John's

Papers in Referred Journals and Conferences

item thumbnail

Accelerating Similarity Search for Elastic Measures: A Study and New Generalization of Lower Bounding Distances

John Paparrizos, Kaize Wu, Aaron Elmore, Christos Faloutsos, and Michael Franklin

Proceedings of the VLDB Endowment (PVLDB 2023) Journal, Volume 16, pages 2019–2032

item thumbnail

AMIR: Active Multimodal Interaction Recognition from Video and Network Traffic

Shinan Liu, Tarun Mangla, Ted Shaowang, Jinjin Zhao, John Paparrizos, Sanjay Krishnan, Nick Feamster

ACM International Conference on Pervasive and Ubiquitous Computing (ACM UbiComp 2023), pages 1-26

item thumbnail

TSB‑UAD: An End‑to‑End Benchmark Suite for Univariate Time‑Series Anomaly Detection

John Paparrizos, Yuhao Kang, Paul Boniol, Ruey Tsay, Themis Palpanas, and Michael Franklin

Proceedings of the VLDB Endowment (PVLDB 2022) Journal, Volume 15, pages 1697–1711

item thumbnail

Volume Under the Surface: A New Accuracy Evaluation Measure for Time‑Series Anomaly Detection

John Paparrizos, Paul Boniol, Themis Palpanas, Ruey Tsay, Aaron Elmore, and Michael J. Franklin

Proceedings of the VLDB Endowment (PVLDB 2022) Journal, Volume 15, pages 2774‑2787

item thumbnail

Fast Adaptive Similarity Search through Variance‑Aware Quantization

John Paparrizos, Ikraduya Edian, Chunwei Liu, Aaron Elmore, and Michael J. Franklin

38th IEEE International Conference on Data Engineering (IEEE ICDE 2022), pages 2969‑2983

item thumbnail

VergeDB: A Database for IoT Analytics on Edge Devices

John Paparrizos, Chunwei Liu, Bruno Barbarioli, Johnny Hwang, Ikraduya Edian, Aaron J. Elmore, et al.

11th Conference on Innovative Data Systems Research (CIDR 2021), pages 1-8

item thumbnail

Good to the Last Bit: Data‑Driven Encoding with CodecDB

Hao Jiang, Chunwei Liu, John Paparrizos, Andrew Chien, Jihong Ma, and Aaron Elmore

2021 ACM SIGMOD International Conference on Management of Data (ACM SIGMOD 2021), pages 843‑856

item thumbnail

Decomposed Bounded Floats for Fast Compression and Queries

Chunwei Liu, Hao Jiang, John Paparrizos, and Aaron Elmore

Proceedings of the VLDB Endowment (PVLDB 2021) Journal, Volume 14, pages 2586‑2598

item thumbnail

SAND: Streaming Subsequence Anomaly Detection

Paul Boniol, John Paparrizos, Themis Palpanas, and Michael Franklin

Proceedings of the VLDB Endowment (PVLDB 2021) Journal, Volume 14, pages 1717‑1729

item thumbnail

Debunking Four Long-Standing Misconceptions of Time-Series Distance Measures

John Paparrizos Chunwei Liu, Aaron J. Elmore, and Michael J. Franklin

2020 ACM SIGMOD International Conference on Management of Data (ACM SIGMOD 2020), pages 1887‑1905

item thumbnail

PIDS: Attribute Decomposition for Improved Compression and Query Performance in Columnar Storage

Hao Jiang, Chunwei Liu, John Paparrizos, and Aaron J. Elmore

Proceedings of the VLDB Endowment (PVLDB 2020) Journal, Volume 13, pages 925‑938

item thumbnail

GRAIL: Efficient Time-Series Representation Learning

John Paparrizos and Michael Franklin

Proceedings of the VLDB Endowment (PVLDB 2019) Journal, Volume 12, pages 1762‑1777

item thumbnail

Band-limited Training and Inference for Convolutional Neural Networks

Adam Dziedzic1, John Paparrizos1, Sanjay Krishnan, Aaron Elmore, and Michael Franklin

1. Alphabetical order; Equal contribution

36th International Conference on Machine Learning (ICML 2019), pages 1745‑1754

item thumbnail

Fast, Scalable, and Accurate Algorithms for Time-Series Analysis

John Paparrizos

Ph.D. Dissertation, Columbia University

item thumbnail

Fast and Accurate Time-Series Clustering

John Paparrizos and Luis Gravano

ACM Transactions on Database Systems (ACM TODS 2017) Journal, Volume 42, pages 1-49

item thumbnail

Screening for Pancreatic Adenocarcinoma using Signals from Web Search Logs

John Paparrizos, Ryen W. White, and Eric Horvitz

Journal of Oncology Practice (JOP 2016), Volume 12, pages 737‑744

item thumbnail

Predicting the Impact of Scientific Concepts Using Full Text Features

Kathy McKeown,1 Hal Daume,1 Snigdha Chaturvedi,2 John Paparrizos,2 Kapil Thadani,2 et al.

