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Symbolic approximations are dimensionality reduction techniques that convert time series into sequences of

discrete symbols, enhancing interpretability while reducing computational and storage costs. To construct

symbolic representations, first numeric representations approximate and capture properties of raw time series,

followed by a discretization step that converts these numeric dimensions into symbols. Despite decades of

development, existing approaches have several key limitations that often result in unsatisfactory performance:

they (i) rely on data-agnostic numeric approximations, disregarding intrinsic properties of the time series;

(ii) decompose dimensions into equal-sized subspaces, assuming independence among dimensions; and (iii)

allocate a uniform encoding budget for discretizing each dimension or subspace, assuming balanced importance.

To address these shortcomings, we propose SPARTAN, a novel data-adaptive symbolic approximation method

that intelligently allocates the encoding budget according to the importance of the constructed uncorrelated

dimensions. Specifically, SPARTAN (i) leverages intrinsic dimensionality reduction properties to derive non-

overlapping, uncorrelated latent dimensions; (ii) adaptively distributes the budget based on the importance

of each dimension by solving a constrained optimization problem; and (iii) prevents false dismissals in

similarity search by ensuring a lower bound on the true distance in the original space. To demonstrate

SPARTAN’s robustness, we conduct the most comprehensive study to date, comparing SPARTAN with seven

state-of-the-art symbolic methods across four tasks: classification, clustering, indexing, and anomaly detection.

Rigorous statistical analysis across hundreds of datasets shows that SPARTAN outperforms competing methods

significantly on all tasks in terms of downstream accuracy, given the same budget. Notably, SPARTAN achieves

up to a 2x speedup compared to the most accurate rival. Overall, SPARTAN effectively improves the symbolic

representation quality without storage or runtime overheads, paving the way for future advancements.
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1 Introduction
Time series, an ordered sequence of real-valued observations, have become prevalent across a

wide range of domains, including environmental science, biology, engineering, astronomy, and

finance [3, 32, 42, 56, 71, 76, 82, 96, 97, 111, 113, 117]. Over the past few decades, the ubiquity of time

series has driven the development of methods for diverse analytical tasks such as classification [7,

21, 24, 87, 105, 106], clustering [9, 88, 89, 95, 99], forecasting [5, 38, 64, 66–68, 81, 115, 123], anomaly
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Table 1. Critical features of symbolicmethods. Complexity results (in the approximation process) are estimated
by 𝑛 time series with length 𝑚, alphabet size 𝛼 , and word length 𝜔 (𝜔 ≪ 𝑚). 𝑠 denotes the number of
downsampled data. The “Lower Bounding” column displays whether the representation guarantees no false
dismissals in similarity search. “Data-dependent Approximation” shows whether the numeric approximation
learns characteristics from the entire dataset. “Dynamic Discretization” indicates whether the budget can be
dynamically allocated across each symbol.

Method

Lower

Bounding

Data-dependent

Approximation

Dynamic

Discretization

Training

Complexity

Inference

Complexity

SAX [58] ✓ – – 𝑂 (𝑛𝑚) 𝑂 (𝑛𝑚)
ESAX [72] – – – 𝑂 (𝑛𝑚) 𝑂 (𝑛𝑚)
TFSAX [119] – – – 𝑂 (𝑛𝑚) 𝑂 (𝑛𝑚)
SAX-DR [55] – – – 𝑂 (𝑛𝑚) 𝑂 (𝑛𝑚)
SAX-VFD [116] – ✓ – 𝑂 (𝑛𝑚2) 𝑂 (𝑛𝑚2)
1d-SAX [74] – – – 𝑂 (𝑛𝑚) 𝑂 (𝑛𝑚)
SFA [104] ✓ – – 𝑂 (𝑛𝑚 log(𝑚)) 𝑂 (𝑛𝑚 log(𝑚))
ABBA [27] – – – 𝑂 (𝑛𝑚) 𝑂 (𝑛𝑚)
fABBA [20] – – – 𝑂 (𝑛𝑚) 𝑂 (𝑛𝑚)

Newly Proposed Symbolic Representation Solution
SPARTAN ✓ ✓ ✓ 𝑂 (𝑛𝑚2) 𝑂 (𝑛𝑚𝜔)
SPARTAN-R ✓ ✓ ✓ 𝑂 (𝑛𝑚𝜔) 𝑂 (𝑛𝑚𝜔)
SPARTAN-S ✓ ✓ ✓ 𝑂 (𝑠𝑚𝜔) 𝑂 (𝑛𝑚𝜔)

detection [10–17, 69, 70, 85, 90, 114], and similarity search [25, 26, 86, 91, 93, 94, 98], highlighting

the importance of processing and mining such data. However, the proliferation of high-dimensional

time-series data from expanding Internet of Things (IoT) deployments [43, 73, 83] poses significant

challenges in computational and storage costs [44, 45, 53, 62, 63, 73, 92], emphasizing the necessity

of efficient and scalable analysis techniques for downstream tasks.

Symbolic approximation, which transforms raw time series into sequences of discrete symbols

like “AABCBBCD,” has been proposed as a solution. Beyond dimensionality reduction benefits (e.g.,

low computational and storage cost) shared with compression techniques [2, 19, 30, 31, 50, 86],

symbolic approximation methods (referred to as symbolic methods hereafter) provide additional

advantages stemming from their symbolic nature. In particular, symbolic methods: (i) offer high

interpretability by generating symbolic representation; (ii) avail the wealth of diverse techniques

from other domains, such as text processing [108, 109], facilitating the discovery of meaningful

patterns [58, 59]; (iii) prevent false dismissals in similarity search tasks by preserving a lower bound

on the true distance in the original space. For the past two decades, symbolic methods have become

a subroutine in diverse analytical tasks, such as dictionary classifiers [60, 61, 80, 103, 106, 110],

anomaly detection [18, 59, 107–109], indexing [58, 104, 112], andmotif discovery [57–59]. Nowadays

with the flourishing of Large Language Models (LLMs) [34, 46, 65, 124], symbolic methods, by their

nature, hold potential as a bridge between the continuous time series and discrete text data, which

highlights the importance of attention paid to their development.

To extract meaningful temporal information, symbolic methods typically involve two crucial

steps: (i) numeric approximation, which approximates the raw data with a numeric representation

while preserving the essential information; (ii) discretization, which applies a predefined or learned

vocabulary to transform the approximated data to a sequence of symbols. For example, as one

well-established symbolic method, Symbolic Aggregate Approximation (SAX) [58, 59] reduces the

dimensionality by evenly segmenting the data using Piecewise Aggregate Approximation (PAA) [52].

The mean values of PAA segments are mapped to discrete symbols based on a predefined lookup

table, assuming a Gaussian distribution. However, relying solely on the average values of input

segments can lead to suboptimal performance, especially with higher dimensionality. This drawback

has prompted the development of several SAX variants [55, 72, 74, 116, 119], which incorporate
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additional representative features (e.g., statistics and trends). Yet most of these solutions have

improved representation power by sacrificing space/increasing storage requirements and lack a

proven lower-bounding property. Other methods reduce the reconstruction error by adopting

adaptive segments but produce variable-sized representations per time series [20, 27], making them

less suitable for batch processing in downstream analysis. In contrast, Symbolic Fourier Analysis

(SFA) [104] leverages the advantage of Discrete Fourier Transform (DFT) approximation and retains

the desirable lower bounding property, making it one of the most widely used methods in similarity

search and dictionary classifiers [77, 78, 80, 103, 104, 106].

Despite decades of progress, current approaches still exhibit several key limitations that may

lead to unsatisfactory performance. Specifically, most existing methods: (i) rely on data-agnostic

approximation strategies, neglecting the intrinsic properties of the time series; (ii) decompose

raw dimensions into equal-sized subspaces, assuming independence across the dimensions; and

(iii) assign a uniform budget across dimensions or subspaces, assuming equal importance for all

dimensions. While the first limitation prevents methods from effectively modeling intrinsic data

properties, the latter two overlook the temporal dependencies and the disproportionate contribu-

tions of different dimensions (as illustrated in Section 3.1). Consequently, these shortcomings lead

to inefficient resource allocation by wasting budgets on insignificant dimensions. Furthermore, no

comprehensive comparative evaluation of symbolic methods currently exists, leaving their impact

on downstream accuracy unclear. We challenge and address this as part of our work.

In this work, we present the Symbolic PCA Representation for Time-series ApproximatioN
(SPARTAN), a novel symbolic approximation method that overcomes the aforementioned three

key limitations in both numeric approximation and discretization phases. Specifically, SPARTAN (i)

exploits intrinsic dimensionality reduction to extract uncorrelated latent dimensions for approxi-

mation; (ii) formulates a constrained optimization problem to adaptively distribute the encoding

budget across dimensions, in proportion to their importance; and (iii) guarantees a lower bound on

the Euclidean distance in the original space, preventing false dismissals in the similarity search

tasks [59, 104, 112]. By intelligently allocating the encoding budget according to the significance of

the uncorrelated latent dimensions, SPARTAN efficiently enhances symbolic representation quality

without sacrificing the encoding budget.

To demonstrate the robustness of SPARTAN, we perform the most comprehensive experimental

study on symbolic representations to date, along with seven state-of-the-art methods. Specifically,

we evaluate SPARTAN and leading methods across four analytical tasks: classification, clustering,

and the tightness of lower bound (a proxy for indexing) [58, 59, 104] across 128 UCR datasets [21],

and anomaly detection on about 2000 time series from TSB-UAD datasets [90]. Existing symbolic

distances are often tailored for their respective methods, which complicates the fair evaluation of

different representations. Given the absence of a unified testbed, we propose a generic symbolic

distance, Symbolic 𝐿1, to measure dissimilarity between symbolic representations. This approach

requires no prior knowledge of the underlying methods, which helps ensure fairness. Additionally,

we evaluate Euclidean distance (ED) on raw time series as a valuable reference point in comparison

with symbolic methods. Notably, we validate our results through rigorous statistical tests to assess

the significance of performance differences. We make the code available for reproducibility [1].

