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ABSTRACT

Symbolic Approximation, a dimensionality reduction technique that
transforms time series into discrete symbols, has gained increas-
ing attention in various downstream applications. Despite decades
of development, there is a noticeable absence of a comprehensive
study in this domain, highlighting a need for more in-depth inves-
tigation and well-designed exploration tools. To address this gap,
we propose SAIL, a modular web engine serving two purposes:
(i) to provide the first comprehensive study on 7 state-of-the-art
methods over 100+ time-series datasets, the largest study in this
area; (ii) to evaluate the performance of a recently proposed solu-
tion, SPARTAN, that solves two core problems. First, SPARTAN
exploits intrinsic dimensionality reduction to effectively model the
underlying data distribution for approximation. Second, SPARTAN
dynamically allocates alphabet sizes per segment, recognizing the
non-uniform distribution of information in practice. Through its
interactive interface, SAIL enables users to visualize and explore
quantitative assessments across various methods, datasets, and ana-
lytical tasks. SAIL’s exploration reveals that (i) while SAX variants
outperform SAX by sacrificing storage, none surpass SAX under
the same budget, reinforcing it as a strong baseline; SFA is the only
existing method that consistently outperforms SAX within the same
budget; and (ii) across diverse scenarios, SPARTAN outperforms
competing methods in all evaluated tasks significantly, including
classification, clustering, indexing, and anomaly detection, without
incurring additional storage or runtime overhead. Overall, SAIL not
only facilitates the most comprehensive studies in this field but also
provides new insights and concrete solutions for future research.
We release the SAIL web engine at https://saildemo.streamlit.app/.
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Table 1: Features of symbolic approximation methods. Com-
plexity results are estimated by n time series with length
m and word length o for final representation. s denotes the
number of downsampled data for training.

Method Lower Data-dependent | Dynamic Complexity Complexity
Bounding | Approximation | Discretization | (training-stage) | (inference-stage)

SAX [7] v - - O(nm) O(nm)

ESAX [10] - - - O(nm) O(nm)

TFSAX [23] - - - O(nm) O(nm)

SAX-DR [6] - - - O(nm) O(nm)

SAX-VFD [21] - v - O(nmlog(nm)) | O(nmlog(nm))

1d-SAX [11] - - - O(nm) O(nm)

SFA [18] v - - O(nmlog(m)) O(nmlog(m))

Newly Proposed Symbolic Rep ion Solution

SPARTAN [22] v v v O(nm?) O(nmw)

SPARTAN-R [22] v v v O(nmw) O(nmw)

SPARTAN-S [22] 4 v v O(smw) O(nmw)

1 INTRODUCTION

With the expansion of the Internet of Things (IoT) sensor devices,
web data collection, and remote sensing, time-series data min-
ing techniques have been widely applied in diverse downstream
tasks [4, 9, 13, 15, 16]. For its simplicity and scalability, symbolic
approximation, a dimensionality reduction technique for efficient
analysis, has received increasing attention [12, 20]. A symbolic rep-
resentation is produced to transform a time series into a string of
discrete symbols, which offers benefits from both the dimensional-
ity reduction process and high interpretability. Over the past two
decades, symbolic methods have become a subroutine in diverse an-
alytical tasks, such as dictionary classifiers [8, 17] and indexing [2].
Despite decades of progress, a non-negligible gap remains in this
field regarding the comprehensive study of time-series symbolic
solutions [7, 10, 11, 18, 21, 23]. We observed that most present sym-
bolic approximation methods (hereafter referred to as symbolic
methods) fail to effectively model the underlying distribution and
the disproportionate importance of each segment. In particular,
current strategies share a key naivete: they assume only a single
alphabet of a single size for each segment, ignoring the non-uniform
nature, e.g., most energy of the signal may concentrate on a few
segments. In practice, this uniform balance strategy in prior works
may potentially waste valuable encoding budget on less impor-
tant information, leading to a degradation in their representation
efficiency when adapted to various domains. Compared with data-
agnostic approaches focusing on a single time series each time, our
recent work SPARTAN [22] proposes a data-adaptive solution to
construct uncorrelated latent dimensions for approximation.
Moreover, SPARTAN enables non-uniform budget allocation by
considering the importance of each dimension under the same
budget, achieved through a novel dynamic programming approach.
Table 1 summarizes the crucial features of all surveyed methods.
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Figure 1: An overview of SPARTAN symbolic representation
and the proposed SAIL web engine.