1. Lead PIs 2. Lead student authors in alphabetic order

Journal of the American Society for Information Science and Technology (JASIST 2016), Volume 67, pages 2684‑2696

item thumbnail

The Social Dynamics of Language Chance in Online Networks

Rahul Goel, Sandeep Soni, Naman Goyal, John Paparrizos, Hanna Wallach, et al.

International Conference on Social Informatics (SocInfo 2016), pages 41‑57

item thumbnail

Detecting Devastating Diseases in Search Logs

John Paparrizos, Ryen W. White, and Eric Horvitz

2016 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD 2016), pages 559‑568

item thumbnail

k-Shape: Efficient and Accurate Clustering of Time Series

John Paparrizos and Luis Gravano

2015 ACM SIGMOD International Conference on Management of Data (ACM SIGMOD 2015), pages 1855‑1870

Other Referred Papers (e.g., Short Papers, Demos, and Workshops)

item thumbnail

Theseus: Navigating the Labyrinth of Time‑Series Anomaly Detection

Paul Boniol, John Paparrizos, Yuhao Kang, Themis Palpanas, Ruey S. Tsay, et al.

Proceedings of the VLDB Endowment (VLDB 2022) Journal, Demo track, Volume 15, pages 3702-3705

item thumbnail

SAND in Action: Subsequence Anomaly Detection for Streams

Paul Boniol, John Paparrizos, Themis Palpanas, and Michael Franklin

Proceedings of the VLDB Endowment (VLDB 2021) Journal, Demo track, Volume 14, pages 2867‑2870

item thumbnail

k‑ShapeStream: Probabilistic Streaming Clustering for Electric Grid Events

Mohini Bariya, Alexandra von Meier, John Paparrizos, and Michael Franklin

14th IEEE PowerTech Conference (IEEE PowerTech 2021), pages 1-6

item thumbnail

Artificial intelligence in resource‑constrained and shared environments

Sanjay Krishnan, Aaron Elmore, Michael Franklin, John Paparrizos, et al.

ACM SIGOPS Operating Systems Review (OSR 2019) Journal, Volume 53, pages 1-6

item thumbnail

A tight bound on the worst-case number of comparisons for Floyd’s heap construction algorithm

John Paparrizos

Proceedings in Mathematics and Statistics, (PROMS 2013), Volume 31, pages 153-162

item thumbnail

Homogeneous and non-homogeneous algorithms

John Paparrizos

Proceedings in Mathematics and Statistics, (PROMS 2013), Volume 31, pages 241-248

item thumbnail

Advanced Search, Visualization, and Tagging of Sensor Metadata

John Paparrizos, Hoyoung Jeung, and Karl Aberer

27th IEEE International Conference on Data Engineering (IEEE ICDE 2011), Demo track, pages 1356‑1359

item thumbnail

Machined Learned Job Recommendation

John Paparrizos, Berkant Cambazoglu, and Aristides Gionis

5th ACM International Conference on Recommender Systems (ACM RecSys 2011), pages 325‑328

item thumbnail

Quantitative analysis for authentication of low‑cost RFID tags

John Paparrizos, Stylianos Basagiannis, and Sophia Petridou

36th IEEE International Conference on Local Computer Networks (IEEE LCN 2011), pages 295‑298

item thumbnail

Effective Metadata Management in Federated Sensor Networks

Hoyoung Jeung, Sofiane Sarni, John Paparrizos, Saket Sathe, Karl Aberer, et al.

2010 IEEE International Conference on Sensors, Ubiquitous, and Trustworthy Computing (IEEE SUTC 2010), pages 107-114

item thumbnail

Automatic extraction of structure, content and usage data statistics of web sites

John Paparrizos, Vaso Koutsonikola, Lefteris Angelis, and Athena Vakali

21st ACM conference on Hypertext and Hypermedia (ACM HT 2010), pages 301-302