In summary, our evaluation study demonstrates: (i) SAX variants outperform SAX by sacrificing

storage, yet none surpass SAX under the same budget, reinforcing SAX as a strong baseline; SFA

is the only method that strongly outperforms SAX under the same budget, showing its robust

representation quality; (ii) SPARTAN demonstrates superior representation power over two leading

methods, SAX and SFA, across all analytical tasks under the same storage budget; and (iii) SPARTAN

also offers accelerated versions that deliver up to a 2x speedup over SFA on large-scale databases

with millions of time series, without compromising its representation quality. As shown above,
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SPARTAN emerges as a robust symbolic method, advancing the state of the art. Table 1 summarizes

the characteristics of SPARTAN against baselines.

In this paper, we begin with a review of the preliminary and related work (Section 2). We then

present the new method as follows:

• We show the disproportionate nature of importance distribution across dimensions using

representative samples (Section 3.1).

• We derive non-overlapping latent dimensions and efficiently measure the informativeness by

leveraging the intrinsic property of linear dimensionality reduction (Section 3.1).

• We formulate a constrained optimization problem with a dynamic programming solution to

adaptively assign encoding budget space in proportion to the importance (Section 3.2).

• We formally prove SPARTAN’s lower bound property to ED on the original space. (Section 3.3).

• We demonstrate the strength of SPARTAN by conducting a comprehensive evaluation against

the current state-of-the-art methods under four analytical tasks (Section 4 and 5).

Finally, we discuss the conclusions and potential directions for future research (Section 6).

2 Background and Preliminaries
We first review the terminology for time series (Section 2.1), and we introduce the time-series

representation across different categories (Section 2.2). We will then present the current state-of-

the-art method in time-series symbolic representation (Section 2.3).

2.1 Terminology and Definitions

Time Series: A set of 𝑛 time-series, denoted as X = {𝑋1, 𝑋2, . . . , 𝑋𝑛}, where each 𝑋𝑖 ∈ R𝑚×𝑑 , with
𝑚 time steps and 𝑑 channels. A time-series is univariate when 𝑑 = 1, and multivariate when 𝑑 > 1.

In this paper, we focus on the univariate case for simplicity.

Sliding Window: Given a univariate time-series 𝑋 with length𝑚, sliding windows are defined as

a set of subsequences, i.e., a sequence of consecutive time steps, extracted by sliding a “window” of

width𝑤 across all time steps, with a stride size 𝑐 (1 ≤ 𝑤 ≤ 𝑚 − 1 and 1 ≤ 𝑐 ≤ 𝑚 −𝑤 ). The shape of

the output matrix is (⌊𝑚−𝑤
𝑐
⌋ + 1,𝑤).

Symbolic Representation: Given a time-series 𝑋 ∈ R𝑚×𝑑 , we want to find a transformation

𝑓 from the raw data to a word of 𝜔 symbols: 𝑋 = 𝑓 (𝑋 ), where 𝑋 ∈ Φ𝜔 and Φ = {𝑠1, 𝑠2, · · · , 𝑠𝛼 }
denotes the vocabulary set given alphabet size 𝛼 (𝛼,𝜔 ≪𝑚). The transformation typically consists

of two critical steps: (i) numeric approximation, which approximates the data with a low-dimensional

representation 𝑋 = 𝜓 (𝑋 ), 𝑋 ∈ R𝜔 ; (ii) discretization, which transforms the approximated data to a

sequence of discrete symbols 𝑋 = 𝜙 (𝑋 ), 𝑋 ∈ Φ𝜔 .

2.2 Time-Series Representation
Curse of Dimensionality [51] inevitably raises performance concerns in both runtime and accuracy.

It is useful to develop transformations that reduce the dimensions while retaining the essential

information. Depending on the type of data, time-series representation can be classified into:

continuous and discrete representations.
Continuous Representation: Examples of approximation techniques include Piecewise Aggregate

Approximation (PAA) [50], Discrete Fourier Transform (DFT) [2], Discrete Wavelet Transform

(DWT) [19], and Principal Component Analysis (PCA) [48], and Generic RepresentAtIon Learning

(GRAIL) [87]. While data-agnostic methods like DFT offer reliable approximation by providing a

universal basis across domains, data-adaptive methods like PCA can efficiently model underlying

data distribution. With the advent of deep neural networks, unsupervised representation-learning

strategies [115, 118, 120–122] and foundation models [5, 33, 46, 124] have attracted significant
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Fig. 1. An overview of symbolic approximation methods. (a) SAX, a classical symbolic method. (b) An example
of SAX variant method (ESAX). (c) SFA, a frequency-based method.

attention. However, their reliance on large training sets and high computational cost makes them

less suitable for data-scarce or time-sensitive tasks in practical applications.

Discrete Representation: There are numerous studies on discrete time-series representations

(symbolizing, tokenizing, quantizing) [4, 22, 30, 41, 59, 86, 112]. These techniques take advantage

of the fast processing speed and low storage cost from the discrete data structure. In comparison,

symbolic methods offer high interpretability with human-readable symbols and leverage the wealth

of text-based techniques [6, 59, 60, 109]. Representative approaches such as SAX [58, 59] and SFA

[104] also preserve the lower bounding property, preventing the false dismissal in similarity search

tasks [58, 104, 112]. Next, we review the current state-of-the-art symbolic methods.

2.3 Symbolic Representation Methods
Symbolic methods have emerged as an effective tool for various downstream tasks. In the following,

we review well-established symbolic methods, including SAX, SAX variants, and SFA.

Symbolic Aggregate Approximation (SAX): SAX [58] is a well-established symbolic method

known for its robust performance and high efficiency. As shown in Figure 1, SAX reduces the

dimensionality by evenly segmenting the raw data using PAA [52], and then maps the mean

value of each segment to a discrete symbol based on a predefined look-up table, assuming a

Gaussian distribution. A MINDIST function [58, 59] is introduced to provide a symbolic distance

that guarantees a lower bound on the Euclidean distance in the original space [59]. As mentioned

earlier, this property serves as a cornerstone by preventing false dismissals in similarity search [59,

112]. Building on SAX, iSAX [112] has achieved great success in indexing tasks. iSAX creates

a multiresolution representation, with the goal of increasing precision by requesting additional

budget. However, as discussed in Section 3.2, our approach differs substantially from this logic:

SPARTAN intelligently allocates the budget across dimensions within the same budget. Instead,
iSAX doubles the budget at each level, which is orthogonal to the problem we study here.

SAX Variants: While PAA offers an effective approximation for each segment, it may incur

significant information loss when applied to high-dimensional data. To address this issue, numerous

variants of SAX have been proposed to encode additional features (Figure 1). For example, ESAX [72]

utilizes similar techniques as PAA and additionally includes the maximum and minimum value

for representation. To capture the trend feature, approaches like 1d-sax [74], SAX-DR [55], and

TFSAX [119] introduce an additional feature derived from the linear approximation idea within

the segment, enhancing the ability to represent the trend of the data. SAX-VFD [116] adopts 18

features from three categories, with an optimal feature selection algorithm proposed for informative

features. Recently, ABBA [27] and fABBA [20] explored the direction of uneven segmentation

strategies in the approximation, achieving lower reconstruction error under a given approximation

tolerance. Yet, most of these variant solutions lack a proven lower-bounding property similar to

SAX, limiting their applicability in downstream tasks.
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Fig. 2. An overview of SPARTAN pipeline: (a) training stage, including the data-dependent approximation
and dynamic discretization; and (b) inference stage, where query samples can be transformed on the fly.

Symbolic Fourier Approximation (SFA): Proposed in [104], SFA generates a symbolic rep-

resentation of a time series by first computing the DFT coefficients. For word length of 𝜔 , and

alphabet size 𝛼 , the first 𝜔
2
coefficients (except the first DC-coefficient) are kept for approxmiation.

Each coefficient is split into real and imaginary parts and discretized into one of 𝛼 bins based

on the process of Multiple Coefficient Binning (MCB) [104], which ensures the preservation of

the lower-bounding property [104]. SFA’s representation power comes from the DFT’s ability to

approximate real-valued signals in the frequency domain. However, the default SFA representation

may introduce an inherent bias towards low frequencies. Recent dictionary classifiers utilizing

SFA mitigate this by applying supervised feature selection strategies, e.g., ANOVA test to select

informative coefficients based on the class labels [77, 106]. In our work, we focus on unsupervised

solutions for constructing symbolic representations which we then plug into 3 downstream tasks

to demonstrate the representation quality of each symbolic method.

Existing Limitations: As previously mentioned, existing solutions still share some key short-

comings that may lead to suboptimal performance. Specifically, most existing methods (i) rely

on data-agnostic numeric approximation strategies, e.g., PAA and DFT, ignoring the underlying

data properties; (ii) partition raw dimensions into equal-sized subspaces, assuming independence

across dimensions; and (iii) allocate a uniform budget for each dimension, disregarding the dispro-

portionate importance (as we will show in Section 3.1). Recent advancements made an attempt

to address the limitations by applying uneven segmentation strategies [20, 27], or asymmetric

alphabet sizes for different features [74]. However, these approaches neither capture the intrinsic

data properties nor offer an automated solution for adaptive budget allocation. A unified solution to

address these challenges simultaneously is still lacking. In the following sections, we demonstrate

how the SPARTAN method addresses the existing limitations from two stages.

3 The SPARTAN Method
We propose SPARTAN, a novel data-adaptive symbolic method that addresses existing limitations.

Specifically, we first focus on measuring the informativeness for each dimension and deriving

non-overlapping latent dimensions by exploiting the intrinsic linear dimensionality reduction

properties (Section 3.1). Then, we introduce a non-uniform policy to adaptively distribute the

budget for discretization proportionally to the importance of each latent dimension, with a dynamic

programming solution (Section 3.2). Furthermore, we prove that SPARTAN representations lower-

bound the ED on raw time series, preventing false dismissals in similarity search (Section 3.3).

