NONE clustering loss, show promis-
ing results, albeit with increased runtime. It is worth noting that
runtime efficiencies for our contrastive method could be improved
through strategic sampling of positive and negative samples.

6.2 Data Distribution Analysis
In our evaluation of the full UCR time-series archive (128 univari-
ate datasets), we partitioned the data by several characteristics:
cluster size (small: < 5 vs. large: ≥ 5), number of samples (small:
< 1,000 vs. large: ≥ 1,000), sequence length (small: < 500 vs. large:
≥ 500), stationarity, periodicity, and application domains. For each
subset, we computed the rank for each algorithm. Periodicity, are
assessed using periodogram analysis [83] and autocorrelation func-
tion tests [26], while stationarity is assessed using the augmented
Dickey–Fuller test [46] and the KPSS test [87]. Figure 6 illustrates
the resulting average-rank performance over 128 datasets. Over-
all, the 𝑘-Shape algorithm and the proposed contrastive learning
method consistently achieved the best ranks across nearly all con-
ditions, demonstrating robust performance. However, the analysis
also revealed notable deviations: the feature-driven method FeatTS
attained the best rank on datasets with fewer than five clusters
(reflecting its graph-based encoding of cluster structure).



Figure 6: Average rank of the ten best-performing time-series clus-
tering methods (along with k-AVG baseline), one for each category,
evaluated across varying dataset characteristics: cluster size, number
of samples, sequence length, stationarity, periodicity, and applica-
tion domain. A lighter color indicates a superior performance.

6.3 Scalability Analysis
A comprehensive scalability evaluation of the clustering methods
was conducted, with results summarized in Figure 7. Experiments
systematically varied both the length of individual time series and
the number of samples, measuring runtime (in seconds) for each
method. Both axes in the figures are plotted on a logarithmic scale
to illustrate performance trends across diverse data sizes. Synthetic
data generated in the style of the UCR Cylinder-Bell-Funnel (CBF)
dataset enabled controlled variation of sequence length and sam-
ple count while preserving benchmark characteristics. All experi-
ments were performed on a single CPU core to ensure a consistent,
hardware-independent comparison—isolating differences attribut-
able solely to algorithmic complexity and implementation.

This study evaluates the computational scalability of various
time-series clustering algorithms as functions of the number of
series (𝑁 ) and sequence length (𝑇 ). Standard 𝑘-AVG and its au-
toregressive (AR)-enhanced variant both exhibit linear complexity
in 𝑁 and 𝑇 (𝑂 (𝑁𝑇 )), whereas 𝑘-Shape scales near-linearly in 𝑁
but incurs cubic growth in 𝑇 (𝑂 (𝑁𝑇 3)). The hierarchical method
BIRCH achieves near𝑂 (𝑁 log𝑁 ) behaviour in 𝑁 and linear scaling
in 𝑇 through its 𝑂 (𝑁𝑇 ) incremental summary updates. In contrast,
algorithms relying on pairwise distance measure (MSM) distances,
such as AP-MSM and OPTICS-MSM, must compute an 𝑁 × 𝑁

distance matrix with each distance costing 𝑂 (𝑇 2) via dynamic pro-
gramming, resulting in an overall 𝑂 (𝑁 2𝑇 2) distance-computation
cost. The spectral clustering variant SC-SINK similarly builds an
𝑁 ×𝑁 affinity matrix at𝑂 (𝑁 2𝑇 2) and then solves an𝑂 (𝑁 3) eigen-
problem, rendering it impractical for moderate to large datasets
without algorithmic acceleration. Deep learning based clustering
methods methods incur significantly higher runtimes due to it-
erative gradient-descent optimization and complex architectures,
making them prohibitively slow for large 𝑁 or long 𝑇 absent hard-
ware acceleration. However, when GPUs are available, models such
as CNRV can leverage parallel batch training and vectorized com-
putations to achieve scalability comparable to classical approaches.

Empirical results indicate that 𝑘-Shape offers the best balance be-
tween clustering accuracy and computational efficiency: although it
is slower than 𝑘-AVG, 𝑘-AVG AR, and BIRCH, our evaluation above
shows that 𝑘-Shape nonetheless attains superior clustering perfor-
mance. It occupies a “sweet spot” between fast/low-performance

Figure 7: Scalability analysis of the ten best-performing time-series
clustering methods (k-AVG as the baseline) for each category. Clus-
tering runtime (seconds) is presented as (a) a function of number of
time-series samples 𝑁 and (b) as a function of sequence length𝑇 .

and slow/high-performance methods. This renders 𝑘-Shape par-
ticularly well suited for large-scale applications with constrained
computational resources. Similarly, it is important to note that deep
learning–based models can significantly benefit from GPU accel-
eration due to parallel batch training and vectorized processing.
Specifically, CNRV not only demonstrated top-tier clustering perfor-
mance among deep learning–based methods but also shows strong
potential for scalability in large-scale settings.

7 CONCLUSIONS AND DISCUSSION
Time-series clustering is a prominent task in time series analysis,
yet the literature reveals a substantial gap in systematic, comprehen-
sive evaluations and benchmarking. Despite decades of research,
existing benchmarks have significant limitations. We identify these
shortcomings and present the most comprehensive analysis to date,
evaluating 84 clustering methods across ten distinct classes in data
mining, machine learning, and deep learning. Our study yields in-
sights that challenge prevailing assumptions. Although many meth-
ods have been proposed, no algorithm consistently outperforms the
decade-old baseline 𝑘-Shape, suggesting perceived progress may
be illusory due to limited evaluation practices. Comprehensive as-
sessments across diverse datasets with rigorous significance testing
are imperative to confirm observed improvements genuine rather
than artifacts of selective benchmarking. Moreover, reproducibil-
ity issues further obscure true performance. Notably, parameter-
dependent distance measures, when optimally tuned, demonstrate
significant performance gains over untuned counterparts, high-
lighting the importance of parameter optimization.

Deep learning–based approaches, despite their popularity, have
yet to surpass classical methods, often achieving comparable results
at substantially higher computational cost. Emerging foundation
models offer promise through large-scale pretraining; however,
reliance on data overlapping standard evaluation sets introduces
contamination and in-distribution bias, so reported gains may not
generalize to truly unseen data. Rigorous out-of-distribution testing
and strict dataset separation are required to validate genuine ad-
vances. In this context, we propose a new time-series distance mea-
sure based contrastive learning approach that shows promise and
may benefit from refined sampling strategies. By addressing three
persistent research questions, our analysis provides insights into
design choices that advance time-series clustering and enhances
understanding of current techniques. Ultimately, our findings un-
derscore the critical importance and ongoing demand for refined
time-series clustering methodologies, calling for further research.
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