In this work, we introduce SAIL, a modular web engine for
time-series Symbolic representation Analysis and Interactive
expLoration. SAIL provides the first comprehensive evaluation
studies on 7 current state-of-the-art methods over 100+ time series
datasets, the largest study in this field. As illustrated in Figure 1,
SAIL facilitates interactive exploration through flexible choices of
methods and datasets. Four critical analytical tasks are supported
for assessing the representation quality, including classification,
clustering, anomaly detection, and indexing (proxy by the tight-
ness of lower bound (TLB) [7]). Through interactive exploration,
SAIL reveals that (i) while SAX variants improve performance by
increasing storage, none surpass SAX under the same budget, rein-
forcing it as a strong baseline, and SFA remains the only baseline
method that consistently outperforms SAX under this constraint;
and (ii) SPARTAN demonstrates superior representation power
over top methods across all evaluated tasks by leveraging intrinsic
dimensionality reduction properties and adapting to the varying
importance of different dimensions. In general, SAIL takes a signif-
icant step further in unveiling the current landscape of time-series
symbolic solutions and provides valuable insights for future studies.

2 PRELIMINARIES

In this section, we first present the current state-of-the-art methods,
and then introduce SPARTAN, a recently proposed data-adaptive
solution integrated as the core component of SAIL web engine.

2.1 Symbolic Representation

Symbolic representation serves as an efficient tool to construct a
lightweight representation for time series in real-time [2]. Typically,
symbolic representation methods transform raw time series into
a sequence of discrete symbols (e.g., “ACBACA”), where specific
symbol combinations form “words” analogous to those in natural
language—capturing representative shapes or recurring patterns in
the data. Owing to their discrete and symbolic nature, symbolic
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Figure 2: Examples of SAX, SAX variant method, and SFA.

methods provide high interpretability through human-readable
symbols, leverage a wide range of text-based techniques to facilitate
the discovery of meaningful patterns, and offer a lower-bounding
property that prevents false dismissals in similarity search tasks [7,
18, 22]. In recent years, symbolic methods have become a core
component in a variety of analytical tasks, such as dictionary-based
classification, anomaly detection, and indexing [17, 19, 20].

2.2 Symbolic Representation Methods

As one of the most fundamental solutions in this domain, SAX [7]
has achieved great success in diverse tasks for its simplicity and
efficiency. Given a time series, SAX reduces the dimensionality by
Piecewise Aggregate Approximation (PAA) and then maps the mean
value of each segment to a discrete symbol according to a predefined
look-up table. As shown in Figure 2, diverse SAX variants have been
proposed with additional information such as shape and statistical
features [10, 11, 21, 23]. In contrast, SFA [18], leverages Discrete
Fourier Transform (DFT) to capture the frequency information
from the Fourier domain. In addition, Multiple Coefficient Binning
(MCB) is also proposed as the standard discretization technique for
alphabet dictionaries. Table 1 summarizes the crucial features of
all surveyed methods. In the following, we are going to review the
recently proposed SPARTAN symbolic representation [22].

2.3 SPARTAN: Algorithm Overview

SPARTAN [22], a recently proposed symbolic method, is integrated
as a core component of the SAIL web engine. In the following,
we review the two main stages for training: approximation and
discretization. During inference, the time series can be transformed
on-the-fly using a pretrained alphabet dictionary (Figure 1 (a)).
Approximation: Existing methods often fall short in the approxi-
mation process due to two key limitations: (i) approximation tech-
niques like PAA and DFT do not leverage information from the
entire dataset, limiting adaptability across domains; and (ii) they
fail to account for the non-uniform importance of segments in prac-
tical settings. To address these issues, SPARTAN leverages intrinsic
dimensionality reduction to identify and prioritize segments based
on their importance. Specifically, it ranks segments by descending
variance, enabling more informative symbol generation during dis-
cretization. Observations on the widely used UCR dataset [3] reveal
that most information is concentrated in a few top principal compo-
nents, highlighting the need for adaptive methods like SPARTAN.
To reduce training time, SPARTAN supports accelerated variants
using randomized solvers [5] and sampling strategies, effectively
pruning computation costs—especially on large scale data.
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Figure 3: The examples of interactive interfaces in SAIL web engine.