3.1 SPARTAN’s Numeric Approximation
To capture essential information, symbolic methods need to account for the imbalanced importance

across dimensions. To illustrate this, we visualize representative time-series samples from two UCR

datasets[21] (Figure 3). From both examples, we can observe that the importance of each dimension

is highly disproportionate: (i) many dimensions are flat and less informative (highlighted in blue)

compared to representative patterns (in red); and (ii) the majority of the information is concentrated
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(a.1) Examples from Car Dataset

(b.1) Disproportionate Distribution of Explained Variance 

(a.2) Examples from ECGFiveDays Dataset

(b.2) Cumulative Explained Vairance across Dimensions

6.3X
23.3X 2.3X

6.8X

~90% variance explained
by 5 Principle Comonents 

Fig. 3. Measure of informativeness across dimensions on Car and ECGFiveDays datasets: (a) representative
examples from each dataset, with flat regions highlighted in blue bounding boxes and representative patterns
in red ellipses; and (b) explained variance for the top latent dimensions.

to a few top dimensions indicated by explained variance. This highlights the strong need for an

adaptive method that can accurately reflect this characteristic.

To quantify the imbalanced importance, we start by measuring the variance of the original

dimensions, a practice that has proven effective in prior studies [30, 86]. As the value of variance

indicates the degree of variability within the data, a higher variance in one dimension, suggests

a greater likelihood of capturing important features. In this paper, we focus on the univariate

cases. Given a time series dataset X = [𝑋1, 𝑋2, . . . , 𝑋𝑛] ∈ R𝑛×𝑚 , we formulate the variance of each

dimension (time step) as:

𝑉𝑎𝑟𝑖 (X) =
1

𝑛

𝑛∑︁
𝑗=1

(𝑋 𝑖𝑗 − 𝜇𝑖 )2, (1)

where 𝑋 𝑖𝑗 is the value of 𝑖th dimension for 𝑗th time series 𝑋 𝑗 and 𝜇𝑖 denotes the mean of 𝑖th data

dimension. To efficiently measure the variance and address the correlation between dimensions,

we leverage the intrinsic property of PCA, an optimal linear dimensionality reduction method [48].

PCA performs the eigen-decomposition over the covariance matrix 𝑐𝑜𝑣 (X) = X⊤X ∈ R𝑚×𝑚 , whose
solution is known to be an orthogonal projection of the data with maximal variance. Specifically, the

covariance matrix can be decomposed into 𝑐𝑜𝑣 (X) =WΛW⊤
. Here Λ = 𝑑𝑖𝑎𝑔(𝜆1, . . . , 𝜆𝑚) ∈ R𝑚×𝑚

is the diagonal matrix of eigenvalues (explained variance) of 𝑐𝑜𝑣 (X) sorted by descending order,

which can serve as a proxy for the importance of each dimension.W ∈ R𝑚×𝑚 represents the

orthonormal matrix of eigenvectors, serving as the bases for the non-overlapping latent space.

By applying a linear projection 𝑋W, we extract the principal components (PCs), a numeric

representation that approximates and captures the intrinsic properties of the raw time series

in the latent space. As aforementioned, the latent dimensions corresponding to the top-ranked

PCs carry the most information (i.e., explained variance) while the remaining tend to be flat and

less informative (Figure 3). Next, we reformulate Eq. 1 by normalizing the explained variance 𝒆𝒗.
Formally, given the word length 𝜔 , we select the top 𝜔 PCs, which explained the most variance:

𝑒𝑣𝑖 (X) =
|𝜆𝑖 |∑𝜔
𝑗=1 |𝜆 𝑗 |

, 𝑖 ∈ [1, 𝜔] . (2)
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Algorithm 1: Dynamic Alphabet Allocation

Input :𝑉𝑎𝑟 is the truncated explained variance

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 is a tuple of parameters

Output :𝐵𝑒𝑠𝑡𝑉𝑎𝑙 is the best value of the objective function
𝐵𝑖𝑡𝑃𝑒𝑟𝑆𝑦𝑚 is the optimized bit assignments

1 Function DynAlphaAlloc(𝑉𝑎𝑟 ,𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡):
2 𝐵𝑢𝑑𝑔𝑒𝑡 ,WordLen, 𝜆 = 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
3 𝛼 = int(𝐵𝑢𝑑𝑔𝑒𝑡/WordLen)
4 𝑀𝑎𝑥𝐵𝑖𝑡 = int(max(𝑉𝑎𝑟 )∗𝐵𝑢𝑑𝑔𝑒𝑡 )
5 𝐷𝑃 = createArray((WordLen+1, 𝐵𝑢𝑑𝑔𝑒𝑡+1))
6 𝐴𝑙𝑙𝑜𝑐 = createArray((WordLen+1, 𝐵𝑢𝑑𝑔𝑒𝑡+1))
7 𝐵𝑖𝑡𝑃𝑒𝑟𝑆𝑦𝑚 = createArray((WordLen, 1))
8 /* Initialize 𝐷𝑃 with value of −𝐼𝑛𝑓 */

9 /* Initialize 𝐴𝑙𝑙𝑜𝑐 with value of 𝐵𝑢𝑑𝑔𝑒𝑡 */

10 𝐷𝑃 [0] [0] = 0

11 for 𝑖 ← 1 to WordLen do
12 for 𝑗 ← 1 to 𝐵𝑢𝑑𝑔𝑒𝑡 do
13 for 𝑥 ← 1 to𝑀𝑎𝑥𝐵𝑖𝑡 do
14 if 𝑗 − 𝑥 ≥ 0 & 𝑥 ≤ 𝐴𝑙𝑙𝑜𝑐 [𝑖 − 1] [ 𝑗 − 𝑥] then
15 𝑒𝑣 = 𝑉𝑎𝑟 [𝑖 − 1]
16 𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑥 ∗ 𝑒𝑣 − 𝜆 ∗ 𝑒𝑣 ∗ (𝑥 − 𝛼)2
17 if 𝐷𝑃 [𝑖 − 1] [ 𝑗 − 𝑥] + 𝑅𝑒𝑤𝑎𝑟𝑑 > 𝐷𝑃 [𝑖] [ 𝑗]
18 then
19 𝐴𝑙𝑙𝑜𝑐 [𝑖] [ 𝑗] = 𝑥
20 𝐷𝑃 [𝑖] [ 𝑗] = 𝐷𝑃 [𝑖 − 1] [ 𝑗 − 𝑥] + 𝑅𝑒𝑤𝑎𝑟𝑑

21 𝐵𝑒𝑠𝑡𝑉𝑎𝑙 = 𝐷𝑃 [WordLen] [𝐵𝑢𝑑𝑔𝑒𝑡]
22 𝐵𝑖𝑡𝑃𝑒𝑟𝑆𝑦𝑚 = 𝑡𝑟𝑎𝑐𝑒𝐵𝑎𝑐𝑘(𝐴𝑙𝑙𝑜𝑐)

23 return 𝐵𝑒𝑠𝑡𝑉𝑎𝑙 , 𝐵𝑖𝑡𝑃𝑒𝑟𝑆𝑦𝑚

Accordingly, we can transform the original time series 𝑋 into a low-dimensional representation

𝑋 = 𝜓 (𝑋 ) = 𝑋W𝜔 , where𝑋 ∈ R𝑛×𝜔 denotes the top PCs andW𝜔 consist of the first𝜔 eigenvectors

fromW correspondingly. In the following discretization process, each dimension of 𝑋 will be

transformed into one symbol by a learned look-up table. Notably, compared with data-agnostic

methods such as PAA or DFT, the numeric approximation step of SPARTAN is data-adaptive, where
the latent dimensions are constructed with full knowledge of the dataset, capturing intrinsic data

properties. In the next, we introduce SPARTAN’s dynamic discretization strategy.

3.2 SPARTAN’s Discretization
Having derived the latent dimensions for numeric approximation, the next key problem is the

discretization, which transforms the numeric representation to a sequence of symbols 𝑋 = 𝜙 (𝑋 ),
𝑋 ∈ Φ𝜔 , where Φ = {𝑠1, 𝑠2, · · · , 𝑠𝛼 } denotes the vocabulary set of symbols given alphabet size 𝛼 . In

this section, we first introduce the necessity of non-uniform policy under the same budget and

then propose Dynamic Alphabet Allocation, an adaptive strategy to efficiently distribute the budget

guided by the importance of each dimension.
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Algorithm 2: SPARTAN Symbolic Representation

Input :𝑋 is a 𝑛 ×𝑚 matrix of preprocessed data

𝐵𝑢𝑑𝑔𝑒𝑡 is the number of bit-budget for symbols

WordLen is the total number of symbols for encoding

𝜆 is the parameter to balance the allocation, with a default value of 0.5

Output :𝑊𝑜𝑟𝑑 is the symbolic representation output

1 Function SPARTAN(𝑋 ,𝐵𝑢𝑑𝑔𝑒𝑡 ,WordLen, 𝜆):
2 /* TRAINING STAGE */

3 [𝐸𝑖𝑔𝑉𝑎𝑙 , 𝐸𝑖𝑔𝑉𝑒𝑐] = solveEIG(𝑋𝑇 ∗ 𝑋 )
4 [𝐸𝑖𝑔𝑉𝑎𝑙 , 𝐼𝑛𝑑𝑒𝑥𝑆𝑜𝑟𝑡𝑒𝑑] = sortDescending(𝐸𝑖𝑔𝑉𝑎𝑙 )

5 𝐸𝑖𝑔𝑉𝑒𝑐 = 𝐸𝑖𝑔𝑉𝑒𝑐[𝐼𝑛𝑑𝑒𝑥𝑆𝑜𝑟𝑡𝑒𝑑]

6 𝐸𝑖𝑔𝑉𝑎𝑙𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = 𝐸𝑖𝑔𝑉𝑎𝑙[:WordLen]
7 𝐸𝑖𝑔𝑉𝑒𝑐𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = 𝐸𝑖𝑔𝑉𝑒𝑐[:, :WordLen]
8 𝑉𝑎𝑟 = 𝐸𝑖𝑔𝑉𝑎𝑙𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 / sum(𝐸𝑖𝑔𝑉𝑎𝑙𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑)

9 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = tuple(𝐵𝑢𝑑𝑔𝑒𝑡 ,WordLen, 𝜆)
10 𝐵𝑒𝑠𝑡𝑉𝑎𝑙 , 𝐵𝑖𝑡𝑃𝑒𝑟𝑆𝑦𝑚 = DynAlphaAlloc(𝑉𝑎𝑟 ,𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 )

11 𝑋 = 𝑋 ∗ 𝐸𝑖𝑔𝑉𝑒𝑐𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
12 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠 = Binning(𝑋 , 𝐵𝑖𝑡𝑃𝑒𝑟𝑆𝑦𝑚)

13 𝑊𝑜𝑟𝑑 = Mapping(𝑋 , 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠)

14 /* INFERENCE STAGE */

15 𝑋 = 𝑋 ∗ 𝐸𝑖𝑔𝑉𝑒𝑐𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
16 𝑊𝑜𝑟𝑑 = Mapping(𝑋 , 𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑠)

17 return𝑊𝑜𝑟𝑑

Non-uniform policy. Thus far in the literature, it has been assumed a uniform policy–every

dimension is assigned the same encoding budget (i.e., the number of bits to represent a symbol) for

their equal importance. However, as previously mentioned, this uniform policy may potentially

waste valuable budget on less informative dimensions, resulting in inefficient use of the budget. To

address this limitation, our goal is to develop a more intelligent allocation strategy that optimizes the

use of the same overall budget, by prioritizing more important dimensions with more budgets. As

demonstrated in the experiment studies (Section 5.2), naive allocation strategies do not necessarily

enhance performance and may even underperform the uniform policy. Next, we propose Dynamic
Alphabet Allocation (DAA), a non-uniform policy that dynamically allocates the budget based on

the importance of each dimension.

Dynamic Alphabet Allocation. When constructing SPARTAN representations, we abandon

the uniform policy and allow vocabularies Φ with an unequal number of symbols. To achieve

this, we introduce the bit-budget, a storage budget constraint (in bits) determined by alphabet

size 𝛼 and 𝜔 symbols. An alphabet allocation 𝒂 = [𝑎1, 𝑎2, . . . , 𝑎𝜔 ] ∈ N𝜔+ is a vector of length 𝜔

whose element-wise sum is equal to the bit-budget. Specifically, the 𝑖th symbol is drawn from a

vocabulary Φ with alphabet size 2
𝑎𝑖
. The bit-budget is ideal for a standard comparison between

two representations: any allocation with bit-budget 𝐾 has 2
𝐾
possible unique symbol combinations

for representation and can be stored in 𝐾 bits.

We aim to find an alphabet allocation 𝒂 which maximizes the total reward, R(𝒂,𝒘) = 𝒘⊤𝒂,
where𝒘 = [𝑤1,𝑤2, . . . ,𝑤𝜔 ] represents the predefined weights for each symbol. We could faithfully

assign the weights as the explained variance 𝒆𝒗, a proxy for the importance of each dimension.
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However, as demonstrated in the experimental studies (Section 5.2), such naive strategy (denoted

as naiveDAA) can lead to significant performance degradation, often leading to a trivial solution

where the majority of bits are allocated to the first few dimensions, leaving the rest with 0s.

To avoid trivial solutions and encourage a more balanced allocation, we introduce a regularization

term with a parameter 𝜆 > 0, controlling the “smoothness” of alphabet allocation: it imposes a

greater penalty when one symbol consumes an excessive portion of bit-budget. A large 𝜆 would

encourage more evenly distributed allocations, e.g., 𝒂 = [2, 2, 2, 2], while a small 𝜆 would allow

more flexibility for a skewed distribution, e.g., 𝒂 = [3, 3, 1, 1]. As we demonstrate in Section 5.2, 𝜆 is

robust to a wide range of values, and one single value such as 𝜆 = 0.5 generally works well across

various tasks. Given the bit-budget 𝐾 of 𝜔 symbols, we formulate the constrained optimization

problem as follows:

𝒂∗ = argmax

𝒂

𝜔∑︁
𝑖=1

(
R(𝑎𝑖 ,𝑤𝑖 ) − 𝜆 ·𝑤𝑖 · (𝑎𝑖 −

𝐾

𝜔
)2
)

(3)

s.t. 𝑎1 ≥𝑎2 ≥ · · · ≥ 𝑎𝜔 , ∥𝒂∥1 = 𝐾, 𝒂 ∈ N𝜔+ .
As previously discussed, we assign weights𝒘 as the explained variance 𝒆𝒗 in this context. Notably,

this optimization problem can be efficiently solved by dynamic programming-based solutions, as

presented in Algorithm 1. Given a word of 𝜔 symbols and a bit-budget of 𝐾 , we define the optimal

reward 𝛿 , which is computed recursively at each step of 𝑖th symbol and 𝑗 bit-budget:

𝛿 (𝑖, 𝑗) = max

1≤𝑥≤ 𝑗,𝑀𝑎𝑥𝐵𝑖𝑡
{𝛿 (𝑖 − 1, 𝑗 − 𝑥) + R′ (𝑥, 𝑒𝑣𝑖 , 𝜆, 𝐾, 𝜔)},with

R′ =
{
𝑥 · 𝑒𝑣𝑖 − 𝜆 · 𝑒𝑣𝑖 · (𝑥 − 𝐾

𝜔
)2, 𝑥 ≤ 𝑃𝑟𝑒𝑣𝐴𝑙𝑙𝑜𝑐,

−∞, otherwise

(4)

Here, 𝛿 (𝑖, 𝑗) represents the optimal reward for 𝑖 symbols with 𝑗 bit-budgets. 𝑃𝑟𝑒𝑣𝐴𝑙𝑙𝑜𝑐 denotes

the bit allocation for the previous symbol, typically stored in a 2-D array 𝐴𝑙𝑙𝑜𝑐 . The maximum

allowable bits for each symbol, 𝑀𝑎𝑥𝐵𝑖𝑡 , is naturally bounded by max(𝒆𝒗) · 𝐾 . The recursion for

the reward 𝛿 is initialized with − inf , except for 𝛿 (0, 0) = 0. By solving for the optimal reward at

each step using dynamic programming, the ultimate reward can be obtained from the final step

𝛿 (𝜔,𝐾). The corresponding bit allocation can then be traced back from 𝐴𝑙𝑙𝑜𝑐 . With appropriate

regularization in the reward design, this dynamic strategy achieves a balanced distribution that

effectively reflects the importance of each dimension.

We note that this alphabet allocation process accounts for only a small fraction of the total

time. (Section 5.6), given that 𝛼,𝜔 ≪ 𝑚. Afterwards, we construct a histogram for mapping the

symbols (binning) and store the breakpoints in a look-up table. In Section 5.2, we present additional

experiment results comparing various binning strategies [104]. Notably, SPARTAN is flexible and

can accommodate alternative binning strategies as needed.

The overall pipeline of SPARTAN is outlined in Algorithm 2, with an illustrative example provided

in Figure 2. The key procedures are summarized as follows: (i) during the training stage, SPARTAN

first derives the non-overlapping and uncorrelated latent dimensions, and measures the importance

across dimensions. It then performs dynamic discretization, adaptively assigning the bit budget

based on the explained variance of dimensions, followed by constructing the look-up table for

mapping the approximation values to symbols (using binning strategies); and (ii) in the inference

stage, SPARTAN can efficiently approximate the queried data using linear projection to the latent

dimensions (using eigenvector basis) and map the approximated data into symbols by the look-up

table learned in the training stage. In the following section, we are going to introduce a desirable

lower-bounding property and provide a formal proof.
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3.3 SPARTAN’s Lower Bounding Property
Apart from the representation capability, it is also ideal to build a strong connection between the

symbolic space and the original space. SAX first formally shows to lower bound the Euclidean

distance (ED) on the original space, preventing false dismissals when searching the data [28, 112].

The closer the distance measured in symbolic space is to the original space, the greater the pruning

power demonstrated by the method. Following prior works, we quantify this pruning power by the

tightness of lower bound (TLB) and adopt this as a proxy for the performance in indexing tasks.

TLB is the ratio of the measured dissimilarity between the symbolic space and the Euclidean space,

as shown in Equation. 5:

𝑇𝐿𝐵 =
𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (�̃�,𝐶)
𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑄,𝐶) . (5)

A symbolic method that preserves this lower bounding property should retain𝑇𝐿𝐵 <= 1. We are

going to demonstrate the lower bounding property of SPARTAN in two steps: (i) demonstrate the

distance between the numeric approximation in the latent space lower-bounds the ED on raw data;

and (ii) prove that final symbolic representation lower-bounds the distance between the numeric

approximation. By transitivity, this establishes that the distance between SPARTAN representations

also lower-bounds the Euclidean distance. The first step relies on the fact that PCA projection

is an orthogonal transformation that naturally preserves Euclidean distances [47], meaning for

time series 𝑄,𝐶 , the distance between all PCs (numeric representation) is identical to that in the

original space 𝑑 (𝑄,𝐶) = 𝑑 (𝑄W,𝐶W). Subsequently, we could derive the lower bounding property
between numeric approximation and Euclidean distance (on raw time series).

Lemma 1. Given two time series 𝑄 and 𝐶 , the numeric approximation �̂� = [�̂�1, �̂�2, . . . , �̂�𝜔 ] and
𝐶 = [𝐶1,𝐶2, . . . ,𝐶𝜔 ] from the top 𝜔 PCs lower bounds the Euclidean distance between 𝑄 and 𝐶 .

Proof. We want to prove that 𝑑 (�̂�,𝐶) = 𝑑 (𝑄W𝜔 ,𝐶W𝜔 ) ≤ 𝑑 (𝑄,𝐶). The right-hand side can be

derived as:

𝑑 (𝑄,𝐶) = 𝑑 (𝑄W,𝐶W)

=

√√√ 𝜔∑︁
𝑖=1

(𝑄W𝑖 −𝐶W𝑖 )2 +
𝑚∑︁

𝑗=𝜔+1
(𝑄W𝑗 −𝐶W𝑗 )2

≥

√√
𝜔∑︁
𝑖=1

(𝑄W𝑖 −𝐶W𝑖 )2

= 𝑑 (𝑄W𝜔 ,𝐶W𝜔 ) □

Therefore, we show that approximation by the first 𝜔 PCA components guarantees a lower

bound of the Euclidean distance. Next, a slight modification of the𝑀𝐼𝑁𝐷𝐼𝑆𝑇 function [58, 59] is

proposed for the proof of SPARTAN representations. Formally, we obtain the symbolic distance for

two SPARTAN representations �̃�,𝐶:

PCA-MINDIST(�̃�,𝐶) =

√√√ 𝜔∑︁
𝑗=1

(𝑑𝑖𝑠𝑡 (𝐼𝑛𝑑 (�̃� 𝑗 ), 𝐼𝑛𝑑 (𝐶 𝑗 ), 𝑗)2, (6)

𝑑𝑖𝑠𝑡 (𝑞, 𝑐, 𝑗) =
{
0, 𝑖 𝑓 |𝑞 − 𝑐 | ≤ 1

𝛽 𝑗,𝑚𝑎𝑥 (𝑞,𝑐 )−1 − 𝛽 𝑗,𝑚𝑖𝑛 (𝑞,𝑐 ) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7)
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, where 𝛽 𝑗,𝑖 is the 𝑖th breakpoint from the 𝑗 th symbol of a SPARTANword and 𝐼𝑛𝑑 (�̃� 𝑗 ) denotes index
of the output symbol �̃� 𝑗 from the lookup table. Next, we show that PCA-MINDIST(�̃�,𝐶) ≤ 𝑑 (�̂�,𝐶).