Discretization: Previous solutions typically allocate an equal-
sized alphabet to each subspace, often wasting capacity on less
informative dimensions. To address this, SPARTAN introduces Dy-
namic Alphabet Allocation, which assigns bits proportionally to
the importance across dimensions. However, trivial solutions may
simply allocate all bits to the first few dimensions. To avoid this,
SPARTAN employs a dynamic programming solution to efficiently
solve a constrained optimization problem for allocating the budget
across dimensions. With a pre-trained alphabet dictionary, time
series can then be symbolized on the fly for real-time inference.

3 SAIL: SYSTEM OVERVIEW

To help users delve into this field, SAIL web engine! provides in-
teractive interfaces and diverse scenarios, supported by Python
3.9 and the Streamlit [1]. As shown in Figure 3, the GUI of SAIL
incorporates 10 major frames for different tasks.

Classification: This frame facilitates the evaluation on the widely-
used downstream task, 1NN Classification, over 128 UCR datasets.
A generic distance measure, i.e., Symbolic-L; distance, is adopted.
Users have flexible options for selecting datasets and evaluated
methods. To help users comprehend the results, a box plot is pro-
vided to visualize the classification accuracy performance over
selected datasets, followed by the pairwise comparison and critical
diagram (CD) with global rankings (we utilize Friedman test fol-
lowed by the post-hoc Nemenyi test with 95% confidence level). In
addition, SAIL also supports Bag-of-Patterns (BOP) [17, 22] as the
primary representation format for each time series. BOP collects
a set of symbol words from sliding windows across raw dimen-
sions and count their distribution, which focuses more on the local
patterns. We utilize Euclidean distance (ED) for measuring the
dissimilarity between BOPs and perform 1NN classification.
Clustering: This frame assesses the unsupervised representation
quality of each method. Similar to the classification frames, we
adopt the UCR dataset [3] and utilize the same class labels for

! Available online: https://saildemo.streamlit.app/

evaluation. We utilize partition around medoids (PAM) method for
all methods, and measure the distance by Symbolic-L;. Boxplots,
pairwise comparison and critical diagrams have been provided.
Tightness of Lower Bound: To quantify the pruning power, SAIL
adopts the tightness of lower bound (TLB) [7] as the evaluation
metric, which quantifies the ratio between the dissimilarity in the
symbolic space and the Euclidean distance in the original space [7].
A larger TLB (TLB < 1) shows a smaller gap between the symbolic
and true distance, demonstrating greater pruning power. This lower
bounding guarantee, preventing false dismissals when searching the
data, has also become a desirable property in indexing and similarity
search [2, 18] (also be seen as a proxy for indexing capability).
Through the interactive interface, users can visualize the trend of
TLB with increasing/decreasing parameters, e.g., word length w
and alphabet size @, and validate the findings with statistical tests.
Anomaly Detection: Anomaly detection downstream task eval-
uates the ability of methods to accurately capture both normal
and abnormal patterns. Motivated by this, we include an anomaly
detection case study with symbolic representation + K-NN on the
TSB-UAD dataset [14] to provide a complementary assessment from
multiple perspectives. SAIL offers an interactive GUI for visualizing
raw data with labels alongside the predicted anomaly scores, en-
abling users to compare SPARTAN with top baseline methods. The
interface also supports zooming in and out for detailed exploration.
Runtime Analysis: SAIL facilitates users in performing accuracy-
to-runtime analysis, comparing SPARTAN with current state of the
arts. The theoretical time complexity of each method can be found in
Table 1. First, SAIL conducts a 1-NN classification accuracy analysis,
comparing the SPARTAN family (including its accelerated versions)
with top baseline methods across 128 UCR datasets, demonstrating
its robustness. Next, SAIL allows users to explore the scalability
of each evaluated method on large-scale datasets (synthetic CBF)
to simulate practical scenarios. Users can customize comparisons
based on the number of time series or time-series lengths and
visualize the results through line charts.
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4 DEMONSTRATION OVERVIEW