Lemma 2. Given two time series 𝑄 and 𝐶 , the symbolic representaion �̃� = [�̃�1, �̃�2, . . . , �̃�𝜔 ] and
𝐶 = [𝐶1,𝐶2, . . . ,𝐶𝜔 ] lower bounds the Euclidean distance between the approximation �̂� and 𝐶 under
PCA-MINDIST.

Proof. Recall the discretization process we construct the breakpoints 𝛽 𝑗,0, 𝛽 𝑗,1, . . . 𝛽 𝑗,𝛼 for 𝑗th

symbol (1 ≤ 𝑗 ≤ 𝜔), where 𝛽 𝑗,0 = −∞ and 𝛽 𝑗,𝛼 = +∞. By our definition, the 𝑗th PC for time

series 𝑄 , is assigned with the symbol 𝜙𝑖 iff 𝛽 𝑗,𝑖−1 ≤ 𝑄W𝑗 < 𝛽 𝑗,𝑖 . Denoted by 𝑞 𝑗 and 𝑐 𝑗 , the

indexes of the 𝑗th symbol of �̃� and 𝐶 , it is sufficient to show the inequality holds for each symbol:

∀1 ≤ 𝑗 ≤ 𝜔,𝑑 (𝑄W𝑗 ,𝐶W𝑗 ) ≥ 𝑑𝑖𝑠𝑡 (𝑞 𝑗 , 𝑐 𝑗 , 𝑗).
Case 1: |𝑞 𝑗 − 𝑐 𝑗 | ≤ 1. In this case, when two symbols are the same or adjacent to each other,

𝑑𝑖𝑠𝑡 (𝑞 𝑗 , 𝑐 𝑗 , 𝑗) = 0 ≤ 𝑑 (𝑄W𝑗 ,𝐶W𝑗 ).
Case 2: |𝑞 𝑗−𝑐 𝑗 | > 1. Assume𝑄W𝑗 > 𝐶W𝑗 and𝑞 𝑗 > 𝑐 𝑗 ; a similar proof holds for the reverse case. By

definition, we obtain 𝑑𝑖𝑠𝑡 (𝑞 𝑗 , 𝑐 𝑗 , 𝑗) = 𝛽 𝑗,𝑞 𝑗−1 − 𝛽 𝑗,𝑐 𝑗 and we know there exist two sets of breakpoints

such that 𝛽 𝑗,𝑞 𝑗−1 ≤ 𝑄W𝑗 < 𝛽 𝑗,𝑞 𝑗 and 𝛽 𝑗,𝑐 𝑗−1 ≤ 𝐶W𝑗 < 𝛽 𝑗,𝑐 𝑗 . By aggregating the observations, we

can derive that 𝑄W𝑗 ≥ 𝛽 𝑗,𝑞 𝑗−1 and 𝐶W𝑗 < 𝛽 𝑗,𝑐 𝑗 , which implies 𝑄W𝑗 − 𝛽 𝑗,𝑞 𝑗−1 ≥ 𝐶W𝑗 − 𝛽 𝑗,𝑐 𝑗 .
Rearranging the terms we get 𝑑 (𝑄W𝑗 ,𝐶W𝑗 ) = 𝑄W𝑗 −𝐶W𝑗 ≥ 𝛽 𝑗,𝑞 𝑗−1 − 𝛽 𝑗,𝑐 𝑗 = 𝑑𝑖𝑠𝑡 (𝑞 𝑗 , 𝑐 𝑗 , 𝑗). □

Therefore we obtain the lower bounding property for the SPARTAN representation. In Section

5.3, we conduct a comprehensive evaluation of TLB and demonstrate the superior performance of

SPARTAN compared to the current state-of-the-art methods.

4 Experimental Settings
In this section, we review the settings for the evaluation of (i) the representation ability on time

series downstream tasks, e.g., classification, clustering, and anomaly detection; (ii) the pruning

power, measured by the tightness of lower bound (TLB); (iii) the scalability and runtime analysis

on the large-scale datasets.

Datasets: We utilize one of the largest collections of labeled univariate time-series, the UCR time-

series archive [21], for classification, clustering tasks and TLB analysis. UCR consists of 128 datasets,

including both synthetic and real-world data across diverse domains. Each dataset contains between

40 and 24000 samples, with sequence lengths ranging from 15 to 3,000. We maintain the standard

train-test splits of the datasets. In the case of datasets with missing values or unequal lengths, we

apply a preprocessing step to forward-fill missing values and do resampling for unequal-length

series. We perform z-score normalization for all datasets [84]. For anomaly detection, we utilize the

TSB-UAD archive [90], one of the largest collections of univariate time-series anomaly data, which

includes 18 anomaly datasets of about 2000 univariate time series spanning different domains with

high variability of anomaly types. To validate the generalization capabilities of different methods

across various data domains, we perform comprehensive statistical tests to validate our findings, as

detailed in the following paragraphs.

Platform and Implementation: Experiments are conducted using a cluster equipped with 2xAMD

EPYC 7713 64-Core processors using the Ubuntu 22.04.3 LTS operating system. We implement and

run SPARTAN and all baseline methods in Python 3.8 for a fair and consistent evaluation study.

The main dependencies are listed as follows: numpy 1.24.4, pandas 2.0.3, scikit-learn 1.3.2, scipy

1.10.1, tsfresh 0.20.1, tslearn 0.6.3. To ensure the reproducibility of our results and findings, we

make the code available [1].

Baselines:We compare SPARTAN against the following SOTA symbolic methods for time-series

analysis: (i) SAX, a simple yet efficient symbolic representation by applying PAA and Gaussian
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assumption for discretization [58]; (ii) ESAX, an extension of SAX that incorporates two additional

extreme points for approximation [72]; (iii) 1d-SAX, an extension of SAX which includes the

approximate slope value [74]; (iv) TFSAX, a SAX variant method with trend feature [119]; (v) SAX-
DR, a SAX variant that includes a direction representation [55], (vi) SAX_VFD, an extension of SAX
method which samples time-series-related features for representation [116]; (vii) SFA, a symbolic

method based on Discrete Fourier Transform for approximation and MCB for discretization [104].

Recent methods ABBA [27] and fABBA [20] reduce reconstruction error using adaptive polygonal

chain approximation, yet they generate variable-sized symbolic representations for each time series,

making them less suitable for standardized benchmarking. We exclude them from this evaluation.

In this study, we also include Euclidean distance on raw time series as a valuable baseline for

comparison with the current best symbolic solutions, which will be illustrated in Section 5.8.

Representation Type: We report results on two types of symbolic representations, named (i)

Single Pattern (SP), which transforms each time series into a single word, e.g., “AACBADCC;” (ii)

Bag-Of-Patterns (BOP), which applies a sliding window and symbolizes the data in a subsequence

manner, i.e., instead of a single word, BOP produces a list of symbolic words such as “[AABC,

ACBA, · · · , BCAD]”, from which a histogram can be generated for subsequent analysis [60, 61, 103].

This is equivalent to the “bag of words” concept in the Information Retrieval tasks [110]. While

the single pattern works in a whole time-series manner, BOP uncovers the distribution of more

fine-grained (local) features by searching for repetitive subsequences. By considering both types of

representation in our evaluation study, we gain a better understanding of the model’s representation

ability at both global and local levels.

Symbolic Distance Measure: To capture dissimilarities between symbolic representations, meth-

ods often introduce their own symbolic distance measures. However, these existing measures

present several key challenges, which complicate a fair evaluation: (i) they are often tailored to

specialized feature designs and predefined lookup tables; and (ii) not all methods provide the same

level of detail, with some lacking a dedicated symbolic measure. We observe that currently no

single distance measure can universally accommodate all symbolic representations.

Given the absence of a unified testbed, we propose a generic symbolic distance that is straight-

forward and ensures fairness, namely the Symbolic 𝐿1 Distance. We define this distance as fol-

lows: given two time series 𝑄,𝐶 and their symbolic representation 𝑄,𝐶 , the symbolic distance

is calculated by the sum of ordinal differences between symbols: D(𝑄,𝐶) =
∑𝜔
𝑖=1 |𝐼𝑛𝑑 (𝑄𝑖 ) −

𝐼𝑛𝑑 (𝐶𝑖 ) |, where 𝐼𝑛𝑑 (𝑄𝑖 ) ∈ {1, 2, . . . , 𝛼} denotes the index of each symbol with alphabet size 𝛼 .

Symblic L1 solely relies on the assumption that the alphabet of methods can be meaningfully

ordered–if |𝐼𝑛𝑑 (𝑄𝑖 ) − 𝐼𝑛𝑑 (𝑄 𝑗 ) | < |𝐼𝑛𝑑 (𝑄𝑖 ) − 𝐼𝑛𝑑 (𝑄𝑘 ) |, then D(𝑄𝑖 , 𝑄 𝑗 ) < D(𝑄𝑖 , 𝑄𝑘 ) holds. This
design is compatible with all baselines we have surveyed, and can accommodate potential new

methods in the future. Since it requires no prior knowledge of given methods, this distance is

unlikely to unfairly favor one representation over another. In Section 5.7, we demonstrate Symbolic

𝐿1 sets a solid foundation for comparing the representation power.

To measure the dissimilarity between BOP histograms, we test four widely-used distance mea-

sures including ED, Cosine similarity, KL-Divergence [54] and BOSS distance [103]. The results

indicate no significant difference between these measures. Therefore, we adopt ED as the default.

Statistical Test: To statistically validate the significance of performance improvement between

methods, we follow [8, 23, 86, 88] and utilize the Friedman test [29] followed by the post-hoc

Nemenyi test [79] with 95% confidence level, which is a well-recognized strategy for comparison

of multiple algorithms across multiple datasets.

Evaluation Framework: We compare our approach on four analytical tasks: (i) for classification,

we adopt the one-nearest-neighbor (1NN) classifier, evaluated by accuracy; (ii) for clustering, we
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(b.2) Accuracy vs. Runtime

(a.1) Critical Diagram of baseline methods

(a.2) Accuracy vs. Bit-budget

(a) Baseline methods with unconstrained bit-budget

(b.1) Critical Diagram of baseline methods

(b) Baseline methods with constrained bit-budget

Fig. 4. Evaluation of 7 baseline methods on 1NN classification accuracy, bit-budget, and runtime (in seconds)
with (a) unconstrained bit-budget and (b) constrained bit-budget. The solid line in the critical diagram (CD)
plots connects all methods that do not perform statistically differently according to the Nemenyi test.

utilize partition around medoids (PAM) for SP and KMeans for BOP respectively, evaluated by Rand

Index (RI) [101];To account for randomness, we report the average RI results over 10 runs. (iii) for

indexing, we report the tightness of lower bound (TLB) as a proxy; (iv) for anomaly detection, we

apply k-nearest neighbors (KNN) detector on BOP representations and evaluate performance on

two well-established evaluation metrics, VUS-PR and VUS-ROC [85], to validate their ability to

distinguish anomalies. Finally, to evaluate the time efficiency, we compute the cumulative CPU

runtime, and perform scaling experiments on the synthetic dataset.

5 Experimental Results
In this section, we evaluate the representation quality of SPARTAN against baselines on various

downstream tasks: (i) classification (Section 5.1 and 5.2); (ii) tightness of lower bound (Section 5.3);

(iii) clustering (Section 5.4); (iv) anomaly detection (Section 5.5); (v) accuracy-to-runtime analysis

(Section 5.6). We also provide additional experiment results on symbolic distances (Section 5.7) and

comparison with true distance (Section 5.8). We summarize the findings in Section 5.9.

5.1 Evaluation of Baseline Methods
As mentioned in Section 3.2, it is essential to establish consistent rules and evaluate each method

under the same parameter settings. In many previous studies, the number of segments𝜔𝑠 is typically

considered the standard constraint for comparison, while allowing flexibility in the word length

𝜔 . For example, SAX utilizes only the mean value for each segment (𝜔 = 𝜔𝑠 ), whereas ESAX, a

representative SAX variant, incorporates two additional features and improves performance with

longer words (𝜔 = 3𝜔𝑠 ) [72]. It is claimed that the difference between storage costs is considered

marginal compared with the original time series length𝑚, making it reasonable to compare under

different word lengths. However, we argue that this experimental setting may lead to ambiguity:

it’s hard to determine whether the performance improvement stems from the enhanced representation
quality, or from sacrificing a larger encoding budget, e.g., a longer word of symbols.

To address this concern and establish a reliable benchmark, we explore two experimental settings

to evaluate the representation ability with different constraints (under the same alphabet size 𝛼):

(1) comparison with the same amount of segments 𝜔𝑠 ;
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(2) comparison with the same amount of symbols 𝜔 .

In the first experiment, we follow the practice in previous studies [55, 72] and allow flexibility in

the word length 𝜔 for additional features (denoted as “unconstrained bit-budget”). For the second

experiment, a simple yet crucial criterion can be derived for fair evaluation: under the same encoding
budget, given word length 𝜔 and alphabet size 𝛼 , how does performance vary across different methods?
Ideally, a robust variant method would be able to outperform SAX under both settings.

We perform a comprehensive study on 1-NN classification, a parameter-free downstream task,

to evaluate the representation power of each method. A generic distance measure, Symbolic 𝐿1, is

adopted to help facilitate a fair comparison on the SP representation. In Section 5.7, we demonstrate

the effectiveness of Symbolic 𝐿1 compared to existing distance measures in the ablation study. We

present a global comparison using the Critical Diagram (CD), which provides the average rank

across all datasets (position on the horizontal line) with statistical tests (solid line connects all

methods with no significant performance differences). Figure 4(a) indicates that, all variant methods

can outperform SAX with a higher ranking by sacrificing more bit-budgets, which aligns with our

expectations. However, when it comes to the second experiment setting (Figure 4(b)), the results

provide a clearer perspective: most SAX variants that introduce more features could not surpass

SAX under the same bit-budget constraint. This is a surprising finding, still, it can be reasonably

explained. In this scenario, the performance of a symbolic method is determined by its intrinsic

representation power rather than the number of selected features. Despite the elaborate design,

many combinations of features do not show significant improvement over SAX under the same bit-

budget, which debunks the long-standing misconceptions. Additionally, it is also acknowledged that

the development of meaningful features is not a trivial job–it requires an in-depth understanding

of the corresponding contribution of each feature to downstream tasks [35, 36]. Overall, the results

highlight the necessity of a simple yet crucial standard to ensure a fair comparison.

Following the new standard, we observe that 1d-SAX is the only variant that outperforms SAX,

though statistically not significant. Among all baselines, SFA, is the only method that strongly

outperforms SAX under the same budget, showing its robust representation quality. In the fol-

lowing sections, we compare SPARTAN with the top methods and validate the findings across

various downstream tasks. As no SAX variants outperform SAX significantly, we use SAX as the

representative baseline along with SFA.

5.2 Evaluation on Classification
In this section, we compare our proposed SPARTAN method with the top two methods, SAX and

SFA, on the classification task. As discussed above, the constraint on the bit-budget serves as a

simple yet effective criterion for fair comparison. We will maintain this standard in the following

downstream tasks. We start from the single pattern (SP) representation with the parameter settings

of 𝛼 = 4, 𝜔 = 8 (will demonstrate the robustness across varying parameters in the subsequent

analysis). As shown in the critical diagrams (CDs) (Figure 5(a.1)), we observe that SPARTAN strongly

outperforms the top two baselines on the SP representation, exhibiting statistically significant

differences from both SAX and SFA. Specifically, pairwise comparisons (Figure 5(b.1)) reveal a

clear trend of performance improvement over about 2/3 UCR datasets (we highlight the upper

left triangle region in green, where SPARTAN outperforms its rival). The superior performance

demonstrates the effectiveness and accuracy of SPARTAN representation.

To better understand the performance of SPARTAN under different representations, we also

incorporate the BOP in our analysis. Without losing generality, we compare methods under

𝛼 = 4, 𝜔 = 4,𝑤 = 5%𝑚 for BOP. In this representation setting, we take advantage of the BOP

strategy and compute the Euclidean distance between histograms of word occurrences generated
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(a.1) SPARTAN vs. SAX and SFA (SP) (a.2) SPARTAN vs. SAX and SFA (BOP)

(b.1) Pairwise comparison (SP) (b.2) Pairwise comparison (BOP)

Fig. 5. 1NN Classification evaluation of SPARTAN, SAX and SFA, including (a) critical diagrams with statistical
test; (b) pair-wise comparisons on all 128 UCR datasets.

by sliding windows, which focuses more on local features. Numerosity reduction technique [103]

is adopted to avoid overweighting stable sections of the time series. Figure 5(a.2) and (b.2) show

that SPARTAN consistently outperforms SAX and SFA, with a clear performance gap. We attribute

this consistent improvement to the data-adaptive nature of SPARTAN: the non-uniform subspaces

found by SPARTAN prioritize more informative dimensions in the latent space. In contrast, mean

values or the first few low-frequency components from DFT may fail to effectively model the

underlying distribution and may struggle to handle complex scenarios. Notably, all representations

are constructed in an unsupervised manner across downstream tasks, as our goal is to establish

a unified benchmark for fair evaluation across all symbolic methods. In real-world applications,

this limitation can be mitigated through expert guidance or supervised techniques. For instance,

SFA+ANOVA [106] has shown significant success in dictionary-based classifiers with elaborate

design. Additionally, automated machine learning (AutoML) solutions [39, 49] present a promising

direction for the adaptive solution (e.g., selecting important frequencies) in diverse domains.

Having demonstrated strong classification performance under standard settings, we further

evaluate the robustness of our proposed method across different parameter settings. As shown in

Figure 12(a), we observe that SPARTAN maintains superior performance over surveyed parameters

and displays a scaling ability under increasing alphabet sizes and word lengths. This can be

attributed to its non-uniform policy, which optimally distributes the encoding budget to the most

informative dimensions. As a result, SPARTAN effectively mitigates the impact of noise and captures

the important patterns compared to baseline approaches.

To assess the effectiveness of each component, we perform an ablation study on SPARTAN,

including alphabet allocation strategy, regularization parameter 𝜆, and the binning strategy.

Alphabet Allocation: We compare the proposed Dynamic Alphabet Allocation (DAA) against

three alternative strategies: (i) SPARTAN_woDAA, which removes the DAA module from SPARTAN

and apply a uniform policy; (ii) SPARTAN_naiveDAA, which allocates the alphabet proportionally

to explained variance (permits allocation of 0 bits); and (iii) SPARTAN_naiveC(onstrainedDAA),
which still allocates the alphabet proportionally but with at least 1 bit for each dimension. As

depicted in Figure 6(a), SPARTAN (with DAA) consistently outperforms other simple strategies in

both SP and BOP representations. Notably, naive strategies (e.g., naiveDAA, naiveC) underperform
SPARTAN_woDAA, which applies no dynamic allocation. Specifically, naiveDAA often results in trivial

solutions by concentrating resources on the first few dimensions while leaving the others with 0s.