This demo showcases three core scenarios of the SAIL system,
which facilitate user exploration across different dimensions of
each symbolic methods: (i) to benchmark the discriminative power
of each symbolic representation (S1); (ii) to explore the pruning
power (S2); (iii) to investigate the trade-off between accuracy and
runtime (S3). Users can visualize and delve into the comprehensive
evaluation study on 7 state-of-the-art solutions plus SPARTAN,
which unveils the landscape of this domain. Notably, all methods
are evaluated under the same budget to ensure fairness [22].

S1: Benchmark the discriminative power. We present an explo-
rative study in three discriminative tasks: classification, clustering,
and anomaly detection (Figure 3). Notably, SAIL reveals that while
SAX variants often report superior performance, they typically
incur higher storage costs. Under equivalent storage budgets, none
significantly outperform SAX, reinforcing its status as a strong base-
line. Among existing methods, only SFA consistently achieves superior
performance under the same budget. All conclusions are validated
by statistical testing. Leveraging data-adaptive approximation and
Dynamic Alphabet Allocation, recently proposed SPARTAN consis-
tently outperforms the top methods in both 1NN and BOP classifi-
cation tasks, offering a more effective representation for capturing
discriminative patterns. This superiority is further supported by
clustering and anomaly detection. Through interactive case studies
in anomaly detection, SAIL helps identify the vulnerabilities in exist-
ing solutions, including failure cases likely caused by their reliance
on PAA quality and sensitivity to frequency variations. In contrast,
SPARTAN prioritizes the informative dimensions with dynamic
budget allocation, resulting in a more effective representation that
accurately captures both normal and abnormal patterns.

S2: Assess the pruning power. In the preliminary exploration
by SAIL, we observe that most methods exhibit violations (TLB >
1), as shown in Table 1 - a critical issue overlooked in prior stud-
ies. Notably, only SPARTAN, SAX, and SFA consistently guarantee
the TLB property, as demonstrated in the experiments. Within the
Pruning Power Assessment frame, users can easily visualize the
trend of TLB across different alphabet sizes a and word lengths «,
from 3D bar plots of TLB values of different datasets. Both com-
parison plots and statistical tests by SAIL reveal that SPARTAN
consistently outperforms existing top approaches, demonstrating
superior pruning power in the symbolic space.

S3: Investigate the trade-off between accuracy and runtime.
Figure 3 depicts that, in the Runtime Analysis frame, SAIL first
demonstrates the robustness of (1-NN classification) accuracy per-
formance of SPARTAN versus the top two methods, SAX and SFA,
over 128 datasets, showing with both average accuracy and sta-
tistical test. Both accelerated versions, SPARTAN-R (randomized
strategy) and SPARTAN-S (sampling strategy), have demonstrated
the leading performance compared to the baseline methods while
significantly reducing computation costs compared to the original
version. In the second analysis on large-scale datasets, users can
visually compare the accuracy and runtime for each method with
increasing data dimensions, e.g., 1M time series samples. Notably,
SPARTAN’s accelerated variant provides up to a 2x speedup over
SFA on large-scale databases containing millions of time series,
while preserving representation quality in the symbolic space.

5 CONCLUSION

In this paper, we introduce SAIL, a modular web engine that allows
users to explore the time-series symbolic representation field. With
an interactive interface, users are enabled to explore and compre-
hend a recently proposed method SPARTAN along with 7 strong
baselines on 4 analytical tasks. Across diverse settings, SPARTAN
has shown superior performance across all dimensions, without
introducing storage or computation overhead. We hope this demon-
stration system offers users a valuable opportunity to delve into
this field and paves the way for future research.
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