Although naiveC improves performance by explicitly introducing constraints (Figure 6(a.2)), it still
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(a.1) Effect of Alphabet Allocation Strategy (SP) (a.2) Effect of Alphabet Allocation Strategy (BOP)

(b.1) Accuracy vs. regularization param    (SP) (b.2) Accuracy vs. regularization param    (BOP)

(c.1) Pairwise Comparison of Binning Strategies (c.2) Visualization of Binning Strategy
Equi-depth

Equi-width

outlier breakpoint

Fig. 6. Ablation study of SPARTAN on 1NN Classification task. (a) Critical diagrams of SPARTAN with
different alphabet allocation stategies; (b) Classification accuracy with varying regularization parameter 𝜆;
and (c) Comparison of two binning strategies, Equi-depth and Equi-width.

produces highly imbalanced allocations and performs worse than SPARTAN_woDAA. These findings
highlight the necessity of a well-designed algorithm for effective alphabet allocations.

Regularization: We also evaluate the performance of SPARTAN against the regularization param-

eter 𝜆. Experiments indicate that our method is robust to a wide range of parameter selections in

both SP and BOP representation types. It is observed that SP tends to perform better with smaller 𝜆

values (light regularization), while BOP benefits from larger 𝜆 values (heavy regularization). We

recommend 𝜆 = 0.5 in general case. It is noteworthy that, with sufficient time and computing

resources, the parameter could also be fine-tuned with supervision to achieve optimal performance.

Binning Strategy: In this study, we test two unsupervised binning strategies [104]: (i) Equi-depth,

which ensures an equal number of samples in each interval; and (ii) Equi-width, which assigns equal

widths to all intervals. Experimental results indicate that Equi-depth generally outperforms Equi-

width for both SPARTAN and SFA, likely due to Equi-width’s sensitivity to distortion from outliers

(we provide an illustrative example in Figure 6(c.2)). However, in out-of-distribution scenarios,

Equi-depth may overfit on the training set, while Equi-width can provide more reliable binning,

explaining cases where Equi-width performs better. Notably, SPARTAN is flexible and supports

alternative binning strategies. For subsequent experiments, we use Equi-depth as the default.

5.3 Evaluation on Tightness of Lower Bound
One of the advantages of SAX is that, the proposed𝑀𝐼𝑁𝐷𝐼𝑆𝑇 measure has been proven to lower

bound the Euclidean distance (ED) in the original space. This property, highly desirable in the

indexing and similarity search, ensures no false rejections of potentially similar data objects [28]. As

mentioned in Section 3.3, we quantify this property using the TLB [58, 59], which serves as a proxy

for the indexing task. The value of TLB closer to 1 indicates better preservation of information

after dimension reduction. Thus, it shows that the smaller the gap between the symbolic and true

distance, the greater the pruning power demonstrated by the methods.
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(c) Mean TLB(b) Critical Diagram of methods 

(a.1) TLB on SonyAI (a.2) TLB on Ham

(d.1) SPARTAN_woDAA vs. Baselines(d.2) SPARTAN vs. SPARTAN_woDAA

Method
SAX
SFA

SPARTAN

0.09
0.19

0.32

SPARTAN
(woDAA) 0.26

0.16
0.25

0.42
0.31

0.17
0.31

0.47
0.44

0.28
0.42

0.56
0.50

(a.3) TLB on TwoLeadECG

Fig. 7. Evaluation study on TLB, including (a) three representative datasets with varying parameters; (b) critical
diagram of SPARTAN and baseline methods; (c) mean TLB value across all 128 UCR datasets under varying
parameters; (d) pairwise comparison of SPARTAN_woDAA vs. baselines, and SPARTAN vs. SPARTAN_woDAA.

However, the majority of methods either lack proof of the lower bounding property or have

exhibited violations (TLB>1) in our experiments. We compare SPARTAN with SAX and SFA, the

only two baseline methods that are proven to preserve this lower bounding property. To simulate

real-world applications where query series are unknown during training and to assess robustness

to out-of-distribution scenarios, we adopt the train/test split from the UCR archive [21]. Specifically,

all methods are trained exclusively on the training data, with TLB value computed between pair-

wise symbolic representations over the test split across 128 datasets. Figure 7(a) visualizes three

representative datasets, SonyAIBORobotSurface1 (SonyAI), Ham, and TwoLeadECG, across varying

parameters. We observe that SPARTAN consistently outperforms SFA and SAX across varying

alphabet sizes and word lengths. A clearer distinction can be seen across 128 datasets, where

SPARTAN consistently takes the lead, with an approximately 15% TLB improvement over the next

best baseline on average (Figure 7(b-c)). It is also shown in Figure 7 (b-d) that SPARTAN not only

shows a tighter lower bound, but also exhibits robustness across varying datasets and parameter

settings. Furthermore, we also observe that, SPARTAN can strongly outperform its competitors

without the DAA strategy (SPARTAN_woDAA), owing to the optimality of our approximation method

(Figure 7(d.1)). By dynamically allocating the budget (DAA), SPARTAN consistently gains a tighter

lower bound (Figure 7(d.2)) across 2/3 datasets. In summary, this TLB performance ensures that,

even with limited budget resources, SPARTAN consistently maintains a strong pruning power.
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(b.1) Pairwise comparison (SP) (b.2) Pairwise comparison (BOP)

(a.1) SPARTAN vs. SAX and SFA (SP) (a.2) SPARTAN vs. SAX and SFA (BOP)

Fig. 8. Evaluation study on the clustering downstream task, including (a) CD plots of SPARTAN and top two
baselines; (b) pairwise comparison on UCR datasets.

5.4 Evaluation on Clustering
To better understand the representation ability in the unsupervised task, we extend our analysis

to the clustering problem, a challenging downstream task that enables us to fairly assess the

representation quality in the absence of labeled data [59]. Following prior works, we adopt the UCR

dataset [21] and utilize the same class label for clustering evaluation.
1
We acknowledge the unclear

cut issue of train/test in the clustering domain as discussed in [40], since clustering is often used

more as an exploratory tool rather than a predictive model in nature. While further exploration is

warranted in this area, we adhere to the pipeline outlined in prior studies [88], and report results on

merged UCR train/test split for all tested methods. Following the 1NN Classification task, we also

report the evaluation result on both SP and BOP representations. To properly perform clustering

on SP representation, we adopt Symbolic 𝐿1 + PAM, a widely used partitional clustering method,

which searches for cluster centers within actual data samples. For BOP, each time series can be

represented by a histogram of the occurrence of symbolic words, followed by the conventional

KMeans clustering. All methods are evaluated by Rand Index [101].

We adopt the same parameter setting as classification and visualize the results in Figure 8. We

observe that SPARTAN can strongly surpass SAX and SFA on both representation types (see Figure

8a and b). Specifically, both SFA and SPARTAN show a significant improvement in comparison to

SAX with SP representation, while SPARTAN takes the lead. For BOP, where local patterns are

captured through sliding windows, SPARTAN is the only method that demonstrates a significant

improvement over the other two, e.g., wins about 2/3 UCR datasets (Figure 8(b.2)), while SAX

and SFA show no statistical difference. These trends also align with classification findings, which

demonstrate the robustness of SPARTAN.

To understand how SPARTAN performs under different settings, we compare three methods

by adopting varying parameters. Without losing generality, we perform various experiments

on the SP representation. Figure 12(b) displays the average Rand Index for each method across

varying alphabet sizes and word lengths. We observe that SPARTAN consistently outperforms

SFA and SAX under varying budget settings. Notably, all three methods improve under a larger

budget, and the gap between each method is getting closer. We attribute this to the fact that,

under the unsupervised setting, the performance of each method converges more quickly than

1
We exclude “Crop” and “ElectricDevices” due to the limit of computing resources.
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(a.1) Critical Diagram on VUS-PR (a.2) Critical Diagram on VUS-ROC

(b.1) An anomaly sample from KDD21 dataset

(b.2) Anomaly prediction score of SAX + KNN

(b.3) Anomaly prediction score of SFA + KNN

(b.4) Anomaly prediction score of SPARTAN + KNN

Anomaly (zoom-in)

Prediction (zoom-in)

Prediction (zoom-in)

Prediction (zoom-in)

False
Positive

False
Positive

Too Noisy

Clean
Prediction

Noisy
Prediction

Fig. 9. Anomaly detection evaluation on symbolic methods + KNN detector, including (a) CD plots evaluated
by VUS-PR/VUS-ROC; (b) visualization of an anomaly example from KDD21 dataset and the prediction
results of each method. The red bounding box and lines highlight the anomalies.

in the supervised classification task. Overall, SPARTAN consistently maintains a high-quality

representation across different tasks.

5.5 Evaluation on Anomaly Detection
Time-series anomaly detection (TSAD), a process of identifying abnormal time points or subse-

quences from the queried time series, has received increasing attention in recent years. Compared

with 1NN classification and clustering, which assess the general representation ability of symbolic

methods, anomaly detection downstream task challenges the methods to properly capture both

normal and abnormal patterns. Enlightened by this, we add this anomaly detection evaluation study

to validate our previous findings. Specifically, we employ BOP representation with the K-Nearest-

Neighbor (K-NN) detector [100], a general anomaly detector independent of symbolic methods,

with Symbolic 𝐿1 as default. We utilize the TSB-UAD collection [90], with about 2000 time series

spanning different domains. All methods are evaluated by VUS-PR and VUS-ROC [85]. Following

previous studies, we conduct Friedman-Nemenyi test to validate the statistical difference.

Considering the larger search scope and the granularity of anomaly patterns in comparison to

previous tasks, we utilize alphabet size 𝛼 = 16 and word length 𝜔 = 16. We adopt sliding window

length𝑤 = 100with top𝐾 = 50 nearest neighbors [90] for all methods. Figure 9(a) shows the critical

diagram under VUS-PR and VUS-ROC. We observe that SPARTAN consistently outperforms SFA

and SAX with statistical differences under this downstream task, indicating a strong generalization
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(b.1) SPARTAN vs. baseline methods

(c.1) Accuracy with increasing number (c.2) Runtime with increasing number 

(d.1) Accuracy with increasing length (d.2) Runtime with increasing length

(b.2) Average accuracy over all UCR datasets

(a.1) Total Runtime of SPARTAN and SPARTAN-R (a.2) Runtime of different components

Training Inference Training Inference

Fig. 10. Accuracy-to-runtime analysis (on 1NN classification task), including (a) runtime analysis on different
components of SPARTAN and SPARTAN-R; (b) comparison of SPARTAN methods vs. SAX and SFA on UCR
datasets; (c,d) accuracy-to-runtime analysis on large-scale datasets.

ability across diverse anomaly types. To further analyze representation performance in the context

of anomaly detection, we closely examine individual cases. Notably, SFA, despite being the state-

of-the-art among baseline methods, exhibits performance degradation in numerous test cases

(e.g., the representative example shown in Figure 9(b)), which is also supported by the VUS-PR

results in Figure 9(a.1). This degradation can be attributed to SFA’s focus on lower frequencies with

the most energies, which may lead to the omission of anomalies that primarily occur in higher

frequencies. Addressing this limitation through proper frequency selection – whether guided by

expert knowledge or automated solutions – presents a promising avenue for enhancing performance

in this unsupervised context. As for SAX, it highly relies on the quality of PAA (i.e., mean value

of the segments), making it more sensitive to large value fluctuations but prone to generating

false positives. In contrast, SPARTAN captures more essential information by prioritizing the

informativeness of dimensions, which enables a more robust representation that can effectively

capture both normal and abnormal patterns.

5.6 Accuracy-to-Runtime Analysis
To understand the robustness and scalability of SPARTAN, we start by analyzing the runtime

of different components during the training and inference. Figure 10(a) visualize the runtime

analysis for both training and testing on two large UCR datasets [21] containing thousands of

samples. The results indicate that while the dynamic alphabet allocation (DAA), breakpoint creation

(Binning), and mapping symbols (mapping) only contribute to a small portion, the majority of the
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(b.1) Critical Diagram (MINDIST) (b.2) Critical Diagram (Symbolic L1 vs. MINDIST)

(a) Pair-wise comparison between Symbolic L1 and existing distances for different methods

Fig. 11. Ablation study on the symbolic distances (evaluated on 1NN classification task). (a) pair-wise
comparison between Symbolic 𝐿1 and existing distance (denoted as MINDIST or “Owndist”); and (b) Average
rankings on SPARTAN, SFA, and SAX, over MINDIST and Symbolic 𝐿1.

computation cost is dominated by approximation. Though PCA is well-known for its effectiveness

in dimensionality reduction, its high computational complexity may raise concerns. To address

this, we introduce two optimized versions of SPARTAN: SPARTAN-R and SPARTAN-S, which
alleviate the computational cost through randomized solutions and sampling strategies.

As shown in Table 1, compared with other approximation methods, FFT (O(𝑛𝑚 log(𝑚)) and
PAA (O(𝑛𝑚)), this high complexity of standard PCA (O(𝑛𝑚2) from singular value decomposition

(SVD)) may cause concern for the efficiency of SPARTAN. We suggest that, this concern can be

firstly alleviated by two factors: (i) the computational burden occurs only during training, allowing

most of the cost to be handled offline beforehand. During online inference, SPARTAN merely

requires a simple matrix multiplication for approximation (O(𝑛𝑚𝜔), 𝜔 ≪𝑚) (Figure 10(a.1)); and

(ii) approximate SVD solutions based on randomized solvers [37, 75] can be easily adapted to

our case, since the method requires only the first few components with large explained variance,

significantly reducing complexity (Figure 10(a)), making the training more comparable to inference

time (O(𝑛𝑚𝜔), 𝜔 ≪ 𝑚). This reduction is particularly advantageous in situations where high

precision is not necessary. We denote this randomized solution as SPARTAN-R (Figure 10).

However, we acknowledge that the complexity’s dependency on the cardinality of the symbolic

representation may still raise concerns when scaled to substantially large datasets. To address this

issue, we further extend our approach to SPARTAN-S, a sampling version with a better scaling

ability on increasingly large datasets. We observe that the intensive learning process of SPARTAN

can be significantly reduced by only sampling a small training subset. To better understand the

robustness of SPARTAN’s learning process, we evaluated the 1NN classification performance across

various sampling rates on all 128 UCR datasets. Notably, we observe that SPARTAN-S can still

strongly outperform the top baselines, SFA and SAX, with only 20% randomly sampled training

data (Figure 10(b)), which demonstrates its robustness.

To better understand the scalability of different methods, we conduct a case study on the synthetic

CBF dataset [102], where a large-scale dataset can be flexibly constructed. For a fair comparison, we

keep 𝛼 = 4, 𝜔 = 8 for all methods and set a sampling rate of 5% for SPARTAN-S (with a maximum

of 1000 training samples). We evaluated all methods on 1NN classification under the same budget.

Both accuracy and runtime results are reported on (i) varying number of time series and (ii) varying

time-series length. As the number of samples 𝑛 increases (Figure 10(c.1)), SPARTAN and SFA

consistently take the lead. The close performance can be attributed to the fact that the generative

patterns in CBF are often considered relatively easy to differentiate, explaining their similarly high

performance in this setting. Meanwhile, the accelerated versions of SPARTAN perform similarly to
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(c.1) Critical Diagram on VUS-PR (c.2) Critical Diagram on VUS-ROC

(a.1) Avg. accuracy on varying alphabet sizes (a.2) Avg. accuracy on varying word lengths

(b.1) Avg. Rand Index on varying alphabet sizes (b.2) Avg. Rand Index on varying word lengths

Fig. 12. Comparison between symbolic representations and ED on raw time series: (a) classification; (b)
clustering; and (c) anomaly detection. In (a) and (b), ED performance is represented by the red dashed line.

the standard version but with much less computational cost (Figure 10(c.2)). However, when the

dimensionality of raw time series becomes increasingly large (Figure 10(d.1)), we observe SPARTAN

of all versions is the only family of methods that can consistently maintain the performance,

while SFA and SAX experience significant performance degradation at different levels. This can

be attributed to the challenge in reconstructing information using mean values or low-frequency

components when facing the increasingly large dimensionality, while SPARTAN methods address

this issue by prioritizing the most informative symbols with a non-uniform policy at two stages.

Importantly, SPARTAN-S, achieving a 2× speed-up compared to SFA on 1M samples in Figure

10(c.2) and extremely long time series with 128K time steps (Figure 10(d.2)), without compromising

the representation quality. These findings highlight SPARTAN as a robust solution for balancing

the representation capability and runtime efficiency on large volumes of data.

5.7 Revisiting the Symbolic Distance Measure
As illustrated in Section 4, due to the absence of a unified testbed, we proposed Symbolic 𝐿1–a simple

yet effective way that provides consistent discriminative power for measuring the dissimilarity for

all methods. Specifically, Symbolic 𝐿1 measures the sum of ordinal differences between discretized

symbols, relying on a simple assumption that the indices of symbols can be meaningfully ordered,

which is compatible with all existing methods we have sampled, as well as new methods that may

emerge in the future. Since it requires no prior knowledge of given methods, this distance is unlikely

to unfairly favor one over another. Without losing generality, we re-conduct the experiments on

1NN classification using Symbolic 𝐿1 and existing distances to validate its effectiveness. As we

can see in Figure 11(a), Symbolic 𝐿1 consistently improves classification accuracy over existing

distances across various symbolic methods, including SPARTAN, SAX, SFA, and SAX variants. More

importantly, we also observe the same trend and conclusion when comparing both Symbolic 𝐿1 and

exiting distance such as MINDIST (Figure 11(b)). These results highlight its stronger discriminative

power, demonstrating its potential as a robust and general-purpose distance measure.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 220. Publication date: June 2025.



220:24 Fan Yang and John Paparrizos

5.8 Comparing with Euclidean Distance
Symbolic methods provide highly interpretable representation with significantly reduced dimension

from the original space, offering the advantages of low computational and storage costs. However,

it is noteworthy that this process inevitably leads to information loss from the raw data. In this

section, we evaluate ED on raw time series as a valuable reference point for comparison with

symbolic methods. Specifically, we perform (i) ED + 1NN for classification on UCR datasets [21];

(ii) ED + KMedoids for clustering on UCR datasets; and (iii) ED + KNN on TSB-UAD [90].

As shown in Figure 12, there is a clear performance gap between symbolic representation and ED,

attributable to information loss from dimensionality reduction. However, with a larger encoding

budget – for example, with larger alphabet sizes and longer word lengths – the performance gap

between ED and symbolic methods narrows, aligning with expectations. This trend is consistent

across both classification (Figure 12(a)) and clustering (Figure 12(b)) tasks. For the anomaly detection

task, SPARTAN shows no statistically significant difference compared to ED + KNN in terms of

VUS-ROC (Figure 12(c)). Across all experiments, SPARTAN consistently outperforms its competitors

and achieves performance closest to ED, demonstrating superior representation efficiency and

pruning power within the constraints of a given encoding budget.

5.9 Summary of Results
In summary, our extensive experimental results suggest that (i) despite elaborate features, none

of the SAX variants strongly outperform the original SAX under the same budget, while SFA

outperforms all other existing methods; (ii) SPARTAN significantly outperforms SAX and SFA in

both supervised (1NN classification) and unsupervised context (clustering and anomaly detection),

which indicates the robust representation ability in capturing both normal and abnormal patterns;

(iii) SPARTAN consistently maintains a high-quality representation with stronger pruning power

in terms of TLB; and (iv) SPARTAN methods achieves 2× speed up over SFA on large-scale datasets

while maintaining the top performance. Furthermore, we further demonstrate the robustness and

fairness of our proposed Symbolic 𝐿1, and evaluate ED on raw time series as a valuable reference

point for comparison with symbolic methods. Overall, SPARTAN strikes a better representation

quality without introducing storage or runtime overheads.

6 Conclusion
In this work, we present SPARTAN, a novel symbolic approximation method that intelligently

allocates the encoding budget according to the significance of each dimension. To demonstrate the

SPARTAN’s robustness, we conducted the most comprehensive evaluation of symbolic methods to

date, along with seven state-of-the-art methods. Our experimental results reveal that the no SAX

variants are able to strongly outperform SAX given the same budget, while SFA outperforms all

other methods. We demonstrate the superior performance of SPARTAN against SAX and SFA across

all four downstream tasks, including classification, clustering, indexing (tightness of lower bound),

and anomaly detection, without introducing additional storage and computation overheads. Overall,

this work paves the way for future research on high-quality symbolic time-series representations,

with potential applications to tasks such as similarity search, motif discovery, and forecasting.
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